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INTEGRATED RESOLVENT OPERATORS
HIROKAZU OKA

ABSTRACT. In this paper we introduce the notion of
integrated resolvent operators to study the linear Volterra
integrodifferential equation

t
(VE) u'(t) = Au(t) —|—/ B(t — s)u(s)ds + f(t)
0
for t € [0,T)] and »(0) = z,

where A is a closed linear operator whose domain is not
necessarily dense in a Banach space X, and {B(t) : t > 0}
is a family of linear operators in X with D(A) C D(B(t)) for
t > 0 and of bounded linear operators from Y into X. Here
Y is a Banach space D(A) endowed with the graph norm of
A. Roughly speaking, the integrated resolvent operator is
the “integral”of the solution to the problem (VE) when the
forcing term f = 0. Our main purpose is to construct the
integrated resolvent operator under the suitable conditions on
A and {B(t) : t > 0}. The results obtained are applied to two
Cauchy problems :

u'(t) — Au'(t) — Bu(t) = f(t)
for t € [0,7], u(0) =z and '(0) = y;
vt =4 (u(t> + / F(t = s)u(s) ds) + Ku(t) + £(1)
0
for t € [0,T] and u(0) = .

As illustrations of our abstract theory, two concrete examples
are given.

1. Introduction. Let X be a Banach space with norm || - || and
denote by B(X) the set of all bounded linear operators from X into it-
self. This paper is concerned with the linear Volterra integrodifferential
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equation

0 —Au(t)+/OtB(t—s)u(s)ds+f(t) for t € [0,T]

u(0) ==z

(VE)

in X. Here A is a closed linear operator whose domain is not neces-
sarily dense in X satisfying the Hille-Yosida condition: there are real
constants M and w such that

(w,00) C p(A) (the resolvent set of A) and

H.-Y.
( ) A=A <M/(AN—w)* forn=1,2,... and A > w.

For convenience we introduce a Banach space Y = D(A) endowed with
the graph norm of A, i.e., ||y|ly = ||y|| + ||Ay|| for y € Y.

{B(t) : t > 0} is a family of linear operators in X with D(A) C
D(B(t)) for t > 0 and of bounded linear operators from Y into X.

The abstract Cauchy problem

u'(t) = Au(t) + f(t) fort € [0,T
Ace) (t) = Au(t) + 12 0.7
u(0) ==

for such an operator A has been recently studied by many authors (see
[1, 5, 12 and 19]). Among others, Kellermann and Hieber [12] have
shown that a closed linear operator A in X satisfying the Hille-Yosida
condition (H.-Y.) generates a locally Lipschitz continuous integrated
semigroup {U(t) : t > 0} and that if z € D(A), f € W11(0,T; X) and
Az + f(0) € D(A), there exists a unique classical solution u to (ACP)
which is given by the variation of constants formula

u(t) = %(U(t)x + /0 Tl — 9 (s) ds)

for t € [0,T]. Here we say that {U(t) : t > 0} is locally Lipschitz
continuous if for T > 0 there exists an Ly > 0 such that ||U(t) —
U(s)|| < Lyt — s| for s,t € [0,T].

Our approach to (VE) is based on the theory of integrated semi-

groups, and we introduce a family {R(¢) : ¢ > 0} in B(X) satisfying
(r1)—(r4) below.
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(rl) For all z € X, R(-)z € C(]0,00); X).
(r2) Forallz € X, [ R(s)zds € C([0,00);Y).

(r3) R(t)r —tz = Afot R(s)zds + fg B(t —s) [, R(r)zdrds for all
rze X andt>0.

(r4d) R(t)z —tx = fot R(s)Azds + fot Jy R(s — r)B(r)zdrds for all
z € D(A)and t > 0.

We call this family {R(¢) : ¢ > 0} an integrated resolvent operator
and say that (VE) admits an integrated resolvent operator if it exists.
If D(A) = X and p(A) # ¢, (VE) admits a locally Lipschitz continuous
integrated resolvent operator {R(t) : ¢ > 0} if and only if (VE) admits
a resolvent operator {T'(¢) : ¢ > 0}. In this case, R(t)xz = fg T(s)xds
for t > 0 and z € X (Theorem 2.9). This is why we call a family
{R(t) : t > 0} in B(X) an integrated resolvent operator. Here we
recall that a family {T'(¢) : ¢ > 0} in B(X) is a resolvent operator if

(t1) T(0) = I(identity),
(t2) forall z € X, T(-)z € C(]0,00); X),
(t3) forally € Y,T(-)y € C*([0,0); X) N C(]0,00);Y),
(i) (d/dt)T(t)yy = AT(t)y + [, B(t — s)T(s)yds and
(i) (d/dt)T(t)y = T(t)Ay + [, T(t — s)B(s)yds for t > 0.

Moreover if B(t) = 0, the notion of an integrated resolvent operator
coincides with that of an integrated semigroup (see [13, Theorem 3.1]).
In Section 2, we investigate some properties on an integrated resolvent
operator {R(t) : t > 0}. For example, the following are proved. Let
z € X and f € C([0,T]; X), and define a function v € C([0,T]; X) by

v(t) = R(t)z + /Ot R(t—s)f(s)ds forte|0,T].

If there exists a classical solution u to (VE), then v € C?([0,T]; X)
and u = v' (Proposition 2.3 (ii)). Conversely if v € C?([0,7T]; X)
and p(A) # ¢, then u := v’ is a classical solution to (VE) (Theorem
2.4 (ii)). Further assume that {R(t) : ¢ > 0} is locally Lipschitz
continuous. If z € D(A), f € WH(0,T;X) and Az + f(0) € D(A),
then v € C%([0,T]; X) and so u := v’ is a classical solution to (VE)
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which satisfies

(1) ol < 0l + [ 176 as)

and

(1.2) HM@ISCOMx+ﬂ®H+AIB@M+f@W@>

for t € [0,T], where C is a constant independent of = and f (see
Theorem 2.7). This extends the existence and uniqueness result [5,
Theorem 8.1] of classical solutions to (ACP) to the case of (VE) and the
estimates (1.1) and (1.2) of a classical solution correspond to (8.4) and
(8.5) in [5, Theorem 8.1], respectively. Therefore our main concern is to
construct a locally Lipschitz continuous integrated resolvent operator,
which will be done in Section 3. An integral solution to (VE) is also
studied and it is a natural extension of that to (ACP) introduced
by Da Prato and Sinestrari [5] (see Definition 1.1). It is proved
that the notion of an integral solution coincides with that of a weak
solution introduced by Grimmer and Schappacher [10] if D(A) = X
and p(A) # ¢ (Proposition 2.8). As a consequence, we see that (VE)
admits a resolvent operator if and only if (VE) has a unique weak
solution for all z € X (see Theorem 2.9). This gives an improvement
on [10, Theorem 3.1] where the additional assumption on A* and B*(¢)
(the adjoint operators of A and B(t), respectively) is imposed.

In Section 3 we construct a locally Lipschitz continuous integrated
resolvent operator under the assumptions that a closed linear operator
A in X satisfies the Hille-Yosida condition (H.-Y.) and that functions
B(-)x are of strong bounded variation on each finite interval [0, 7] for
x € D(A), which is our main result (Theorem 3.2) in this paper. The
results obtained are applied to two Cauchy problems:

u'(t) —Au'(t)—Bu(t) = f(t) for t€[0,T], u(0)==x and u'(0)=y;
u'(t) = A(u(t) + /0 F(t — s)u(s) d8> + Ku(t) + f(t)
for t € [0,7] and u(0) = z.

The last section, Section 4, is devoted to concrete examples which
illustrate our abstract theory.
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We start with the definition of an integral solution and a classical
solution to (VE).

Definition 1.1. Let f € L'(0,7;X) and z € X. A function
u:[0,7T] — X is called an integral solution to (VE) if

(i1) » e C([0,71]; X),
(i2) [y u(s)ds € C([0,T];Y) and

(i3) ()—a:—i—AfO ds+f0 t—s)f; ()drds—l—fo s)ds for
t€0,7].

Definition 1.2. A function u : [0,7] — X is called a classical
solution to (VE) if u € C*([0,T]; X)NC([0,T];Y) and u satisfies (VE).

2. Integrated resolvent operators. In this section let A be a
closed linear operator in X and

(HO) {B(¢) : t > 0} is assumed to be a family of linear operators
in X with D(A) C D(B(t)) for all ¢ > 0 and of bounded linear
operators from Y into X which satisfies that the functions B(-)z are
strongly measurable on R* for z € D(A) and that there is a function
be L} (RT;RT) such that

(2.1) [|B@)z| <b(t)(||z|| + ||Az||) for all z € D(A) and a.e. t > 0.

Put ji(t) = ¢ for t > 0.

Definition 2.1. A family {R(¢) : ¢ > 0} in B(X) is called an
integrated resolvent operator for (VE) having the following properties.

(rl) For all z € X, R(-)z € C([0,00); X).

(r2) Forallz € X, [, R( xdsEC([O );Y).

(r3) R(t)xr —tx = Afo s)xds + fo (t — s) [y R(r)zdrds for all
z € X andt>0.

(r4) R(t)x —tz = fo s)Az ds + fo Jy B(s — r)B(r)xzdrds for all
z € D(A) and t > 0.
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Let f € L'(0,T; X). We shall use the abbreviation

£ = /0 R(t — s)f(s) ds

for the convolution. Put S(t)z = fo s)xds for t > 0 and z € X.
Then by Fubini’s theorem we have

/< ds—// (s = r)f(r) drds
//Rs—r ) ds dr
// ) ds dr

In this section we assume that (VE) admits an integrated resolvent
operator {R(t) : t > 0} and investigate its properties.

Proposition 2.1.  Suppose that u € C([0,00); X), [ju(s)ds €
C([0,00);Y) and

23)  u(t) :A/Otu(s)ds—f—/OtB(t—s) /0 w(r) dr ds

for allt > 0. Then u(t) =0 fort > 0.

Proof. By (r4) note that

(2.4) R( )z —z = R(t)Az + (R B(-)x)(t)

dt
for x € D(A) and t > 0.

Put w( fo s)ds for t > 0. Convolving both sides of (2.3) with
R(t) from the left 51de using (2.4) and integrating by parts we obtain
Rxu=R+xAw+ R+« Bxw
=Rsw—1xw

=Rxu—1xuw,
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and so 1xw = 0, i.e. fofo drds—fo ds = 0. Hence u(t) =0
for t > 0. a

Corollary 2.2. (VE) admits at most one integrated resolvent oper-
ator.

Next we study the relationship between solutions to (VE) and the
variation of constants formula (2.5) below which is given in terms of
integrated resolvent operators.

Let z € X and f € L'(0,T; X). Consider a function v € C([0,T7]; X)
given by

(2.5) v(t) = R(t)z + /Ot R(t —s)f(s)ds forte[0,T].

Proposition 2.3. The following hold.
(i) If there exists an integral solution u to (VE), then v €
CY[0,T); X) and u =v'.

(ii)  If there exists a classical solution u to (VE), then v €
C?([0,T]; X) and u = v'.

Proof We shall prove () Let u be an integral solution to (VE). Put
fo s)ds and g(t fo s)ds for t € [0,T]. Convolving both
s1des of the equahty u=zx+ Aw + B x w + g with R(¢t) from the left
side we have
(R u)(t) =S(t)x + (R * Aw)(t) + (R * B x w)(t) + (R * g)(t)
=S(t)z + (R*u)(t) — (1 xw)(t) + (R *g)(t),

ie. fofo drds-f0 ds-S( Jz+ (R*g)(t fo . Dif-
ferentlatlng this yields v( fo s) ds, which means v € C* ([0 T] X)
and u = v'. The assertlon (i) is also similarly proved. o

Conversely, we have

Theorem 2.4. Suppose p(A) # ¢. Then the following hold.
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(i) Ifve CY0,T);X), then u := ' is an integral solution to (VE).

(ii) Assume f € C([0,T); X). If v € C?([0,T]; X), then u := ' is a
classical solution to (VE).

The proof of Theorem 2.4 is based on the following lemma.

Lemma 2.5. [;v(s)ds € C([0,T];Y) and

A/Otv(s)ds:v(t)—tm—/ot/osf(r)drds
/OtB(ts)/OSv(T)drds

(2.6)

fort €0,T7].

Proof. By (r2) and (r3) we have S(t — r)f(r) € D(A) and
AS(t—7r)f(r) = R(t =) f(r) = (¢ = 7)f(r)
/ TB t—r—35)S(s)f(r)ds € L'(0,T; X).

From the closedness of A we deduce S * f € D(A) and A(S x f) =
AS x f € C([0,T]; X). In view of (r2) and (2.2) we have [;v(s)ds €
C(]0,T);Y). Convolving both sides of (r3) with f(¢) from the rlght side
and using (2.2) we find

(Rx f)(t) = (o £)(t) = (AS * f)(t) + (B = S * [f)(t)

:A/Ot(R*f)(s)ds+ (B*/O'(R*f)(r)dr>(t).

Adding the above equality to (r3) we have the desired equality (2.6).
O

Proof of Theorem 2.4. Let A9 € p(A) and define an operator
K(t) € B(X) by K(t) = —B(t)(A\o — A)"! for t € [0,7]. Let
L(t) denote the resolvent kernel for K(t), i.e. L(-)z € LL_(RT;X)

loc

and L(t)z = K(t)z — (L * K)(t)z for almost every ¢t € [0,T] and
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z € X. Set fot v(s)ds = w(t) for t € [0 T]. Lemma 2.5 implies that
w(-) € C([0,T];Y) and (Aw)(¢t) = —tz— fo [y f(r)drds—(Bxw)(t)
for ¢ € [0,77]. Since B(t)y = K (¢ )Ay MoK (t)y for y 6 D(A), we have

(K —L*K)*xAw)(t) + (L« KA*w)(t) — Ao (K *w)(t)
Lx Aw)(t) + (L * (B + A K) * w)(t) = Xo(K * w)(t)
Lx(Aw+ B*w))(t) + Ao((L*x K — K) xw)(t)

L x2)(t) = Xo(L * w)(t),

where z(t) = —tx — [} [ f(r)drds for t € [0,T].

First we shall prove (i). Assume v € C1(]0,7]; X). In view of (2.7)
we find that (B * w)(¢) is continuously differentiable in ¢. Since A is
closed, we may differentiate (2.6) to obtain that v(-) € C([0,T];Y) and

= (
= (
= (
= (

(2.8)  Av(t)='(t) —z — /0 f(s)ds — (B xwv)(t) forte][0,T].

Noting v(0) = 0, we see that u := v’ is an integral solution to (VE).

Next assume f € C([0,T];X) and v € C?([0,T]; X). From (2.7)
and (2.8) it follows that v'(0) = x and (B xv)(-) = (L * 2')(-) —
Mo(L xv)(+) € C*(]0,T); X). By the closedness of A again we deduce
that v' € C(]0,T];Y) and the differentiation of (2.8) gives Av'(t) =
v"(t) — f(t) = (B *v')(¢) for t € [0,77]. This means that v := v is a
classical solution to (VE), which proves (ii). O

The following lemma for a locally Lipschitz continuous family is
simple but important for our discussion.

Lemma 2.6. Let a family {U(t) : t > 0} in B(X) be locally Lipschitz
continuous with U(0) = 0. Then we have the following.

(i) If f € Ll(O T;X), then [(U(-— s)f(s)ds € C([0,T]; X).
Putting u(t) := (d/dt) fo (t — s)f(s)ds, we have

(2.9) lu(®)]| < Cr / 1£(s)|ds fort € [0,T],



202 H. OKA

where Cp 1s the Lipschitz constant of {U(t) : t € [0, T|}. Moreover, if
If@)] < K forte[0,T],

(2.10)  [lu(t +s) —u(t)]| < KCrs + CT/O 1f(s+7) = F(r)] dr

for s, t,t+s€[0,T].

(ii) If a function f :[0,T] — X is of strong bounded variation, the
function u(-) defined in (i) is Lipschitz continuous on [0,T].

Proof. The first assertion can be proved in the same manner as in

[12, pp. 167-168]. Since ||U(t)|| < Crt for t € [0, T] by the assumption,
integration by parts yields

C t+h
<SE [ rn-lse)as

CT t+h s
= / If(r)|ldrds — 0
t t

t+h
H%/ Ut + h — s)f(s)ds
t

as h — 0+.
Therefore
(2.11)
=i ([ Ut+h—s)f()ds—/0U(t—s)f(S)d8>
= lim & / (Ut +h—s) = Ult - ))f(s) ds.

From this and the Lipschitz continuity of {U(¢) : t € [0, T} the estimate
(2.9) follows. It is easy to see that the inequality (2.10) holds by virtue
of the equality (2.11).

Finally we shall prove (ii).

Put Vi (t) := sup{d>_;_ [[f(t:) = f(ti1)]| : 0 < tg <ty <--- <ty <
t;n > 1} for t € [0,T]. Then V;(t) is a nondecreasing function and

(2.12) Nf(t) — f(s) S Vp(t) —Vy(s) for0<s<t<T.
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Then we have for s,t,t + s € [0,7]

/0t||f(s+r>f(r>||dr</tvf<s+r)dr/tvf( )dr

/ Vf dT‘—/ Vf
/ Vf dT‘—/ Vf

< SVf

which implies with (2.10) the desired conclusion. o

Theorem 2.7. Suppose that an integrated resolvent operator {R(t) :
t > 0} is locally Lipschitz continuous and that p(A) # ¢. Then the
following hold.

(i) If = € D(A) and f € L'(0,T;X), then there exists a unique
integral solution u(-) to (VE). Moreover we have

(2.13) lu(@)] < C(lel +/0 ||f(8)||d8> fort €10,T],

where C is a constant independent of © and f.

(ii) If = € D(A), f € WHL(0,T;X) and Az + f(0) € D(A), then
there ezists a unique classical solution u(-) to (VE). Moreover we have
(2.14)

IIU'(t)||§C<||Ax+f(U)|I+ / ||B<s>x+f'(s>|ds) fort € 0,7

Proof. First we shall show (i). By Proposition 2.3 (i) and Theorem 2.4
(i) it suffices to prove v € C*([0,77]; X). Since R(-)y € C*'([0,T]; X) for
y € D(A) by (r4), the Lipschitz continuity of {R(¢t) : ¢t € [0,T]} implies
R(-)z € C*([0,T]; X). Since R(0) = 0 by (r3), from Lemma 2.6 (i) we
see that the function ¢ — fot R(t — s)f(s) ds belongs to C'. Therefore
v € C1([0,T]; X). Because u(t) := v'(t) = R'(t)x + (d/dt) fOtR t—
s)f(s)ds for t € [0,T], we have the estimate (2.13) of an integral
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solution u(-) by the Lipschitz continuity of {R(¢) : t € [0,7]} and
the inequality (2.9).

Next we shall prove (ii). We have only to prove v € C%([0,7T]; X) by
Proposition 2.3 (ii) and Theorem 2.4 (ii). By (r4) we have

t

v'(t) =z + R(t)Az + / R(t — s)B(s)x ds
0

+/0 R(t— 5)f'(s) ds

for t € [0,7]. Since Az+ f(0) € D(A), B(:)x € L*(0,T; X) by (2.1) and
f'(") € L'(0,T; X), the above consideration yields v € C?([0,7]; X).
Since the equality

u'(t) =" (t) =R'(t)(Az + £(0))
dt/ R(t — s)(B(s)z + f'(s))ds

holds, the Lipschitz continuity of {R(¢) : ¢ € [0,T]} and the inequality
(2.9) imply the estimate (2.14) of the derivative of a classical solution

u(-). o

Throughout the rest of this section we suppose that D(A) = X and
p(4) # ¢

We will show that an integral solution to (VE) coincides with a weak
solution introduced by Grimmer and Schappacher [10].

In what follows, in addition to the condition (H0) we shall impose
the following assumption on the adjoint operators A* and B*(t) of A
and B(t), respectively.

(H1) D(A*) C D(B*(t)) for t > 0 and functions B*(-)z* are strongly
measurable on R* for z* € D(A*). Further,
1B" ()™ < b(#) (| A™2™[| + [|l=*[])

for * € D(A*) and almost every ¢t > 0.

According to Grimmer and Schappacher [10], we recall the definition
of a weak solution to (VE).
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Definition 2.2. A function u : [0,T] — X is called a weak solution
to (VE) if

(wl) we C([0,T]; X),

(w2) for all v € D(A*), the map ¢t — (u(t), v) is absolutely continuous
on [0, T7,

%(u(t),@ = (u(t), A*v) +/0 (u(s), B*(t—s)v)ds + (f(t),v)

for almost every ¢ € [0,T] and
(w3) u(0) = x.

The relation between an integral solution and a weak solution is given
by

Proposition 2.8. Let z € X. A function u : [0,T] — X is an
integral solution to (VE) if and only if u is a weak solution to (VE).

Proof. Suppose that w : [0,7] — X is an integral solution to (VE).
Let v € D(A*). Since

<A/0tu(s)ds,v> - </0tu(s) ds,A*v>
- /0 lu(s), A*) ds

and

([ 8- [[wnarass) = [ (me-s) [Cutrano)as
- /Ot < /Ot_su(r) dr,B*(s)v> ds,

we have
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for ¢t € [0,T], which implies that the map ¢ — (u(t),v) is absolutely
continuous on [0,7]. Differentiating this, we obtain

E(u(t),@ = (u(t), A*v) +/0 (u(t — s), B*(s)v) ds + (f(t),v)

= (). 40) + [ (uls), B¢ = s)o) ds
+ (f(t),v) fora.e. te0,T].

This means that u is a weak solution to (VE).

Without loss of generality we may assume 0 € p(A*). Conversely, let
u: [0,T7] = X be a weak solution to (VE). Integrating the equality
(w2), we have

(w(t) o) = e.0) = [ (u(s), 4"} ds

¢
/ / B*(s—r)v >drds+/<f(s),v)ds
0
for t € [0,T]. By Fubini’s theorem and integration by parts we get
// (s—r) drds-// B*(s —r)v)dsdr
:/ < /B*s—r)vds>dr
0
t t—r
= / <u(r),/ B*(s)v ds> dr
0 0

t T
= / / u(s) ds,B*(t—7‘)v> dr.
0 0
Moreover, we have

/0t</osu(r)dT,B*(t—s)v> ds
_ </Ot(B*(t—s)(A*)_1)*/OS u(r) des,A*v>
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for ¢t € [0,T]. By [10, Lemma 4.2] and its proof we see that the operator
A~!B(t) has a bounded extension, A~1B(t) to X for almost every ¢t > 0

—_—~—

such that A~1B(t)z is locally Bochner integrable in ¢ for each z € X

and that A=1B(t)z = (B*(t)(A*)~1)*z for almost every ¢ > 0 and
z € X. Therefore we have

<u(t) —z— Ot f(s)ds, v>

_ </0 u(s) ds—i—/ot(B*(ts)(A*)l)*-/Os u(r)des,A*v>
- </0tu(s)ds+/0tm(t5)-/Osu(r)des,A*v>

for t € [0,T]. Putting y(t) = fot u(s)ds + fot Z——Tg(t —s) [, u(r)drds
for t € [0,T], by [3, Lemma] we find that y(¢) € D(A) and Ay(t) =
u(t)—w—fot f(s) ds is continuous in ¢ € [0, T]. Now the integral equation

(2.15) z(t):y(t)—/o ATB(t — 5)2(s) ds

—_—

has a unique solution z;(-) € C([0,T];X) because A-1B(-)z €
Li (RT;X) for each z € X as noted above. Therefore, we have

fot u(s)ds = z1(t) for t € [0,T]. However, A~1B(t) maps Y into Y,
and for y € Y and almost every ¢t > 0,

AT B®)ylly = [1BO)yl + 1ATBO)yl < 1+ AT Db lylly-

Thus, A"'B(t) € B(Y) for almost every t > 0 and A"!B(t)y is
locally Bochner integrable in Y for each y € Y. Noting the fact
that y(-) € C(]0,T);Y), we see that (2.15) has a unique solution
z2(-) € C([0,T);Y). Because of z2(-) € C([0,T]; X), by the uniqueness
of solutions to (2.15) in C([0, T]; X) we have [, u(s)ds = z1(-) = 22(-) €
C(]0,T);Y). So we have

/0t</05u(T)dr,B*(t—s)v>ds—</0tB(t—s)/OSu(r)drds,v>
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and

/0t<u(s) </0 u(s) ds, A* v> - <A/0tu(s)ds,v>

for v € D(A*) and t € [0,7]. By [3, Lemmal again, we find that u is
an integral solution to (VE). O

Theorem 2.9. Suppose that D(A) = X and p(A) # ¢. Let
f €L (RT;X). The following statements are equivalent:

(i) (VE) admits a locally Lipschitz continuous integrated resolvent
operator {R(t) : t > 0}.

(ii) (VE) admits a resolvent operator {T'(t) : t > 0}.
(iii) For all x € X there exists a unique integral solution u to (VE).

(iv) For all x € X there exists a unique weak solution u to (VE). In
this case,

R(t)z = /0 " (s)eds:
u(t) = %(R(t)x 4 /0 "R(t - 9)f(s) ds>

:T(t)x—f—/tT(t—s)f(s)ds fort >0andz € X.
0

Proof. By Theorem 2.7 (i) we have the implication (i) = (iii). Since
Proposition 2.8 shows the equivalence (iii) < (iv), it remains to prove
that implications (iii) = (ii) and (ii) = (i).

To show that (iii) implies (ii), let u(-; ) be a unique integral solution
to (VE) for each z € X. For ¢ > 0 define an operator 7'(t) on X to
X by T(t)z = u(t;xz) — u(t;0) for x € X. Then from the definition of
integral solutions to (VE) it follows that

(2.16) T(t a:—x+A/ mds—i—/ Bt—s)/ T(r)zdrds
0

for t > 0 and z € X. Clearly, 7(0) = I and T'(-)x € C([0,00); X) for
x € X. Then by the uniqueness of integral solutions we see that each
T(t) is a linear operator on X.
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Define an F-space ( in the sense of Dunford-Schwartz [7]) by

X = {u € C((0, 00); X) : /0 u(s) ds € C([0, oo);Y)}

with the quasi-norm defined by

=L el
lloll =3 52 13 Prv e

L+ [ollw
where ||v||x = maxo<;<x max(||v(¢)]], || fo s)ds|ly) for k =1,2,3,.
(note that lim,,,  |||vn]|| = 0 if and only 1f limy, 00 ||Unllk = 0 for all

k). We define the linear operator 7 : X — X by Ta = T(-)x for z € X.
To prove that 7 is closed, let ||z, — z| — 0 and |||Tz, — y||| — 0 as
n — oo.

By the above remark we have lim,,_, (max0<t<k IT(@#)zn—y@)|) =0

and lim,_, o (maxg<i<k ||f0t T(s)rnds — fo s)ds|ly) = 0 for all k.
Passing to the limit as n — oo in the equality

T(t)an = zn + A/Ot T(s)zn ds + /Dt B(t — s) /0 T(r)zn dr ds

y(t):ac—I—A/Oty(s)ds—i—/OtB(t—s)/osy(r)drds

for ¢ > 0, which means that y(-) + u(+;0) is an integral solution to
(VE). By the uniqueness of integral solutions we have y(-) + u(-;0) =
u(;z), e, y(-) = T()z and hence y = Tz. From the closed
graph theorem (see [7, Ch. II, Theorem 2.2.4]) we see that 7 is a
continuous operator from X into X: hence lim,,_, o ||z, —2|| = 0 implies
lim,, o (maxo<¢<i ||7(t)zn, —T(t)z||) = O for every k. This shows that
each T'(t) : X — X is continuous, that is, T'(¢) € B(X)

To prove (t3), let y € Y and 2(¢t) = y + fo s)Ayds + fo LT
r)B(r)y dr ds for t > 0. Since (2.16) holds we see by the same argument
as in the proof of Lemma 2.5 that [ w(s)ds € C'([0,00);Y’) and

w(t):A/Otw(s)dH/otB(ts) /Osw(r)drds—f-/otg(s)ds

we have
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for w(t) := (T'xg)(t) and g € L{ (R™; X). Since B(-)y € L{ (R"; X),
we have z(-) € C([0,00);Y). By the above equation and z(t) —y =
fot t — 5)(Ay + [, B(r)ydr)ds, from the closedness of A we deduce
J5(z(s) —y)ds € C([0,00);Y) and

y—A/ y)ds—l—/tB(t—s)/OS(z(r)—y)drds
+/0 (Ay—l—/B ydr)ds
_A/Otz(s)ds—i—/o B(t—s)/o +(r) dr ds

for ¢ > 0. Hence the uniqueness of integral solutions follows

Ty =)=y + T(s) Ay ds

/ / (s — r)B(r)ydrds,

which implies 7'(-)y € C*([0,0); X) N C([0,00);Y) and (d/dt)T(t)y =
T(t)Ay + fot T(t — s)B(s)yds for t > 0, that is (t3)(ii) holds. Since
T(-)y € C([0,0); X)NC([0,00); Y) and A is closed, the differentiation
of (2.16) with = replaced by y € Y in t > 0 gives (t3)(i). Therefore
(VE) admits a resolvent operator {T'(t) : ¢t > 0}.
Finally we show that (ii) implies (i). Suppose that (VE) admits a
resolvent operator {T'(t) : t > 0}. Define an operator R(t) in B(X) by
t)r = fo s)xds for t > 0 and z € X. Clearly, {R(t) : t > 0} is
locally Llpschltz continuous.

Let y € D(A). Integration of (t3)(i) and the closedness of A yield
[y T(s)yds € C([0,00);Y) and

(2.17)  T(t)y - y—A/ yds+/ Bt—s)/ T(r)ydrds
0
for ¢ > 0. Then from (H0) and the above equality it follows that

t

rwly = | [ 2was] + 4 [ owas
0

H / ds| + 1T(Oy—yl| + / b(t—s) | R(s)ylly ds
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and hence Gronwall’s inequality gives

By < | [ Twas| + 1700 -

—i—/otr(t—s){H/OsT(r)ydr

where 7(t) = b(t) 4 (r*b)(t) for almost every t > 0, i.e., r is a resolvent
kernel of b. Therefore we have

+n7%@y—yn}ds

(2.18) [[AR(t)y|| < IIT(if)@/—yIIJr/0 r(t=s)([R(s)yll + [ T(s)y—yll) ds

for ¢ > 0. This shows that AR(¢) has a bounded extension to all of
X and the closedness of A follows R(t)xz € D(A) for all ¢ > 0 and
z € X. Since D(A) is dense in X, for z € X there exists a sequence
{z,} € D(A) such that lim, ,c z, = z. AR(-)z, € C([0,00); X) for
n > 1 and in view of (2.18), we see that lim, . AR(t)z, = AR(t)z
uniformly on any bounded subinterval. Hence AR(-)z € C([0,00); X).
Therefore from the closedness of A we deduce (r2). Combining this
fact with (2.17), by density argument we find

T(t)a:—:c_A/OtT(s):cds—i—/OtB(t—s)/OST(r):z:drds

for t > 0. Integrating this we have (r3) from the closedness of A.
The property (r4) can be obtained by integrating the equation (t3) (ii)
twice. ]

Remark. The equivalence (ii) < (iv) in Theorem 2.9 improves [10,
Theorem 3.1] where the additional assumption on A* and B*(t) ([10,
(H4)]) is imposed.

3. Main results. First we prepare some results on locally Lipschitz
continuous integrated semigroups.

We recall that a closed linear operator A in X satisfies the Hille-
Yosida condition (H.-Y.) if and only if A is the generator of a locally
Lipschitz continuous integrated semigroup {S(¢) : ¢ > 0} on X such
that

|S(t+h) — S(t)|| < Mhe* ™) for t,h >0
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(see [1, Theorem 4.1] and [12, Theorem 2.4]). The following can
be obtained by using Lemmas 2.5 and 2.6. Note that an integrated
resolvent operator coincides with an integrated semigroup if B(t) = 0
(see [13, Theorem 3.1]).

Lemma 3.1. Suppose that a closed linear operator A in X satisfies
the Hille-Yosida condition (H.-Y.). Let {S(t) : t > 0} be a locally
Lipschitz continuous integrated semigroup on X generated by A and let
feLi (RT;X). Then we have

loc

ASVﬂﬂ$MGOWQwhﬂﬂﬂMw%ﬂ,

(3.1)
& [ st-orras=a [ se-s)s6as+ [ 1)

and

82 |4 [ se-aseas

fort>0.

t
< [ eI () ds
0

We assume that

(H2) {B(t) : t > 0} is a family of linear operators in X with
D(A) C D(B(t)) for all t > 0 and of bounded linear operators from Y
into X satisfying the condition that the functions B(:)z are of strong
bounded variation on each finite interval [0,T] for z € D(A).

Note that (H2) implies (HO) since a function of strong bounded
variation is strongly measurable and also by the uniform boundedness
principle

[1B@®)z|| < M(T)(|[«]| + [|Az[]) for t € [0,T] and x € D(A),

where M(T) is some constant depending on T' > 0.

Our main result in this paper is stated as follows.

Theorem 3.2. Suppose that a closed linear operator A in X satisfies
the Hille-Yosida condition (H.-Y.) and that a family {B(t) : t > 0} of
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linear operators in X satisfies (H2). Then there exists a unique locally
Lipschitz continuous integrated resolvent operator {R(t) : t > 0}.

Proof. Let A\ € p(A) with Ao > max{0,w} and define an operator
K(t) € B(X) by K(t) = —B(t)(A\o — A)"* for t > 0. Then by (H2)
the function K (-)z is of strong bounded variation on each finite interval
[0, 7] for z € X and there exists a function k¥ € L .(RT; R ") such that
IK(¢)|| < k(t) for almost every ¢ > 0. Let L(t) denote the resolvent
kernel for K(t), i.e.

(3.3) Lit)r=K(t)r— (L*xK)(t)z

for almost every t > 0 and € X. Then L(-)z is of strong bounded
variation on each finite interval [0,7] for x € X and ||L(¢)|| < r(t)
for almost every ¢t > 0, where r € L], (R*;R™) denotes the resolvent
kernel of k, i.e., 7 =k + 1 * k.

Let {S(¢t) : t > 0} be a locally Lipschitz continuous integrated
semigroup on X generated by A. Since L(-)z € BVj,.(R™1; X), Lemma
2.6 (ii) implies that a function ¢t — (d/dt) fg S(t—s)L(s)x ds is Lipschitz
continuous on each finite interval [0,T] for x € X. Define an operator
V(t): X - X for t > 0 by

(3.4) V(t)e = %/Ot S(t—s)L(s)xds forz e X.

In view of (3.2) and ||L(t)|| < r(t) for almost every ¢ > 0, we have
V(t) € B(X) for ¢ > 0. Hence by the uniform boundedness principle,
{V(t) : t > 0} is locally Lipschitz continuous. Since V(0) = 0 by (3.1),
from Lemma 2.6 (i) it follows that a function ¢ — fot V(t—s)g(s)ds is
in C! for g € L(0,T; X).

Let © € X. Let T > 0 be fixed arbitrarily and define an operator
®:C([0,T; X) — C([0,T]; X) by

(®u)(t) = S(t)e — W(t)z + %(V xu)(t) — Ao (V *w)(t)

for u € C([0,T]; X) and ¢ € [0,T], where W(t)z = (S * L(-)z)(¢t) for
t € [0,T]and z € X. Since {V (¢) : t > 0} is locally Lipschitz continuous
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and V(0) = 0, we have |V (t)|| < CrT for t € [0,T] where Cr is the
Lipschitz constant of {V'(¢) : t € [0,7}. Noting this and the inequality
(2.9), one can verify by induction

[(@"u1)(t) — (2" u2)(?)||
t—s)n1

< @enryey [ ((n—l)!nul(s)—uz(snds

forn=1,2,...,and t € [0,T]. The fixed point theorem asserts that ®
has a unique fixed point u, r € C([0,T]; X), namely,

d
ug,r(t) = S(t)x — W(t)x + E(V * Uy 1) (t) — Ao (V *up 1) (t)
for ¢ € [0,T]. Define a function u, € C([0,00); X) by u(t) = uzr(t)
if 0 < ¢ <T. Then u, is a unique element in C'(]0, 0); X) satisfying

(3.5) ug(t) = S(t)x — W(t)z + %(V % Ug ) () — Ao (V * ug) ()

for t > 0.

For ¢ > 0 we define an operator R(t) : X — X by R(t)z = u(t)
for z € X. Clearly, each R(t) is a linear operator on X. To show
R(t) € B(X), we consider a linear operator T : X — C([0,7T]; X)
defined by Tz = R(-)z for z € X. Noting the inequality (2.9), by virtue
of (3.5) we see that T is closed. Thus by the closed graph theorem we
conclude that R(t) € B(X).

Let us show that {R(t) : ¢ > 0} is a locally Lipschitz continuous
integrated resolvent operator. Obviously (r1) is satisfied.

Next we shall show (r2) and (r3). From [1, Proposition 3.3] and
Lemma 3.1 it follows that

(3.6) /Ot S(s)xds € D(A), A/Ot S(s)zds = S(t)x — tz,

(3.7) W(t)x € D(A) and AW(t)x =V (t)z — /t L(s)xds
0
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for t > 0 and = € X. Integrating (3.7) and using the closedness of A
we have

/W )xds € D(A) and

/W Jeds =W m—// r)zdrds

for t > 0 and € X. Convolving both sides of (3.7) with R(-)z from
the right side and noting Lemma 2.6 (i), we see that

(3.8)

(AW % R()x)(t) = (V * R(-)x)(t) — /0 (L * R(-)z)(s)ds

belongs to C*. Since the equality (V * R(-)z)(t) = (d/dt)(W = R(-)x)(t)
holds, from the closedness of A we deduce (V x R(-)z)(t) € D(A) and

AV + R()2) (1) =
(3.9)

= SV RO))(0) - L+ RO)0)

t(AW*R() 7)(0)

fort > 0 and z € X. The combination of (3.5)—(3.9) with the closedness
of A shows (r2) and
(3.10)

A/OtR(s)mds:S(t)w—tx— :L‘—l—// r)zdrds

£ W e RO
— (L RO)@)(E) - Mo(V + R()2)()
o /Ot(L* R(-)z)(s) ds
= R(t)e—ta— (L (R()z—j1()2))(O)+ ho(L + U()2) (¢)

where U(t x—fo s)zdsfort >0and x € X.

Set
w(t) = R(t)x —te — AU (t)x — (B U(-)z)(t)
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for t > 0 and z € X. Then w(-) € C([0,00); X). Noting B(t)y =

K(t)Ay — MK (t)y for y € D(A) and

BxU=(K-L+«K)* AU+ L+xKAxU —X K xU
=Lx AU+ Lx* (B+ XNK)*U — MK *xU
=Lx(AU+B*U)+ MN(L+*K —K)«U
=Lx(AU+Bx*U)— X NLxU

(3.11)

by (3.3), we have with (3.10)

w(t) = (L* (R()z = j1(-)z))(t)
— M(LxU()z)(t) — (B +U(-)z)(t)
= (L (R()z —j1()z — AU()z — (B U()x)(-)))(t)
= (Lxw)(?),

which implies
¢
lw(®)|| < / r(t — s)|lw(s)||ds for t > 0.
0

Therefore by Gronwall’s inequality we have w(t) = 0 for ¢ > 0. This
shows that (r3) is satisfied.

To prove (r4), let z € D(A) and put

y(t) =tz + /Ot R(s)Axzds + /Ot /OS R(s —7)B(r)zdrds

for ¢ > 0. Noting y(t) —tz = fot R(t—s)(Az+ [ B(r)zdr)ds for t > 0,
by (2.6) (note that Lemma 2.5 holds if (r1), (r2) and (r3) are satisfied),
we obtain [, (y(s) — sz)ds € C([0,00);Y) and

o)tz = 4 [ (ofs) ~ sm) s
+/0tB(t—s) /Os(y(T)—rx)des

t s T
+/0 /0 <Aac+ ; B(f)xd§> drds
t

:A/Oty(s)ds+/0 B(ts)/osy(r)drds
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for t > 0. Then putting z(¢) = y(t) — R(¢)x for t > 0, we have

/ ds+/Bt—s/ z(r) drds

for ¢ > 0. Replacing U in (3.11) by [; 2(s) ds, we get

z(t):A/Otz(s)ds+ (L* (A/O'z(s)ds+B*/0'z(s)ds>>(t)
xo(z [ w0as)w
_ A/Otz(s)ds+ (L+2)(#) )\0<L*/0-z(s)ds>(t)
for ¢ > 0. Integrating this twice with the closedness of A, we obtain
/ ds+// (L * 2)(r) dr ds
—Ao/ / (L*/ d77>(r)d7’ds,

where v( fo [y z(r)drds for t > 0. Since A is the generator of an
integrated semigroup {S( ):t >0} on X, [13, Theorem 4.1] implies

o(t) = /OtS(t— 5) <L* <z(-) - )\o/olz(n)dn>>(s)ds
= (W (2020 [ tman)

for t > 0. Differentiating this twice, we have z(t) = (d/dt)(V « (2(-) —
Ao [, 2(n) dn))(t) for t > 0. Let T > 0 be any positive number. We
note the inequality (2.9) and estimate the above equation to get

o< or [ t (1=l+20 [ o)l ) ds

< Cr(1+ MT) / 12(s)]| ds
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for ¢t € [0,T]. Thus Gronwall’s inequality gives z(t) = 0 on [0, T]. Since
T > 0 is arbitrary, z(t) = 0 for ¢ > 0. This proves (r4).

Finally we shall show the local Lipschitz continuity of {R(¢) : t > 0}.
Since {S(t) : t > 0}, {W(¢t) : ¢ > 0} and {V(¢) : t > 0} are locally
Lipschitz continuous, in view of (3.5) and (2.10) we have
(3.12)

|R(t + h)x — R(t)x||

sh<MT+ sup |R(s)] - Cr + 20CoT - sup ||R(s)||)||x||
s€[0,T] s€[0,T]

t
+ CT/ |R(r + h)x — R(r)z|| dr
0

for t,h,t + h € [0,T] and x € X where Mr is the maximum of the
Lipschitz constants of {S(¢) : ¢ € [0,T]} and {W(¢) : t € [0,7]}. Then
Gronwall’s inequality implies the desired conclusion. a

Theorems 2.7 and 3.2 are applied to two Cauchy problems:

u”(t) — Au'(t) — Bu(t) = f(t)

(SE) for t € [0,7T], u(0) =z and v'(0) =y ;

(IE) u'(t) = A(u(t) + /0 F(t— s)u(s) ds)
+ Ku(t) + f(t) forte[0,T] and u(0) = x.

The complete second order equation (SE) is an abstract form of the
linear strongly damped wave equation and the Klein-Gordon equation,
etc. (see [14]). Also, a partial integrodifferential equation from heat
conduction in materials with memory

(t,z), te€[0,T],z€l0,1],
, xel0,1],
,1)=0, te0,T]
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can be formulated as the abstract integrodifferential equation (IE).

Definition 3.1. We say that a function w : [0,7] — X is a classical
solution to (SE) if u € C*([0,T]; X),u(t) € D(B), v'(t) € D(A), Bu(t)
and Au'(t) are continuous and (SE) is satisfied for ¢ € [0, 7.

Theorem 3.3. Let A be a closed linear operator in X satisfying the
Hille-Yosida condition (H.-Y.). Suppose that B is a linear operator in
X with D(A) C D(B) and a bounded linear operator fromY into X,
where Y is a Banach space D(A) equipped with the graph norm of A. If
z € D(B), y € D(A), f € WH1(0,T; X) and Bx + Ay + f(0) € D(A),
the complete second order equation (SE) has a unique classical solution
v which satisfies

(3.13)

o< 0 (Il 1ol + [ 132+
(3.14)

v < ool + | 1Ba+ 7)1 is)
(3.15)

@) < C(IIBw+Ay+f(0)II + [ 1By ds)

fort € [0,T], where C is a constant independent of z,y and f.

Proof. Theorem 3.2 shows that the following integrodifferential
equation

m) YO Au0+ /0 " Bu(s)ds + Bz + f(t) fort e [0,T]

u(0) =y
admits a locally Lipschitz continuous integrated resolvent operator
{R(t) : ¢ > 0}. Therefore, by Theorem 2.7 (ii) and the assumption
we see that (ID) has a unique classical solution u which is given by the
variation of constants formula

)= (R0 + [ R B+ 1))
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for t € [0,7]. Then a function v defined by v(t) = z + fo s) ds for

€ [0,7] is a classical solution to (SE). Conversely if v is a Classwal
solution to (SE), a function u := v’ is a classical solution to (ID).
The estimates (3.13)—(3.15) of a classical solution can be obtained by
differentiating v and using the property (r4) and the local Lipschitz
continuity of {R(t) : ¢ > 0}. O

Remark 3.1. Theorem 3.3 extends [15, Theorem 3.3] to the case of
nondensely defined operators A and B. It should be noted that we do
not assume the closedness of B in X.

Next we consider the following integrodifferential equation

S

+ Ku(t) + f(t) forte[0,T]
u(0) = z,

(IE)

where K and F(t) for ¢ > 0 are bounded linear operators on X.

Definition 3.2. A function u : [0,7] — X is a classical solution to
(IE) if u(t +f0 (t — s)u(s) € D(A) for t € [0,T], u € C1([0,T]; X)
and u satisfies (IE)

Theorem 3.4. Let A be a closed linear operator in X satisfying the
Hille-Yosida condition (H.-Y.). Suppose K, F(t) € B(X) fort > 0 and
F()z e WLHRT; X) for 2 € X. Ifz € D(A), f € WH(0,T; X) and

(A+ K)x + F(0)x + f(0) € D(A), the integrodifferential equation (IE)
has a unique classical solution u satisfying

(3.16) ut)| gc(||x||+ / ||f(s)||ds)

fort € [0,T] where C is a constant independent of z and f.

Proof. Define two operators in X x X with domain X x D(A) by

AO_(g j) and B(t)—<p(?)K F((t))A>
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for t > 0 respectively. It is shown in [8, pp. 88-89] that A generates a
locally Lipschitz continuous integrated semigroup on X x X. Since
K € B(X), a bounded perturbation theorem for locally Lipschitz
continuous integrated semigroups ([12, Proposition 3.3]) shows that

an operator A defined by
K A
(& 4)

generates a locally Lipschitz continuous integrated semigroup on X x X,
i.e. a closed linear operator 4 in X x X satisfies the Hille-Yosida
condition (H.-Y.). Moreover B(t) is a bounded linear operator from
[D(A)] into X x X for t > 0 and B(-)(*) € Wi (RT; X x X) for
(u,v) € D(A) = X x D(A), where [D(A)] is a Banach space D(A)
equipped with the graph norm of A. Therefore Theorem 3.2 shows
that the integrodifferential equation

(ZE) U't) = AU(t) + /OtB(t —s)U(s)ds+ F(t) forte[0,T)
=X

u(o)

admits a locally Lipschitz continuous integrated resolvent operator
{R(t) : t > 0} on X x X. Here we put F(t) = (f(¢), f(t) + F(t)z +
fot F(t —s)f(s)ds) and X = (z,z). Then from Theorem 2.7 (ii) and
assumptions it follows that (ZE) has a unique classical solution U.
It is easy to see that the first component of U/ is a classical solution
o (IE). Conversely if w is a classical solution to (IE), a function
U) = (ult),ult) + fot F(t — s)u(s)ds) for t € [0,T] is a classical
solution to (ZE). The estimate (3.16) of a classical solution to (IE)
follows from the variation of constants formula which is given in terms

of {R(t):t > 0}. o

Remark 3.2. Theorem 3.4 gives a slight improvement on [8, Theorem
3.2].

4. Examples. As illustrations of our abstract theory, we will give
two examples of hyperbolic partial integrodifferential equations.

We prepare the following theorem.
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Theorem 4.1. Suppose that a closed linear operator A in X satisfies
the Hille-Yosida condition (H.-Y.). Let F(-) : [0,7] — B(X) be
a function such that F(-)v € C'([0,7];X) for each v € X. Let
{K(t) : t > 0} be subject to (H2) and let f € W11(0,T;X). If
z € D(A) and (A+ F(0))z + f(0) € D(A), then the Cauchy problem

(4.1) u'(t) = (A+F(t) /Kt s)u(s)ds+f(t) fortel0,T)
u(0) ==
has a unique classical solution u € C1([0,T]; X)NC([0,T};Y).

Proof. Consider a Banach space X = {u € C*([0,T]; X) : u(0) = =}
with norm | - | defined by |u| = sup;cpo 11 {[|u(t)[| + [« ()|} for u € X.
Define an operator J : X — X by

42 (0= Rzt T /0 R(t — 8)(F(s)u(s) + f(s))ds

for t € [0,T] and u € X, where {R(t) : t > 0} is a locally Lipschitz
continuous integrated resolvent operator which the following integrod-
ifferential equation admits by Theorem 3.2

u'( /Kt s)u(s)ds+ f(t) forte[0,T]
u(0) = x.
By (r4) the right side of (4.2) is equal to
(4.3) =+ R(t)((A+ F(0)z + £(0))
+ /0 R(t — s)(K(s)x + F'(s)u(s) + F(s)u'(s) + f'(s)) ds,

which is a C''-function of ¢ because of (A + F(0))z + f(0) € D(A) and
Lemma 2.6 (i). Moreover (4.3) at t = 0 is equal to x. Therefore J is
well-defined. Here denote the derivative of F(t)v by F'(t)v for ¢t € [0, 1]
and v € X. Differentiating (4.3) yields

() = RO+ FO)e + 50)

(4.4) + %/0 R(t — s)(K(s)z + F'(s)u(s)
+ F(s)u/(s) + f'(s)) ds
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for t € [0, T]. Noting the inequality (2.9), from (4.3) and (4.4) we find
1™ ua) (@) = (M u2) (O] + (T wa)"(8) = (T"us) (D)

< 3 [ I hale) = )+ () - w6 ds

for t € [0,7] and n = 1,2,..., where K7 = (Cr + sup,¢o 1 || 2(s)|])
-max(supeqo,77 [|1F ()], supsepo,77 [|1F7(s)|) and Cr is a Lipschitz con-
stant of {R(t) : ¢ € [0,T7]}. Hence the fixed point theorem asserts that
J has a unique fixed point v € C1([0,T]; X) with u(0) = = and so The-
orem 2.4 (ii) shows that u is a classical solution to the problem (4.1).
The uniqueness of classical solutions follows from that of fixed points
of J and Proposition 2.3 (ii). o

Example 4.1. We consider a linear first-order hyperbolic integrod-
ifferential equation in one space variable, namely,

(4.5)  u(t,z) + a(z)uy(t, z) + b(t, z)u(t, x)

= /0 {p(t — s,2)uy(s,z) + q(t — s,z)u(s,z)} ds

+ f(t,x), te[0,7], = €]0,1],
u(0,2) = up(z), z € [0,1],
u(t,0) = u(t, 1), te 0,17

Here a is a positive continuous function on [0,1], b € C*([0, T]; C[0,1]),
P, q € BVoe([0,0); C[0,1]) and f € WL1(0,T;C|0,1]).

Let X = C0,1] with norm |lul| = sup,c|u(z)| for v € X
and define an operator A and two families {C(t) : ¢t € [0,7]} and
{B(t) : t > 0} of operators in X by

D(A) = {u € C0,1] : u(0) = u(1)}

(Au)(z) = —a(z)u/(z) for z € [0,1] and u € D(A),
(C®) = Co,1]

C(t)u)(z) = —b(t,x)u(z) for x €[0,1],u € C[0,1] and ¢t € [0,T]

and

>

—~
~—
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D(B(t)) = C'[0,1]

(B(t)u)(z) = p(t, 2)u'(z) + q(t, z)u(z)
for z € [0,1], u € C'[0,1] and t > 0,

respectively. Then the integrodifferential equation (4.5) can be written
in the abstract form

W (8) = (A+ O(t) /Bt—s s)ds+ f(t) fort €0, T]
u(0) = up.

For g € X and A > 0, the unique solution u of Au — Au = g is given
by

u(z) :Ce—Ad(z)+/z e_,\(d(z)—d(y))g(y) dy,
0 a(y

where d(z) = [ (1/a(y)) dy and ¢ = (e} -1 f erW) g(y)/a(y)dy.
Since (1/)\)(d/dy) AdY) = W) /g(y) > 0, we have

Y1/4d
< o Ad(@) (Ad(1) _ 71/ 1 ANdly
ue)] £ e M@0 1)1 [ (20 ) ) dy

_ “1(d 9]l
r@ [ 1 Ad(y) < lgll
+e /0 )\<dy >g(y)dy_ 1

and hence (0,00) C p(A) and [[(A — A)~Y| < 1/A for A > 0. Moreover
it is clear that {B(t) : t > 0} is a family of bounded linear operators
from [D(A)] into X satisfying B(:)z € BVioc(RT; X) for z € D(A),
where [D(A)] is a Banach space D(A) equipped with the graph norm
of A. Since D(A) = {u € C[0,1] : u(0) = u(1)}, by Theorem 4.1 the
problem (4.5) has a unique classical solution v € C*([0,77; C[0,1]) if
ug € C0,1],u0(0) = up(1) and —a(0)uf(0) — b(0,0)ue(0) + £(0,0) =
—a(L)up(1) = b0, Duo(1) + £(0,1).
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Example 4.2. We deal with the initial-boundary value problem
gt (t, ) = ugy (¢, @) + b(E, x)ug (¢, ) + c(t, )u(t, z)
t
+ / {p(t — 8, 2)uzs(s,z) + q(t — s, z)uz(s, z)
0

(4.6) +r(t—s,z)u(s,z)}ds
+ f(t, z), te0,T], = €[0,1],
u(t,0) = u(t, 1) =0, t e 0,1,
U(O, CC) = uO(I)v ut(oa CC) = ul(m)a T e [Oa 1]7

where b,c € C([0,T);C[0,1)]), f € WbLL(0,T;CI0,1]) and p,q,r €
BVioe([0,0); C[0, 1]).

Let X = C[0,1] with norm ||lul| = sup,¢jg ) u(z)| for u € X. Let
V ={u € C0,1] : u(0) = u(1) = 0} with norm ||ul|y; = ||u|| + ||u'|| for
ueV.

Consider an operator A and two families {F(¢) : ¢t € [0,T]} and
{K(t):t >0} in X defined by

D(A) = {u € C?[0,1] : u(0) = u(1) = 0}
(Au)(z) = u"(z) for z €[0,1] and u € D(A),
DFt) =V
(F(t)u)(z) = b(t,z)u'(z) + c(t, z)u(x)

for z € [0,1],u € V and t € [0, T]

and

D(K(t)) = D(A)
(K (t)u)(z) = p(t, x)u" () + q(t, 2)u'(x) + r(t, 2)u(z)
for z € [0,1],u € D(A) and t > 0,

respectively.
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Then the integrodifferential equation (4.6) can be written in the
abstract form:

(SVE)
W' (t) = (A+ F(t) /Kt—s s)ds+ f(t) forte0,T]
u(0) =up and u'(0) = wus.

We will try to convert (SVE) in X into the first-order system in the
Banach space (V x X, || [lv + - ])

(i) (i) = 470 ()T/K“*CSVS

(4.7) +G(t) fortelo,

(o) = (22)

(3 2) -5 9)

c0-( 8) = 90 ()

Since F(t) € B(V,X) (the set of all bounded linear operators from
V into X), the operator F(t) with domain V' x X belongs to B(V x
X,V x X) for t € [0,T] and, for (v,w) € V x X, F(t)(}) = (F((i)v) is
continuously differentiable in ¢ € [0, 7] in the topology of V' x X. Also
the operator K(t) with domain D(A) x X is a bounded linear operator
from [D(A)] into V' x X, where [D(.A)] is a Banach space D(A) equipped
with the graph norm of A, because for (u,v) € D(A) = D(A) x V we

have
o (:)

where

= [|K(t)ull
VxX

< er(flullv +[[Aul])

<ol 4C)

V><X)
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Here we put ¢ = sup{|p(¢, z)|+|q(t, z)|+|r (¢, z)| : ¢ € [0,T],z € [0, 1]}.

From the assumption it follows that K(t) (") = (K((l)u) € BVioc(RT; VX

X) for (u,v) € D(A) = D(A)x V. Therefore if the operator Ain V x X
satisfies the Hille-Yosida condition (H.-Y.), we can apply Theorem 4.1

to the problem (4.7). Noting (A)V (the closure of D(A) in V) =V
and V = {u € C[0,1] : u(0) = u(1) = 0}, we have

Theorem 4.2. Let uy € C?(0,1] and u; € C*[0,1]. If
up(0) = up(1) = uy(0) = uy (1)
= ug(0) + (0, 0)ug(0) + £(0,0)
= ug (1) + (0, Dug(1) + f(0,1) =0,
the problem (4.6) has a unique classical solution u € C*([0,T1]; C|0,1]).

It remains to show

O I
A O
V' satisfies that there exists a positive number w such that (w,o0) C

p(A) and

s |a-a (N <eren-wm i + o

9/ llvxx
for A>w, (f,g) €V XxX andn=0,1,2,....

Proposition 4.3. The operator A = < with domain D(A) x

Proof. A simple computation shows

2 4y-1 e A(1—t) _ _—A(1-t)
(A\*—=A) v(m)—iw\(e)\ ) {e e Yo(t)dt
- 0
1 x
o / {0 _ ¢=Aa=0Yy () dt
0

o0 1
(4-9) _ i / —A2k—z+t) _ —A(2k+z+t)
2 kz:% ) te ¢

- 67)\(2k+27z7t)_+_67)\(2k+2+z7t)}v(t) dt

_/ {e—)\(t—z) _ e—)\(a:—t)}v(t) dt
0
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for A >0and v € X.
Integration by parts gives

L / {079 4 e 0=0Yu(t) di
f—/{ (=0 4 e A () d

_ 1 {2/ {e_x(zk—ert) _ e M2k+att)
2 0
k=0

(4.10)
—A(2k+2+z—t) }w(t) dt

—A(2k+2—z—t)

te
/{e*“ D) 4 e Mo D u() dt

(s)ds for t € [0,1], A >0 and v € X.

where w(t) = fotv s
Let A > 0 and f € V. Differentiating (4.9) in = and integrating by

parts, we have

_}\/0 {2 _ = A@=0Y /(1) gt

Differentiating this again, we obtain

AN — A) 7 f(x)

o 1
L[S [t e
2 0
k=0

(4.11)
+6—A(2k+2—w—t) _ e—)\(2k+2+z—t)}fl(t) dt

_/ {e—A(t—z)+e—A(z—t)}f/(t) del.
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We differentiate (4.9) in A, n-times, to get
(4.12)

<— %)nA(AZ—A)lv(m)
= %Li:o/01{(2k—x+t)"e—“2k—z+t>

(2k+$-‘rt) —A(2k+z+t)
o (2]{5—’—271'7{:)” 7}\(2k+271‘7t)
+ (2k+2+z—t)"e MERF2HETOY, (1) dt

- / {(t—a)re ) (gt 0 yo(e) dt

= - s"e Mu(s+rx—2k)ds
U

2k+a+1
- / s"e Mu(s—z—2k)ds
2

k+zx
2k+2—x

—/ s"e Mu(2k+2—x—5) ds
2k+1—z
2k+2+x

+/ s"e My(2k 424z —5) ds}
2k+1+x

0 T
—/ s"e Mu(s+x)ds —l—/ " _)‘Sv(ac—s)ds}
0

—T

]_ 1-z T
= _[/ s"e Mu(s+x) ds+/ meMy(z—s) ds
2 Jo 0

0 2k—xz+1
+ Z/ e Mu(s+xz—2k)ds
k—1Y2k—2

oo 2k+1+z
{ Asy(s—xz—2k) ds
k=0 2k+x

2k+2—x
+/ s"e Mu(2k+2—x—5) ds
2k+1—=x

2k+2+x
—/ s"e N2k 24— s)ds}]
2k+1+x
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Estimating the integrals in the above equality we find
(4.13)

d\"
‘(_ﬁ) AAE=A) ()
1 1—x x 00 2k+1—z
TS
AL L
00 2k+1+x 2k+2—x 2k+2+x N
+ / +/ +/ >}s"e‘ Sds - ||v]|
kzzo < 2k+x 2k+1—x 2k+1+x

_ < n_—A\s _ ’I’L'
= [ e ds ol = el
for A>0,ve X andn=0,1,2,....

Noting f(0) = f(1) = 0 for f € V and differentiating (4.12) in z, we
have

(4.14) (di> (_ %)nA(AZ @) <

for A>0,feVadn=0,1,2,....
From the estimate (4.13) we deduce that

(& -

with arbitrary w > 0. This estimate together with the equality

(a)oraeeg e ()

yields

(4.15) H <%>n(>\2 —A)

for \>w,veXandn=20,1,2,....

<n!A—w) " || forve X and A >w

<w A —w) "o

Differentiating (4.10) in A, n-times and then in x and noting that
w(0) = 0, we have

(4.16) <%> (— %)n(v — A)Lo(2)

n.
< WHUH
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for A\>0,ve X and n=0,1,2,.... Moreover (4.11) implies
(4.17) — ) 402 - ) @) < i)
' X — Antl

for A>0,feVadn=0,1,2,....

A simple computation shows that for A\ > w, the operator (A — .A)~*
exists and equals

A—A) = <A(A2 _A)

Thus by (4.13)—(4.17) we have

-, E) CR) -0 ()
< @+ w )= ) (1 v + gl

for \>w, (f,g) e VxXandn=0,1,2,... . o

VxX
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