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GRID-VALUED CONDITIONAL YEH-WIENER
INTEGRALS AND A KAC-FEYNMAN
WIENER INTEGRAL EQUATION

CHULL PARK AND DAVID SKOUG

ABSTRACT. In this paper we establish several results
involving grid-valued conditional Yeh-Wiener integrals of the

type
E(F(z)|z(s1,),--- s 2(Sm, ), &(*,t1),... ,2(*,tn)).

We develop a formula for converting these grid-valued con-
ditional Yeh-Wiener integrals into ordinary Yeh-Wiener inte-
grals. We also obtain a Cameron-Martin translation theorem
for these integrals. More importantly, we evaluate these con-
ditional expectations for functionals F' of the form

T S
F(x) —exp{ / / ¢(u,v,m(u,v))dudv}
0 0

by solving a Kac-Feynman type Wiener integral equation.

1. Introduction. For Q = [0,S5] x [0,T] let C(Q) denote Yeh-
Wiener space, i.e., the space of all real-valued continuous functions
z(s,t) on Q such that z(0,t) = z(s,0) = 0 for every (s,t) in Q.
Yeh [11] defined a Gaussian measure m, on C(Q) (later modified in
[14]) such that as a stochastic process {z(s,t),(s,t) € @} has mean
Elz(s,t)] = fC(Q) z(s,t)my(dz) = 0 and covariance E[z(s,t)z(u,v)] =
min{s, u} min{¢,v}. Let C, = C[0,T] denote the standard Wiener
space on [0,7T] with Wiener measure m,,. Yeh [13] introduced the
concept of the conditional Wiener integral of F' given X, E(F | X), and
for the case X (z) = z(T') obtained some very useful results including
a Kac-Feynman integral equation.
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214 C. PARK AND D. SKOUG

A very important class of functions in quantum mechanics consists
of functions on C[0,T] of the type

6e) e { [ " 0(s,a(s) s}

where 6 : [0,7] x R — C.

Yeh [13] shows that under suitable regularity conditions on 6, the
conditional Wiener integral

H(t,€) = (2rt) ™ exp { - g_j}

B(exp{ [ ots.at6 s ot =)

satisfies the Kac-Feynman integral equation

(1.1)

(6.9 = (2mt) Ve { - £

(1.2) +/0 [2m(t — 5)] /2

. /R 0(s,m)H(s,n) exp{— gzt_gz}dnds

whose solution can be expressed as an infinite series of terms involving
Lebesgue integrals. Then, using (1.1), one can use the series solution
of (1.2) to evaluate the conditional Wiener integral

E<exp { /Ot 8(s, z(s)) ds}x(t) = §>.

The corresponding problem in Yeh-Wiener space, namely, to evaluate

(1.3) E(exp{/ot /0 ng(u,v,a:(u,v))dudv}|az(s,t) _g>

turned out to be substantially different than the corresponding one-
parameter problem. After many attempts to solve this problem by
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several mathematicians, the first really successful solution was given
by Park and Skoug [9] by introducing a sample path-valued conditional
Yeh-Wiener integral of the type

(1.4) E(exp{/ot /0 ¢(u,v,x(u,v))dudv}|x(s, )= 77(-)),

which satisfies a Wiener integral equation similar to that of Cameron
and Storvick [1]. The Wiener integral equation is then solved to evalu-
ate (1.4), and finally (1.3) is obtained by integrating (1.4) appropriately.

In this paper we consider grid-valued conditional Yeh-Wiener inte-
grals of the type

(1.5) E(F(z)|z(s1,), - »2(Smy )y 2(*,81), - .. , 2(x,t5)),
where F' € Li(C(Q),my), and 0 = s9 < s1 < ---

<
0 =t < t1 < --- < t, = T are partitions of [0,S] and
respectively.

Sm = S,
0,77,

It is shown in Section 2 that the conditional Yeh-Wiener integrals
of the type (1.5) can be expressed as ordinary Yeh-Wiener integrals.
In Section 4, a conditional version of the Cameron-Martin translation
theorem is obtained for the integrals (1.5). Finally, in Section 5, the
conditional integral (1.5) is evaluated for functionals F' of the form
F(z) = exp{fQ é(u,v,z(u,v))dudv} by solving a Kac-Feynman type
Wiener integral equation.

2. Grid-valued conditional Yeh-Wiener integrals. Let
c:0=sp<81< <8, =8

and
T:0=tg<t1 <+ <t,=T

be partitions of [0,.5] and [0, T, respectively. For z € C(Q), define z,,
by

(2.1) zy(u,v) = z(s;—1,v) + Z%Z:ll[ac(si, v) — z(8;—1,v)]
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for s;_1 <wu<s;,t=1,...,m. Similarly, define x, by

v — tj,1

(2.2) zr(u,v) = z(u, ;1) + [z(u,t;) — x(u, t;-1)]

tj — tj—l

for t;_1 <wv <t;, j=1,...,n. Itis clear that for z € C(Q), z, and
z, are also in C(Q). Thus, the following definition also makes sense:

Tor = (To)r

Thus,
U — S;—
Tor (U, 0) = T(8i-1,tj-1) + ———— (55, tj-1) — 2(8i-1,j-1)]
5; — 8;_1
v—1t_
(2.3) + L [w(si 1, t5) — @(si 15t 1)]
tj — tj—l

U — S;—1 U*tj_l
+ .

Az
e

for si1 <u<s;,tjio1 <v<t;,i=1,..., mand j=1,...,n, where
Ai,jw = w(si,tj) — w(si_l,tj) — I(Si,tj_l) + :E(Si_l,tj_l).

Obviously (z)- = (z+)s, and hence =, , = ...
For z € C(Q), define X (z) = X, -(z) by
(2.4) X(z) = (2(s1,)y- - Z(Smy ) (%, 81), . .., (¥, t5)),
and let
(2.5) [z] = 2o + 7 — T0 7.
We note that [z] defined as such agrees with x at every point on the
grid, ie., z(s;,-) = [z](si,-) and x(*,t;) = [z](*,¢;) for all ¢ and j.
Thus, we have

(2.6) X(z) = X([«])-

Let Rij = [si_l,si] X [tj—latj]- Then, for (U, U) S Rij, define
Ay = AZ’]-U{,U

(2.7) =z(u,v) — x(8i=1,v) — x(u,tj_1) + x(si=1,tj-1).
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Then, we may write for (u,v) € R;j,

[37](“, U) = x(u, v) — A% 4 mASi,vx

S; — Si—1
(2.8) b U futyy BT S
tj — tj_l S; — Si—1
il o} Asilig,
tj - tj—l

Our first result, which plays a key role throughout this paper, involves
the stochastic independence between x — [z] and X (z) and between
z — [z] and @.

Theorem 1. If x is the standard Yeh-Wiener process on @, then
x — [z] and X(z) are stochastically independent on Q. In addition,
x — [z] and x are stochastically independent on disjoint rectangles
[si—1,si] x [tj—1,t;] and [sg—_1,sk] X [ti—1,t1].

Proof. Both x — [z] and xz(s;,-) are Gaussian processes with mean
zero. Using the covariance formula

Elz(s,t)z(u,v)] = min{s, u} min{¢, v}
repeatedly, one can easily verify that

B{(z — [a])(s,t) - x(s5, ')} = 0

for all (s,t) € Q and 0 < ¢ < T. Thus,  — [z] and z(s;,) are
uncorrelated Gaussian processes, and hence they are independent.
Similarly, © — [z] and z(*, ;) are independent processes. Since X (z),
see (2.4), depends on the z(s;,-)’s and the z(x,t)’s, the result readily
follows. The independence of x — [z] and z on distinct rectangles of @
follows similarly. mi

Since the values of [z] are completely determined by the values of
X(z), and because z — [z] and X (z) are independent by Theorem 1,
we have the following:
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Corollary. = — [z] and [z] are independent Gaussian processes on

Q.

The following theorem shows that the conditional Yeh-Wiener inte-
gral can be computed using an ordinary Yeh-Wiener integral.

Theorem 2. Let F € L1(C(Q), my). Then, for each y € C(Q),

E(F(z)|X(2) = X(y)) = E[F(z - [] + [y])]-

Proof. Under the conditioning X (z) = X (y), we have [z] = [y]. Thus,
E(F(z)|X(2) = X(y)) = E(F(z - [2] + [y])| X (z) = X(y))-

The result now follows by the fact that  — [z] is independent of X (z)
by Theorem 1. a

Theorem 3. Let F € L1(C(Q), my). Then,

E{E(F(2)|X(z) = X(y))} = E[F(2)].

Proof. By Theorem 2,

E{E(F(2)|X(z) = X(y))} = B {E[F(z — [z] + [y])]}-

Let z =  — [z] + [y]. It is sufficient to show that z is a standard
Yeh-Wiener process. Clearly E[z] = 0. By the Corollary to Theorem
L

(2.9) E[(z— [2])(s,t) - [2](s, ¢')] = El(z — [z]) (s, )| E{[]) (s, ¢)} = 0.
Since y is also a standard Yeh-Wiener process, by (2.9), we have that
E{[yl(s,t) - [yl (s", )} = —E{[wl(s,1) - (v — W])(s", )}

)
(2.10) + E{[yl(s,t) - y(s', t)}
= E{[yl(s,t) - y(s', 1)}
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Since = — [z] and [y] are independent processes,
Elz(s,t)2(s', )] = B{(x — [z])(s,¢) - (z — [2])(s",¥)}
+ E{lyl(s,t) - [yl(s', )}
Using (2.9) and (2.10) in (2.11), we obtain
Elz(s,t)2(s', )] = E{(x — [z])(s,¢) - (5", ')}
+ E{lyl(s,t) - y(s', t)}
= F{z(s,t)-z(s',t")} — E{[z](s,t) - z(s',t')}
+ E{[yl(s,t) - y(s', )}
= F{z(s,t) - z(s',t')}

= min{s, s’} min{¢, '}

(2.11)

Therefore, z is a standard Yeh-Wiener process, and hence the proof is
complete. ]

3. The Banach algebra £(2). Let M(L3(Q)) be the class of
all countably additive complex-valued Borel measures on Lo(Q) with
finite variation. The Banach algebra £(2) consists of functionals on
C(Q) expressible in the form

(3.1) Fz) = /L 0P {z /Q o(s,1) d:c(s,t)}dé(v)
with 8 € M(L(Q)).

To consider conditional Yeh-Wiener integrals of functionals involving
stochastic integrals of h € Lo(Q) with respect to z,, z,, and z, , we
need the following;:

Definition. Let o, 7, @, ®;, Tsr and [z] be as before. For each
function h € L2(Q), define

(3.2) ho(s,8) = — / 7 b t) du

Sj — Sj-1

Sj—1
for s; 1 <s<s; j=1,...,mand ﬁg(s,t) = 0 if s = 0. Similarly,
define

. 1 tk
(3.3) h.(s,t) = —/ h(s,v)dv
te —te—1 Je, 4
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for tj_1 <t<ty,k=1,...,n and ﬁT(s,t)zﬂiftzﬂ, and

h(s,t) = o (s, )
(3.4)
= / / h(u,v) du dv
(85 —85-1) k—tk 1)
for (s,t) € (sj—1,8;] x (tk—1,t&)s J = 1,...,m, k = 1,...,n, and

h(s,t) =0 if st = 0.

The following theorem gives some useful formulas involving the func-
tions defined above. A similar observation was made in [8, p. 456].

Theorem 4. Let h € Ly(Q). Then

(3.5) /Q hhy = /Q h2,
(3.6) /Qhﬁ,:/Qiﬁ,

and

(3.8) / hoh = / - / b = / 2.
Q Q Q Q

and

/hdw,”:/ hdz.
Q Q

Corollary. (i) [, hd[z] = [,(ho + hr — h) d.
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~

(i) Solh — (Ao + b — B)]? = |[AI3 + 1AI13 — |lhol[3 — |lAr ] = 0.

We are now ready to evaluate the conditional Yeh-Wiener integrals
of functionals in £(2).

Theorem 5. Let F € L(2) be given by (3.1). Then, for each
y€CQ),

E(F(z)|X(z) = X(y))
1 2 QA} 2 v 2 v 9
‘/M(Q)e"p{‘i(””llﬁll 13~ el - o 1)}

- exp {z /Q vd[y]} d6(v).

Proof. By Theorem 2,
E(F(z)|X(2) = X(y)) = Eo[F(z — [z] + [y])].
Using the expression (3.1) for F(z) and the Fubini theorem, we obtain

J = Ey[F(z — [z] + [y])]

[ b et | vtz =1+ )} ast.

An application of Corollary (i) of Theorem 4 to the above expression
yields

J—/LZ(Q) Ez[exp {i/Q(v—ﬁa—ﬁT+1§)da:H exp{i/de[y]}dé(v).

A well-known Yeh-Wiener integration formula applied to the above
expression yields
(3.10)

J:/L2(Q)exp{—%/Q(v—f},,—177+ﬁ)2}exp{i/c2vd[y]}d5(v).

Thus, the result follows from (3.10) and Corollary (ii) of Theorem 4.
O
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4. Translation of grid-valued conditional Yeh-Wiener in-
tegrals. The Cameron-Martin translation theorem for Yeh-Wiener
integrals [12] states that if xo(s,t) = fot Jo h(u,v)dudv on Q for
h € Ly(Q), and if T} is the translation of C(Q) into itself defined
by

z=Ti(z) =z +

for x € C(Q), then for any Yeh-Wiener integrable function F' on C(Q)
and any Yeh-Wiener measurable set I'

(4.1) /FF(z)my(dz) = /Tl—l(r) F(z + z0)J (zo, x)my (dz)

where

J(mo,m):exp{—%/QhQ(u,v)dudv}exp{—/@h(u,v)dw(u,v)}.

In particular, if I' = C'(Q), then (4.1) becomes

(4.2) E[F(z)] = E[F(z + x0)J (z0, x)].
The following is the conditional version of (4.2).

Theorem 6. Let zo(s,t)

= f Jo h(u,v)dudv on Q for some
h € Ly(Q), and let F € Ly(C ( ), m

y)- Then for each y € C(Q),

E(F(2)|X(2) = X(y)) = E(F(x + z0)J (x0, z)| X (z + o) = X (v))

1 - - ~
-exp{—§||hg+hr—h||§+/th[y]}.

Proof. First, using Theorem 2, we see that
E(F(2)|X(2) = X(y)) = Ez[F(z = [2] + [y])]-
Since [z + zo] = [z] + [®o], we may apply (4.2) to get

(4.3) E:[F(z = [2] + [y])] = Eu[F(z + 2o — [2] = [2o] + [y])J (0, 2)].
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Next, we rewrite J(xg, ) in the form
Lo
J(@o,z) = exp g = SlIhllz pexp y — [ hd(e —[z] +[y] - [z0])
Q

(4.4) -exp{— /Q hd[m]}exp{ /Q hd[y]}exp{— /Q hd[wo]}.

Since z — [z] and [z] are independent processes on @ by the Corollary
to Theorem 1, it follows from (4.3) and (4.4) that

BAP (= -+ ) = exp { = g1 + [ ) [ o) |

-E|F(z+ zo — [z] — [z0] + [y])

(45) 1wﬁ—éw@—m+wwmﬁ}

-E_exp{—/th[x]}].

Since [, hd[z] = fQ(iLg + h, — h)dz by Corollary (ii) of Theorem 4,
/. 0 hd[z] is a Gaussian random variable with mean zero and variance
||he + hr — h||3. Therefore,

(4.6) E[exp{/th[m]}] :exp{%|ﬁg+ﬁ7il|§}.

Next, using Theorem 4 and its corollary, and the definition of z(, we
see that

/Q hd|zy] = /Q (ho + hy — h) dzg
(47) = /;(ila + }AlT - il)h

= |lholl5 + llAr|l5 — 1I7113
= ||iLU +iL‘r - ﬁ”%



224 C. PARK AND D. SKOUG

Now, using Theorem 2, we see that

(4.8)  E(F(z+z0)J (0, )| X (z+x0) = X (y))

(z+
= exp {—%|h|2} [ +zo—[z] — [zo] +[y])

(
(@
e { / pa(a—la+1y)-laal) |

Finally, substitution of (4.6) through (4.8) into (4.5) yields

B = 1+ ) = exp { = Gl + e =l + [
B(P(s -+ 00 (20, 2) X (2 + 0) = X(0),

which completes the proof. o

5. Evaluation of E(exp{fQ d(u, v, z(u,v)) dudv}| X (z) = X(n)).
Let 0 : 0 = 59 < 81 < - < 8$p =S and7:0 =1t < t1 <

- < t, =T be partitions of [0,5] and [0,T7], respectively, and let
R;j = [si—1, 8i] X [tj—1,t;]. We start with the following lemmas.

Lemma 1. Ifz is a standard Yeh-Wiener process on Q, then x — [z]
defined on different R;;’s are independent processes.

Proof. z — [z] and [z] are independent everywhere on () by the
Corollary to Theorem 1, while 2 — [z] and z defined on different R;;’s
are independent by Theorem 1. Thus, the conclusion of the lemmas
readily follows. o

Lemma 2. Let ¢(s,t,v) be a bounded continuous function on QX R.
Then for each n € C(Q),

(5.1) E<exp { /R é(u, v, z(u, v))dudv}|X(ac) = X(n)>
- E<exp { » é(u, v, 2(u, v)) du dv}|Xij(;v) - X,-j(n)),
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where Xy (@) = (2(si-1, ), 2(s5, ), 200, 1), 2(%, 1)
Proof. By Theorem 2, we have
(5.2) E<exp{/Rij 6w, v, z(u, v))dudv}|X(w) - X(n)>
- E[exp { /R $(u, v, 2w, v) — (2] (u, v) + [n](u,v))dudv}].

One can easily verify that, under the conditioning X;;(z) = X;;(n),
[z](u,v) = [n](u,v) on R;j, and (z — [z])(u,v), (u,v) € R;; is indepen-
dent of X;;(x). Therefore, we have

(5.3) E<exp { /R“ d(u, v, z(u,v)) dudv}|Xij(ac) = Xij(n)>
=F [exp { ; d(u, v, z(u,v) — [z](u,v) + [](u,v)) du dv}] .
Thus the lemma follov;s from (5.2) and (5.3). O
If we apply Lemma 1 in the proof of Lemma 2, we obtain

Lemma 3. If ¢ is as in Lemma 1, then

E(exp { /Q o(u, v, z(u,v)) dudv}X(x) = X(77)>
= ﬁ ﬁ E<exp { /Ri,- b(u,v, z(u,v) du dv}lXU(w) = Xij(n))-

i=1j=1

Thus, it is sufficient to concentrate on each term
E<exp { / é(u,v, z(u,v)) du dv}|Xij(a:) = Xij(n)>.

Let
(5.4) 0;(uz(u, ) = | é(uyv,2(u,v)) dv,

tj71
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and let

Fso) =ew{ [ gilustuanf, sa<s<s,

Then 0F;;(s,z)/0s = 6;(s,z(s,-))F;;j(s,z), and by integrating over
[si—1, 8], we obtain

(5.5) Foj(s,z) — 1= / T 0, (uy(u, ) Fiy u, ) das

Now, let
Xf](w) = (z(si—1,°),2(s,-), x(x,tj_1),z(*,t;)), Si—1 < 8 < 5.
Then, from (5.5) and the Fubini theorem, it follows that
E(Fij(s, z)| Xj;(x) = X35(n))
6:8) =1+ [ Bt )y el X) = X)) du
If [z]5(u,v) = [2]¥ (u,v) defined on [s;_1,s] X [tj_1,t;], si-1 < s < si,
denotes [z](u, v) with s; replaced by s, then Theorem 2 applied in this
particular case gives
(5.7)  E(0;(u, x(u, ) Fij(u, @) | X75(x) = X5(n))
= E[@j(u,x(u, ) - x]s(u, ) + [n]s(ua '))Fij(uaw - [JJ]S + [U]s)]
= B8y — [l + 1))

e [ B ) ) '

A straightforward computation shows that, for s;_1 < u/ <u < s <s;
and fixed v and s,

(5.8) [([U]S)]u(u’a ) = [n]s(u,a )5 n e C(@Q),
(5.9) (@ = [z]s) (W) = (z = [a]u) (', )
’U,/ — Si—1

(z = [2]5)(u, ).

U — 8i—1
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Furthermore, (z — [z],)(v/,) and (z — [z]s)(u,-) are independent pro-
cesses, and (z — [z];)(u,-) is equivalent to

e L

§— 8i—1

for fixed u and s where y(-) is the Brownian bridge on [t;_1, ¢;], namely,

t—tj

B10) ) =wl )

w(tj — tj_l).

Since y(tj_1) = y(t;) = 0, it follows from (2.8) that

(5.11) m\/(u —sii)(1— L)

U — 8i—1 S — 8i—1

= |/ = s = (0| ().
i

S — 8i—1 w

Using (5.8) through (5.11) and the comments made after (5.9), it follows
from (5.7) that

(5.12)
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5o, (u \/ s (1= 222 + bl ->>
Efew{ [* 40 = o)
+ \/ e LOR w ->du’}”
_5, s, (u \/ (= sim0) (1= 2220 4 -))
e { [ g at ) e i)
= x5 () + \/ (i) (1- j—)yo))] -
If we set

(5.13) Gij(s,m) = E(Fy(s, z)|X(x) = XJ5(n)),
then it follows from (5.6) and (5.12) that

Gij(s,n)
] (“ \/(“_S“) (“Z%ﬁ_i)yomms(u,.))
" \/(* ) (1 :_Z‘i)y(->+[ms(*,-)H du.

(5.14)

Since y is related to the standard Brownian motion w(-) by (5.10), the
integration with respect to y in (5.14) can be changed into integra-
tion with respect to w. Thus (5.14) can be considered a Wiener inte-
gral equation, and it is very similar to the Cameron-Storvick integral
equation [1, equation (4.3)] and the Park-Skoug integral equation [9,
equation (4.5)]. Thus, the integral equation (5.14) has a series solution

-Gij

(5.15) Gij(s,m) = > Hi(s,n),
k=0
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where the sequence {Hy} is given inductively by
HO(sa 77) = 17

and

Hos(s.m) = /E 0, ([ (u—sis) (1m)y(->+ms<u,-)

§—8i—1

*—8;_1

1 ([0 (1525 )yl () ) | e

§—8;—1

Using the same method used in Section 4 of [9, p. 486], it can be shown
that the series in (5.15) converges absolutely and uniformly on [s;_1, s;],
and it is the only bounded continuous solution of (5.14). Thus, we may
conclude that

E(exp { /ng(u,v,x(u, v)) du dv}|X(x) - X(n)> = [1 ] Giatsivn-
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