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A NEUTRAL FUNCTIONAL DIFFERENTIAL
EQUATION WITH AN UNBOUNDED KERNEL

JANOS TURI AND WOLFGANG DESCH

ABSTRACT. We prove well-posedness of a neutral func-
tional differential equation

d

dt

∫ 0

−∞
g(s)u(t + s) ds = 0,

where g is close to a monotone increasing function h with
h(0) = ∞. We utilize a history space semigroup setting in
an L2-space weighted by e−ωsh(s). The problem considered
here is motivated by a class of singular neutral functional
differential equations arising in aeroelastic modeling.

1. Introduction. Singular integro-differential equations of neutral
type (SNFDEs) have been proposed as input-output models to study
certain fluid-structure interaction problems in aeroelasticity (see, e.g.,
[1, 7] and the references therein). To justify the applicability of these
equations for control design purposes (e.g., active flutter suppression
in airfoils) it is necessary to develop a state space theory for SNFDEs.
For the sake of completeness we mention two characteristics (in terms
of the kernel function g) of the SNFDE appearing in the aeroelastic
control application: i) g is locally integrable but g /∈ L1(−∞, 0); ii) g
has a singularity at 0, but the neutral equation is nonatomic. As
the consequence of properties i) and ii) we have to consider state-
spaces for equations with infinite delay and with nonatomic difference
operator. Furthermore, keeping control applications in mind, it is
desirable to have Hilbert-space structure for the state-space. In order
to accommodate a fairly large class of equations we also try to keep
smoothness assumptions on the kernel g as weak as possible.
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The main contribution of this paper is to achieve the above objectives
by establishing the well-posedness of a large class of SNFDEs with
infinite delay under very nonrestrictive conditions on g on weighted L2-
spaces. We note that our work here can be considered a continuation
and extension of similar studies for SNFDEs with finite delay [3, 8,
10, 11, 12] and SNFDEs with infinite delay with more restrictive
conditions on the kernel function g [2, 9].

2. The well-posedness theorem. We consider the scalar neutral
functional differential equation

(2.1)
d

dt

∫ 0

−∞
g(s)u(t+ s) ds = 0

for t ∈ [0,∞), with the initial function u(t) = φ(t) for t < 0.

We assume that the initial function lies in the state space

L2
h = {φ ∈ L1

loc(−∞, 0] :
∫ 0

−∞
e−ωsh(s)φ2(s) ds <∞}

normed by

||φ||2 =
∫ 0

−∞
e−ωsh(S)φ2(s) ds.

Here ω > 0, and h satisfies

Hypothesis 2.1. h : (−∞, 0) → (0,∞) is nondecreasing with
h(0) = ∞, and ∫ 0

−1

h(s) ds <∞.

h∞ = limt→−∞ h(t) may be zero or positive.

We require the following assumption on g : (−∞, 0) → (−∞,∞):

Hypothesis 2.2. Let G(s) denote the total variation of g on (−∞, s]
and g∞ = limt→−∞ g(t). There exists a constant K > 0 such that, for
each s < 0, G(s) + |g∞| ≤ Kh(s). If dν is a measure on (−∞, 0) such
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that all three measures, dh, dg, and the Lebesgue measure are absolutely
continuous with respect to dν, with Radon-Nikodym derivatives ḣ, ġ and
l̇, then ∫ 0

−∞
eωs (ḣ− ġ)2

hl̇ + ḣ
dν <∞.

Notice that this hypothesis is independent of the particular choice
of dν. In case that h and g are absolutely continuous on compact
subintervals of (−∞, 0) with derivatives h′ and g′, we may pick the
Lebesgue measure for dν, and the last inequality reads

∫ 0

−∞
eωs (h′ − g′)2

h+ h′
ds <∞.

Before we proceed to formulate the well-posedness theorem, we briefly
discuss the type of equations fitting in this framework. In applications
one encounters neutral equations of the form

(2.2)
d

dt

∫ 0

−∞
g(s)u(t+ s) ds = au(t) +

∫ 0

−∞
df(s)u(t+ s).

To see that (2.2) can be reduced to (2.1), we integrate the right hand
side by parts, which yields

d

dt

∫ 0

−∞
(g(s) + f(s) − a− f(0))u(t+ s) ds = 0

which is an equation of the form (2.1). We assume that a weight
function h can be found such that h and g satisfy Hypotheses 2.1 and
2.2. Moreover, a is a real number and f satisfies

Hypothesis 2.3. f is of bounded variation on (−∞, 0] and continu-
ous from the right. Let F (s) denote the total variation of f on (−∞, s],
and f∞ = lims→−∞ f(s). There exists a constant K1 > 0 such that,
for each s < 0, |f∞ − a − f(0)| + F (s) ≤ K1h(s). Moreover, if dν is
chosen such that df is also absolutely continuous with respect to dν and
ḟ is the Radon-Nikodym derivative of f with respect to dν, then

(2.3)
∫ 0

−∞
eωs ḟ2

hl̇ + ḣ
dν <∞.
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(The remark after Hypothesis 2.2 holds as well for Hypothesis 2.3.)

It is then straightforward to check Hypothesis 2.2 for

g1(s) = g(s) + f(s) − a− f(0).

Our assumptions call for a kernel g that need not be monotone, but
is close to some monotone function which will serve as weight function.
They imply in particular that lims→0 g(s) = ∞, as can be inferred
from Lemma 2.1 below. No discrete delays in the derivative of u can be
treated. However, discrete delays of u in the right hand side of (2.2) are
introduced by step discontinuities of f . If f has a discontinuity at s0,
then dν has an atom at s0. To have (2.3) satisfied, we require ḣ(s0) �= 0.
Thus, discrete delays in u are accounted for by step discontinuities in
the weight function.

We treat (2.1) by a history space setting, i.e., we consider the state
x(t) = ut ∈ L2

h defined by ut(s) = u(t+ s). The neutral equation will
then be associated to an abstract Cauchy problem

d

dt
x(t) = Ax(t)

with the operator A defined by

domA =
{
φ ∈ L2

h ∩ W1,1
loc(−∞, 0) :

d

ds
φ ∈ L2

h,

∫ 0

−∞
g(s)

d

ds
φ(s) ds = 0

}

and
Aφ =

d

ds
φ.

Our main result is

Theorem 2.1. The operator A defined above generates a C0-
semigroup S(t) on L2

h. If φ ∈ domA and u is defined by u(s) =
(S(t)φ)(s − t) for some fixed t, then u is the unique solution of (2.1)
with initial function φ. In particular, the definition of u is independent
of t.



A NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 573

The proof is performed by checking that, for sufficiently large γ, A−γ
is a densely defined m-dissipative operator. We start with two technical
preparatory lemmas:

Lemma 2.1. If v is in W1,1
loc(−∞, 0) such that v(0) = 0 and∫ 0

−∞ |v′(s)|h(s) ds <∞, then∫ 0

−∞
v′(s)h(s) ds = −

∫ 0

−∞
v(s)ḣ(s) dν(s).

If w is in W1,1
loc(−∞, 0) such that w(0) = 0 and

∫ 0

−∞ |w′(s)|2e−ωsh(s) ds
<∞, then∫ 0

−∞
w′(s)(g(s) − h(s)) ds = −

∫ 0

−∞
w(s)(ġ(s) − ḣ(s)) dν(s).

Each of the integrals converges absolutely.

Proof. By assumption,∫ 0

−∞
|v′(s)|h(s) ds =

∫ 0

−∞
|v′(s)|

(
h∞ +

∫ s

−∞
ḣ(t) dν(t)

)
ds

converges absolutely so that, by Fubini’s theorem,∫ 0

−∞
v′(S)h(s) ds

= h∞
∫ 0

−∞
v′(s) ds+

∫ 0

−∞
ḣ(t)

∫ 0

t

v′(s) ds dν(t)

= 0 −
∫ 0

−∞
ḣ(t)v(t) dν(t).

The second part of the lemma is proved similarly, once we have checked
absolute convergence of the integral. Now∫ 0

−∞
|w′(s)|

(
|g∞ − h∞| +

∫ s

−∞
|ġ(t) − ḣ(t)| dν(t)

)
ds

≤ (K + 1)
∫ 0

−∞
|w′(s)|h(s) ds

≤ (K+1)
(∫ 0

−∞
|w′(s)|2e−ωsh(s) ds

)1/2(∫ 0

−∞
eωsh(s) ds

)1/2

<∞.
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Lemma 2.2. For some ε ∈ (0,∞], let

M+ = {s ∈ [−ε, 0) : ḣ(s) − 2ġ(s) ≥ 0},
M− = {s ∈ [−ε, 0) : ḣ(s) − 2ġ(s) < 0}.

Then
∫

M+

(ḣ(s) − 2ġ(s))eωs dν(s) <∞

and

∫
M−

(2ġ(s) − ḣ(s))eωs dν(s) = ∞.

In particular, g is not of bounded variation on [−ε, 0).

Proof. Notice, first, that
∫ 0

−∞

(hl̇)2

hl̇ + ḣ
eωs dν ≤

∫ 0

−∞
hl̇eωs dν =

∫ 0

−∞
heωs ds <∞.

Moreover, ∫ 0

−ε

ḣ2

hl̇ + ḣ
eωs dν = ∞,

since otherwise, by Hölder’s inequality,
∫ 0

−ε

hl̇ḣ

hl̇ + ḣ
eωs dν <∞,

and consequently

∞ =
∫ 0

−ε

ḣeωs dν

=
∫ 0

−ε

ḣ2

hl̇ + ḣ
eωs dν

+
∫ 0

−ε

hl̇ḣ

hl̇ + ḣ
eωs dν <∞
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leads to a contradiction.

On M+ we utilize ġ ≤ ḣ/2 and ḣ− ġ ≥ ḣ/2 to estimate

∫
M+

(ḣ− 2ġ)eωs dν

≤ 2
∫

M+

(ḣ− ġ)eωs dν

= 2
∫

M+

(ḣ− ġ)ḣ
hl̇ + ḣ

eωs dν + 2
∫

M+

(ḣ− ġ)hl̇
hl̇ + ḣ

eωs dν

≤ 4
∫

M+

(ḣ− ġ)2

hl̇ + ḣ
eωs dν

+ 2
( ∫

M+

(ḣ− ġ)2

hl̇ + ḣ
eωs dν

)1/2(∫
M+

(hl̇)2

hl̇ + ḣ
eωs dν

)1/2

<∞.

Moreover,

∫
M+

ḣ2

hl̇ + ḣ
eωs dν ≤ 4

∫
M+

(ḣ− ġ)2

hl̇ + ḣ
eωs dν <∞

so that ∫
M−

ḣ2

hl̇ + ḣ
eωs dν = ∞.

On M− we estimate

∫
M−

(2ġ−ḣ)eωs dν

≥
∫

M−

(2ġ − ḣ)ḣ
hl̇ + ḣ

eωs dν

=
∫

M−

ġ2

hl̇ + ḣ
eωs dν −

∫
M−

(ġ − ḣ)2

hl̇ + ḣ
eωs dν

≥ 1
4

∫
M−

ḣ2

hl̇ + ḣ
eωs dν −

∫
M−

(ġ − ḣ)2

hl̇ + ḣ
eωs dν = ∞.
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To see that g is not of bounded variation, take some finite ε > 0 and
estimate ∫

M−
ġ dν ≥ 1

2
e−ωε

∫
M−

(2ġ − ḣ)eωs dν = ∞.

Thus the lemma is proved.

Now we prove successively the required properties of A:

Lemma 2.3. The definition of domA above makes sense and
specifies a dense subspace of L2

h.

Proof. We first have to check that
∫ 0

−∞ g(s)(d/ds)φ(s) ds makes sense
if φ ∈ L2

h ∩ W1,1
loc with φ′ = (d/ds)φ ∈ L2

h. By Hölder’s inequality, we
obtain

∫ 0

−∞
|g(s)φ′(s)| ds ≤

∫ 0

−∞

g(s)2

h(s)
eωs ds

∫ 0

−∞
φ(s)2h(s)e−ωs ds <∞.

As L2
h ∩W1,1

loc contains the test functions on (−∞, 0), it is dense in L2
h.

Assume that the condition

G(φ) =
∫ 0

−∞
g(s)φ′(s) ds = 0

cuts out a nondense subspace. Then the functional G has to be
continuous on L2

h which implies that its restriction to C([−T, 0] is
also continuous, hence g is of bounded variation on [−T, 0]. This is
impossible because of Lemma 2.2.

Lemma 2.4. For sufficiently large γ > 0, the operator A − γ is
dissipative.

Proof. For u ∈ domA we have to check

〈u,Au− γu〉 ≤ 0.
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For shorthand we define ψ(s) = u(s) − eωsu(0). Then

〈u,Au− γu〉 =
∫ 0

−∞
u(s)(u′(s) − γu(s))e−ωsh(s) ds

=
∫ 0

−∞
u′(s)ψ(s)e−ωsh(s) ds+ u(0)

∫ 0

−∞
u′(s)g(s) ds

+ u(0)
∫ 0

−∞
u′(s)(h(s)− g(s)) ds

− γ

∫ 0

−∞
ψ2(s)e−ωsh(s) ds− 2γu(0)

∫ 0

−∞
ψ(s)h(s) ds

− γu(0)2
∫ 0

−∞
eωsh(s) ds

=
∫ 0

−∞
(ψ′(s)ψ(s) − ω

2
ψ2(s))e−ωsh(s) ds

+
(
ω

2
− γ

) ∫ 0

−∞
ψ2(s)e−ωsh(s) ds

+ (ω − 2γ)u(0)
∫ 0

−∞
ψ(s)h(s) ds

+ u(0)
∫ 0

−∞
ψ′(s)(h(s)− g(s)) ds

+ (ω−γ)u(0)2
∫ 0

−∞
eωsh(s) ds− ωu(0)2

∫ 0

−∞
eωsg(s) ds.

Using Lemma 2.1, we proceed,

〈u,Au− γu〉 =
∫ 0

−∞
{e−ωsψ2(s)

[
− ḣ(s)

2
− γl̇(s)h(s) +

ω

2
l̇(s)h(s)

]

+ u(0)ψ(s)[ġ(s) − ḣ(s) − (2γ − ω)l̇(s)h(s)]

+ u(0)2eωs l̇(s)[ωh(s) − γh(s) − ωg(s)]} dν(s).
The integrand is a quadratic function of ψ:

a(s)ψ2(s) + b(s)ψ(s) + c(s)

with negative a(s). By setting its derivative with respect to ψ equal to
zero, we obtain an upper bound

a(s)ψ2(s) + b(s)ψ(s) + c(s) ≤ − b2(s)
4a(s)

+ c.
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Putting
D(s) = ḣ(s) + (2γ − ω)l̇(s)h(s),

we obtain

〈u,Au− γu〉 ≥ u(0)2

2

∫ 0

−∞

eωs

D(s)
(ġ(s) − ḣ(s) − (2γ − ω)l̇(s)h(s))2 ds

+ u(0)2
∫ 0

−∞
eωs l̇(s)(ωh(s) − γh(s) − ωg(s)) ds

=
u(0)2

2

∫ 0

−∞
eωs(ωh(s) − 2ωg(s)) ds

+
u(0)2

2

∫ 0

−∞

eωs

D(s)
(ġ(s) − ḣ(s))2 dν(s)

+
u(0)2

2

∫ 0

−∞

eωs

D(s)
(2γ−ω)h(s)l̇(s)(ḣ(s)−g2ġ(s)) dν(s).

The first integral is bounded by Hypotheses 2.1 and 2.2, the second
integral is bounded by Hypothesis 2.2. We show that the third integral
converges to −∞ as γ → ∞. This implies that, for sufficiently large γ,
the whole sum is negative.

For this purpose, we put

M− = {s ∈ (−∞, 0) : ḣ(s) − 2ġ(s) < 0},

and let M+ be its complement. On M+ the integrand is nonnegative
and bounded by ḣ(s) − 2ġ(s), so that

∫
M+

eωs γh(s)l̇(s)(ḣ(s) − 2ġ(s))
ḣ(s) + 2γh(s)l̇(s) − ωh(s)l̇(s)

dν(s) ≤
∫

M+

(ḣ(s)−2ġ(s)) dν(s),

which is finite by Lemma 2.2. On M− the integrand is negative
and converges monotonically to ḣ(s) − 2ġ(s) so that, by monotone
convergence,

∫
M−

eωs γh(s)l̇(s)(ḣ(s) − 2ġ(s))
ḣ(s)+2γh(S)l̇(s)−ωh(s)l̇(s)

dν(s) →
∫

M−
(ḣ(s) − 2ġ(s)) dν(s),
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which is −∞ by Lemma 2.2. This finishes the proof of Lemma 2.4.

Lemma 2.5. For sufficiently large γ, the range of γ−A is the whole
space L2

h.

Proof. Pick v ∈ L2
h. We have to show that there is some u ∈ domA

with
γu−Au = γu− u′ = v.

Evidently, once u(0) = u0 is known, the solution must be

u(s) = eγsu0 +
∫ 0

s

eγ(s−t)v(t) dt = u1(s) + u2(s).

We start out proving that any u of this form is in fact an element of
L2

h. This is clear for the first part, since∫ 0

−∞
e2γs−ωsh(s) ds <∞

for γ > ω. For the second part we pick some w ∈ L2
h and prove an

estimate ∫ 0

−∞
e−ωsh(s)|w(s)u2(s)| ds < C||w||.

Now∫ 0

−∞
e−ωsh(s)|w(s)u2(s)| ds

≤
∫ 0

−∞
e−ωsh(s)|w(s)|

∫ 0

s

eγt|v(s− t)| dt ds

≤
∫ 0

−∞

√
h(s)e−(ω/2)s|w(s)|

∫ 0

s

e(γ−ω/2)t
√
h(s− t)e−(ω/2)(s−t)

|v(s− t)| dt ds

=
∫ 0

−∞
e(γ−ω/2)t

∫ t

−∞

√
h(s)e−(ω/2)s|w(s)|

√
h(s− t)e−(ω/2)(s−t)

|v(s− t)| ds dt

≤
∫ 0

−∞
e(γ−ω/2)t||w|| ||v|| dt =

||w|| ||v||
γ − ω/2

.
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As u satisfies a differential equation and v ∈ L2
h, we can now easily

infer that u ∈ W1,1
loc and u′ ∈ L2

h. In order to have u in domA, we only
have to determine u0 so that

γu0

∫ 0

−∞
g(s)eγs ds = −

∫ 0

−∞
g(s)u′2(s) ds.

This is possible for arbitrarily large γ, since g �= 0 and u2 is independent
of u0. Thus, Lemma 2.5 is proved.

The last three lemmas guarantee that A − γ is a densely defined,
m-dissipative operator on L2

h, hence A generates a C0-semigroup S(t)
on this space. For a general theory of C0-semigroups, see, e.g., the
monograph [5]. We have finally to give the relation of the semigroup
to the functional differential equation.

Lemma 2.6. Let S(t) be the semigroup generated by A on L2
h and

φ ∈ domA. For t ≥ 0 and s ≤ t, define the continuous function
u(s) = (S(t)φ(s− t)). This definition is independent of t, i.e., if u1 is
defined by S(t1) and u2 is defined by S(t2), then u1(s) = u2(s) for all
s ≤ min(t1, t2). Moreover, u is the unique solution of (2.1) satisfying
u(s) = φ(s) for s < 0.

Proof. As history space settings for functional differential equations
are quite common (e.g., [4,6]), we restrict ourselves to a sketch of the
proof. Being a subspace of W1,1

loc , the domain of A consists of continuous
functions, so that the definition of u holds in fact pointwise and yields
a continuous function. The independence of the definition on t follows
from the fact that

(AS(t)φ)(s) =
d

ds
φ(s) a.e. .

The functional

Hφ =
∫ 0

−∞
g(s)φ(s) ds

is a continuous linear functional on L2
h.

d

dt

∫ 0

−∞
g(s)u(t+ s) ds =

d

dt
H(S(t)φ) = H(AS(t)φ) = 0,
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since by definition of domA,

H(Aψ) =
∫ 0

−∞
g(s)

d

ds
ψ(s) ds = 0

for each ψ ∈ domA. For uniqueness, we may assume that the initial
function φ = 0. If there is any nontrivial solution to (2.1), we may
integrate it to get smoother solutions. So we may assume that there is a
nontrivial solution u, such that x(t)(s) = u(t+s) defines a continuously
differentiable function x : [0,∞) → domA. x is then a solution of the
abstract Cauchy problem x′(t) = Ax(t) with x(0) = 0, hence x = 0
and u = 0.
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