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ABSTRACT. It is known that some problems of synthesis
with continuous time and stationary parameters can be re-
duced to the solution of Wiener-Hopf equations on the semi-
axis R4 = [0,00). If the problem of synthesis is not station-
ary, then the Wiener-Hopf method is not applicable. In this
case the problem of synthesis is reduced to a singular integral
equation T¢ = f on the unit circle T with a non-Carleman
shift of T onto itself, which has a finite set of fixed points.
An estimate for dim ker 7" is obtained and an approximation
algorithm of this estimate is given. For the case dim ker 7" =0
we construct an approximate solution of the equation Ty = f.

1. Introduction. Let «(t) be a shift (diffeomorphism) of a
closed Lyapunov contour I' onto itself preserving the orientation on
T. Suppose that «(t) is a non-Carleman shift which has on I' a finite
number of fixed points, say {7i,...,7}, 1 <1 < o0, ie., a(rj) = 75,
j =1,2,...,1. We consider on Ls(T') the following operators: the
isometric shift operator

Up)(t) = V! ()] (alt)),
the operator of singular integration
(500 = ()" [ o(r)r =0
the mutually complementary projection operators
1
Py = 5([ +59),

the functional operators

A=al +0bU, B=cl+dU
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and the singular integral operator with shift a(t)
K = AP, + BP._,

where I is the identity operator and a,b,c,d € C(T'). Recall that
a shift «a(t) is called a Carleman shift if ax(t) = ¢: ((t) =
a(ak_1(t),a0(t) = t) for all t € T and some k > 2. The operator
K is a singular integral operator with non-Carleman shift having a
non-empty set M («,I") of fixed points. For the operator K only its
Fredholm theory is known [4, 5]. It can be formulated as follows: the
operator K is Fredholm in Ly (T") if and only if the functional operators
A and B are continuously invertible in Lo(T'). It turns out that the
operator A (analogously B) is invertible in Lo(I") if and only if either
the condition

(i) a(t)#0 onT and |a(7)] > |b(75)], j=1,1
or the condition
(i) b(t)#0 onT and |a(ry)| < |b(r;)], j=1,1

holds.

A formula for index of K is known. For example, if for A and B
conditions of type (7) are fulfilled, then

ind K = dim ker K — dim coker K = 1 arg@ .
27 a(t) J r

The problem of computing or, at least, estimating the defect num-
bers dim ker K and dim coker K and, what is more, the problem of
describing the defect subspaces ker K and dim coker K (we have in
mind explicit or approximate methods for constructing their bases),
the problem of obtaining explicit or approximate solutions of the equa-
tion

(1.1) Ko=f

and also various spectral problems connected with the operator K are
extremely difficult, even for the case of a Carleman shift (see, for



APPROXIMATE METHODS 3

instance, [9, 2, 6]). This group of questions is usually referred as
the solvability theory for the operator K. Whereas just the solvability
theory is of most interest for numerous and very natural applications
of the integral equation (1.1) to problems of mathematical physics. Of
course, first of all, the problem of obtaining an approximate solution of
the equation (1.1) is very important. It is known (see, for example, [1])
that Wiener-Hopf equations are a natural apparatus for the solution of
problems of synthesis of signals for linear systems with continuous time
and stationary parameters. However, if the parameters of linear system
are not stationary then the Wiener-Hopf method is not applicable and
we get more complicated equations, in particular, equation (1.1) with
a non-Carleman shift. A problem of synthesis has, in some sense,
a universal character. It arises in the theories of hydroacoustics,
radiolocation, seismology and some others. Let us describe one of the
typical situations. Let f(¢), —oco < t < 0o, be an acoustic signal. We
represent it in the form

F@) = f+(&) + 1-(8),

where fi(t) = 0 for t < 0 and f_(t) = 0 for t > 0. Let h(t,7) be
the impulse characteristic of an acoustic object and g(t) be a reflected
signal. It is known (see [1]) that this system is described by the integral
equation

FO+ [ b)) i = g0),

For the stationary case h(t,7) = k(t — 7). Now suppose that a linear
system of location is not stationary and this system is characterized by
an oscillating parameter a. For example, it means that the acoustic
object has a non-homogeneous reflecting surface and it revolves. Then

—iaT

we obtain an integral equation with kernel h(t,7) = k(t — 7)e %", i.e.,
(1.2) FO+ [ k=0 L dr = o).

In problems of synthesis we need to solve equation (1.2) for a priori
given impulse characteristic and reflected signal, which is selected with
the aid of some criterion of optimality. For example, as a criterion it
is possible to take the maximum of the ratio of the power of signal by
the dispersion of noise on the entrance of the analyzer. To find this
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maximum it is necessary to know in advance the solution of equation
(1.1) for given h(t,7) and g(¢). Applying to both sides of equation (1.1)
the Fourier transformation we obtain the singular integral equation

(1.3) (I - kU)P, + P)f =g,

where (Urp)(z) = ¢(z — a) is the non-Carleman shift operator with
fixed point z = oo and I;:, f , g are the Fourier transformations of k, f, g,
respectively. With the aid of a conformal mapping equation (1.3) can
be reduced to the singular integral equation

(1.4) To=(I—-cU)Pi+P-_)p =1,
which can also be written in the form
(1.5) To=I-cUP)p =1,

where U is the non-Carleman shift operator with a non-empty set of
fixed points, M(a, T) = {1, 72,... ,7}, l > 1, on the unit circle T.

The criterion of Fredholmness gives us that either |c¢(7;)| < 1, for all
the 7; € M(a, T), or c(t) # 0 on T and |¢(r;)| > 1, j = 1,1. In the
sequel we shall suppose that the first of these conditions is fulfilled, i.e.,
le(m)| < 1,5 =1L

For this case in the present paper an estimate for the defect number
dim kerT is obtained and an algorithm of approximate computing of
this estimate is given. For the case dim ker T' = 0 an algorithm for
obtaining an approximate solution of the non-homogeneous equation
(1.4) is proposed.

2. Auxiliary results. The following two auxiliary propositions play
the main role.

Lemma 2.1. Let a(t) be the non-Carleman shift on the unit circle
T which has a non-empty set of fized points, M(a,T) = {r1,..., 7},
[ > 1. For any function c(t) € C(T) such that

le(m)I <1, j=11
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and for sufficiently large n there exists a polynomial
(2.1) r@t) = [J¢t=2), Ml >1, k=12,....n
k=1

such that the condition

(2.2)

e(t)r(t)
r(a(t)) ‘ <!

holds for any t € T.

Proof. It is sufficient to consider only the case ||c(t)||¢(r) > 1, because
otherwise we have simply n = 0. Then we represent the function c(t)
in the form

c(t) = co(t)b(t)
where co(t) € C(T), |lcollory =7 < 1, b(t) is a continuous real valued
function on T such that
b(t) > 0, teT,

2.3
(23) b(t) < 1, ted;, 1=1,2,...,1

where §; is some neighborhood of the point 7;. Now we construct a
continuous real function f(t) such that

(2.4) fla(t)) = f(t)b(t).

Let

+--+ [ blar(®),

k=1
where a(a_1(t)) = ¢, a_k(t) = a_1(a_k+1(t)). It is easy to verify that
condition (2.4) holds if

n

(2.5) bla_x(t)) < 1.
k=1
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Due to condition (2.3) and known properties of a shift function a(t)
(see, for instance, [7, Lemma 2.2]) the inequality (2.5) is valid for
sufficiently large n.

Now we introduce the function

1 (142
X(z) = expg/0 p— In f(7)|dr|.

It is known (see, for instance, [3]), that the function X(z) is continuous
on T, analytic for |z| < 1 and satisfies the following properties

a) |x(t)|=f(t),teT,
b) [x(2)[ #0, |2] <1,

c) X(t) can be uniformly approximated on T by a polynomial of a
finite degree with any prescribed exactness e (see, for instance, [8])
and all the zeros of this polynomial lie outside the unit circle T.

Let r(t) be such a polynomial and

(2.7) IX(t) — r(t)] < e.
Then
(2.8) lleo(®) ()| < lleo @) H[B(E) = 7 l6(2) ]

where as it is proposed above v < 1.

Taking into account (2.8), (2.4), (2.7) and condition a) above, we can
estimate the norm of the function

in the space C(T). We get

c(t) r(t b(t) r(t
r(<o)z<t(>>) H =7 r(<c)v<t(>>) H
b(t)f(t)H (t) H
r(a(®) ||| 70)
f(t)H r(t)H

<= l-%

— ol

FOI
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Further, we have

(2.10) - X((:))‘X(t)(t)(t)“'f
S G Pl S
(2.11) %H: WJFIH<E}JF’

where the notation f = inf (f) was used.

Taking into account (2.10) and (2.11), from (2.9) we get

c(t) r(t) < f+e
r(a(t)) cry f-e¢
Now, if we choose ¢ such that
21—
e f—
fl+7

we obtain inequality (2.2). O

As an example we consider the case of a linear fractional non-
Carleman shift of the unit circle T onto itself. In this case the
polynomial 7(¢) can be found quite easily.

The linear fractional non-Carleman shift preserving the orientation
on T has the form (see, for instance, [7]):

t+b
a(t) = L0
bt+a

where |a|? — |b|?> = 1. The fixed points of this shift are given by the
formula
a—azx \/5
T2 = "3
2b

)
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where D = (a + @)% — 4. Obviously 71 # 73 if [Rea| # 1. Without loss
of generality we can suppose that the fixed points lie on the real line
R, ie.,, 71 = 1,75 = —1 or, what is the same, the coefficients a and b
are real numbers. Indeed, it is not difficult to see that the set of linear
fractional shifts of T onto itself form a non-commutative group. From
this it follows, in particular, that for any two shifts «(¢) and §(t) there
exists a shift v(¢) such that

Yaly-1(®) =81,  v(ya) =t

and, therefore, the case of any linear fractional shift a(t) can be reduced
to the case of a linear fractional shift 3(¢) with real coefficients. It
is known (see, for instance, [7]), that for the above considered shift
a(t) one of its fixed points is attracting and another one is repelling.
Suppose that 73 = 1 is the attracting point. Then, for example, for
A < —1 the inequality

[t = Al <la(t) = Al

holds. Indeed, let t = € | a(t) = €Y and A be a real number.

We get
t— A2 = (e = X)(e™ —A) = A2 —2\cosh + 1
and, analogously,
la(t) = AI* = A% — 2\ cos ¥ + 1.
It is clear that for the above mentioned supposition, concerning the

points 4 = 1 and 72 = —1, we have |f| > |J| and, consequently,
cosf < cosd if A < 0.

Now let ¢(t) € C(T) be a function such that
le(r:)] <1, i=1,2, with |[lc(t)lc(ry=M >1 and A< —1.
Then there exists a natural number n such that
t—Xx \"
t -
0(a523)

(2.12) <1
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Thus 7(t) = (¢t — A)". Put

t— A
a(t) — A

C(T)‘

Then L < 1 for A < —1 and inequality (2.12) is fulfilled if n >
—InM/InL.

Lemma 2.2. Consider the operators
N=I-a(t)U Py, R=r({t)P-+(I-a(t)U) Py

where a(t) € C(T), |lallcer) <1 and r(t) is a polynomial of the degree
n with roots satisfying the conditions

el >1,  k=1,2,...,n.

Then
dim ker R > 0

if and only if there exits a polynomial p(t) with a degree which is not
greater than the degree of the polynomial r(t) and the condition

(2.13) (I—rPyr *P_N"Ypt)=0

18 fulfilled.

Proof. Necessity. Suppose that ker R is not trivial, and let ¢ € ker R,
i.e.,

(2.14) Rp=((r—1)P_+N)g=0.

Since ||a(t)|lc(Ty < 1, |U|| = 1 and ||Py| = 1 it folllows that N is an
invertible operator whose inverse can be represented as

N '=TI+aUPy+ (aUPL)?+---.
Obviously,

(2.15) N'=pP +N'P,
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and
(2.16) P.rP_p=p

where p is a polynomial such that deg p is not greater than degr. Using
relations (2.15) and (2.16) we proceed by transforming relation (2.14).
We have

N'Ro=(N"'(r—1)P_+1)p=0

and, consequently,

N'Rp=[(P-+ N'P)(r—1)P_ +1I]¢
=(P_(r—1)P_+1I)p+N *PirP_gp
=P (r—1)P_¢o+N'p+o.

Further
(2.17) PN 'Rp=P_ (r—1)P_p+P_N'p+P_p=0.
Transforming the expression P_(r — 1)P_¢p, we get
P(r—1)P.¢ = (I- P)[(r~ )P g]
=(r—1)P_p—P,rP ¢
=rP_po—P_p—p.
From (2.17) we obtain

(2.18) P,N—lep:rP,gp—P,go:P,N—lp+P,¢—p
=rP_¢o+P N ‘p—p=0.
Application of 7711 to both sides of (2.18) on the left, yields

r'P.NT'Rp=P o+r'P. N 'p—r"lp=0
and

rPir 'P_N " 'Ro=rPir '"P_N'p—r(I-P_)r 'p=0.

Since all the roots of the polynomial r(z) lie outside of unit disk, we
have P_r~!'p = 0 and so we obtain condition (2.13).
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Sufficiency. Let us check that if condition (2.13) holds then the
function
o= (Ps+Pr7'P)N"'p

belongs to the kernel of the operator R or, similarly, ¢ € ker N"!'R.
Computing N~'R ¢ we have
N'Ro=(N"'(r—-1)P_+I)(Py +P.r~'P)N"'p
=P, N 'p+ NP+~ 'P_N"1p
~ NP PN p+ P r P N1p.
Taking into account that N~1P_ = P_, we get
N1'Ro=P. N 'p+ N (I - P )r 'P_.N"'p
—Pr P Np+Pr'P.Np
=P, N 'p+ P N 'p— NP r'P_N71p
=N1ip—rPr P N1p).

Due to condition (2.13) we finally obtain that ¢ € ker N"1R. O

3. Estimate for dimker 7. If we put together Lemmas 2.1 and 2.2
we are able to estimate the dimension of the kernel of the operator T,
defined by (1.4).

Theorem 3.1. If the conditions of Lemmas (2.1) and (2.2) are
fulfilled and n is the degree of the polynomial

r(t) =[] (=),

k=1
|)\k|>1, k=12,...,n,

then the estimate
dimkerT <n

holds.

Proof. Making use of Pyr =7 and Ur(t) Py = r(a(t)) U Py, we can
give the operator 1" the following form

(3.1) T=r"rP_+(I-alU)P.)(P_+7rPy),
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where

Since 7(t) # 0 on T and Indrr(t) = (1/27){argr(t)}r = O,
both operators r~'I and P_ + rP, are continuously invertible and,
consequently, their kernels are trivial. Therefore

dim kerT = dimker (rP_ 4+ (I — aU)P;) = dimker R.

Now from Lemma 2.2 it follows that the number dim ker R coincides
with the number of linear independent polynomials p. Since this
number is not greater than n, we obtain

dim ker T < n. O

Now it is not difficult to get an approximate estimate of the number
dimkerT. To this end we rewrite condition (2.13) in the form of an
homogenuous system of linear algebraic equations for the coefficients
of the polynomial p(t) = Z;é Ptk. Without loss of generality we
suppose that all the roots of the polynomial p(t) are distinct. Put

p-=P.N'p,  r(t)=(t—A)re(t)
Applying successively the transformation

1 o (1) —p (M) o ()
e (W b

k=1,2,...,n—1,

we conclude that the function

u(t) = (rPer=y-)(t)

is a polynomial with a degree which is not greater than n — 1, i.e.,

w0 = TL 2050w
n—2

+ ﬁ(t - )\i)zpf()‘nfl) +e

i=1

+ (= M)p-(A2) + 9 (M),
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where
E—1 E—1
() — (A
b= o=W Q) o
t— A
0 .
o (t) =v_(¢), w(x) =v_(N), 1=12,...,n.
Let us now introduce some notation. Let § = (po,p1,- .. ,Pn_1) be the

set of the coefficients of the polynomial p(¢), A the matrix transposed to
the Vandermond matrix constructed from the roots of the polynomial
r(t), gp = N~'t*, E the identity matrix and

(P-go)(M1) -+ (P-gn-1)(M1)
o _ . , .

(P g)) - (Pga 1))
Using these notations we rewrite condition (2.13) in the form
(E-A1G)p=0
or, equivalently, in the form
det(G_ —A)=0
Due to Theorem 3.1 and Lemma 2.2 we obtain
dim ker7 = dim ker R = n —rank (G_ — A).

Thus approximating the function X by the polynomial r(¢) and finding
its roots A\g, k = 1,m, we can construct the matrix G_ — A, calculate
its rank and obtain an approximate estimate of dim ker T'.

4. Approximate solution of the non-homogeneous equation
Ty = f. Since (see the formula (3.1))

T=rYrP_+(I—aU)Py)(P.+rPy),
the equation Tp = f is equivalent to the equation

(4.1) rP_o+ NP.rP,p=nh
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where h = rf. Indeed,
R=rP_+(I—-aU)Py =rP_+(I—-aUPy)P, =rP_+ NP4,

and since P_rP, =0, it follows that R (P_ +rP,) =rP_+ NP,rP,.
Obviously equation (4.1) is equivalent to the equation

(4.2) NP o+ P.rPyo = N""1h,

Due to (2.15) and the obvious relation P,rPip = rP.p, we can
transform the left hand side of equation (4.2), obtaining

(4.3) P rP_o+ N 'P.rP_o+rP,o=N1h.
Since

(4.4) PrP o=rP_¢p—P.rP_o=rP_p—p
and

rPrp+rP_p=rp,

equation (4.3) can be given the form
ro=Nth+p—N1p
and, consequently,
o=rYN1h4+p—-N"1p).
It only remains to find p. To this end we return again to equation (4.3).

We have
P.N'P.rP_o+P rP_o=P_N7'p,

and if we take into account the first relation in (4.4) and (2.16), then
P N 'p+rP p—p=P N~!p,
which after some obvious transformations can be written as

(4.5) rPir P N"'p—p=rPir 'N~'h
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Equation (4.5) is just an equation for finding p. If it has a unique
solution then that is just that p we need.

Writting (4.5) as a linear algebraic system of equations for the vector
p we get

(A'G_-E)p=A"1h

(4.6) (G-~ N)p=h,

where the components of the vector h are the values of the function
P_N7'h at the points \;, i = 1,2,... ,n.

In order to construct an approximate solution of the equation T'p = f
we carry out the following operations. First of all, we estimate as far as
det(G_ — A) is separated from zero. If it turns out that | det(G_ — A)|
is greater than the absolute value of the error made in the calculations,
then the kernel of the operator T is trivial and solving system (4.6) we
find the solution of the initial equation.

It is clear that errors can occur in the calculation of the functions
P_gj and of the vector h. Let A =G_ — A and §A, 5h be the errors
in the initial data of system (4.6) and §p be the error of its solution.
Then ~ ~

A=Ay —0A, h = hg — dh, p=po—Op

where pg is a solution of system (4.6) with distorted initial data, i.e.,

(47) Aopo = ho.

We calculate the relative error in the computation of the vector p.
Let us denote by x(A) the condition number of the matrix A, i.e.,
k(A) = ||[A7Y| ||Al|. Then, according to (4.6), we have

(Ag — 6A)(po — 0p) = ho — Oh

or
Aopo — Agdp = ho — 6h + S Ap.

Due to equation (4.7) we get

Aodp = 6h — § Ap.
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Further

1051 < 1451 (1911 + 1A 11311)
1811 |4 pol
Thol

o 16 ] livoll . 1A 1]
165] < (1451 1A ||< . ,
o 1ol { gy ol

) 18R], . L lleAll
185]| < k(A )<—(||p|| +[168]1) + 1 1181 )
Y\ ol [ Aol|

153 <||6f3|| 15A] | |55 ||515|>
SK/A + + - ]
Ao el 10l + ol T3

|5;3||)|5~|| (Héﬁn ||6A||>
l—IﬁZA ~ SKA + I
< o) ol ) a1 = A o]l T 10

and, finally,

16p]] < IAEIII( + 104 ||ﬁ|>,

ag) IR/ 1holl + 8L/ [ 4o
(1= K(A0)II6RI/ ol )
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