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A MODIFIED DISCRETE SPECTRAL COLLOCATION
METHOD FOR FIRST KIND INTEGRAL EQUATIONS
WITH LOGARITHMIC KERNEL

J. SARANEN

ABSTRACT. Here we propose a modification of the dis-
crete Galerkin method considered by Atkinson for Symm’s
equation with the logarithmic kernel. Our method has the
computational complexity of the trigonometric collocation but
it still retains the stability and the convergence properties of
the original trigonometric Galerkin method. In particular, the
method can be applied with any data having arbitrarily bad
non-smoothness. Numerical experiments confirm our results.

1. Introduction. The essence of this paper consists of a simple
remark on the discrete Galerkin method discussed by Atkinson in
[1]. Atkinson considers a fully discrete approximation of the spectral
Galerkin method [3] for Symm’s integral equation with the logarithmic
kernel. The method in [1] can also be viewed as a further discretization
of the trigonometric collocation method. If the solution is smooth, this
scheme retains the excellent convergenge properties of the trigonometric
Galerkin method, but yields a low order convergence, or in the worst
case is not at all applicable, if the solution (or equivalently the data) is
not smooth. To be more precise, the minimal smoothness requirement
is the continuity of the given right-hand side function.

Here we propose a slight modification of Atkinson’s discretization.
In our approach the given data is replaced by its L2-projection onto
the subspace of the trigonometric functions. We will show that this
modification preserves all the convergence properties of the original
trigonometric Galerkin method. In particular, it has optimal order
convergence in the full range of the related Sobolev spaces. Moreover,
the coefficient matrix remains same as in Atkinson’s method. Thus,
if the Fourier coefficients of the right-hand side are easy to calculate,
the computational cost is very close to that of [1]. By using the well-
known cosine transformation [6, 7] our modification carries also over
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548 J. SARANEN

to the case of an open arc, as it will be explained in Section 4. We
have conducted several numerical experiments confirming our results.
Some of those experiments are shown in Section 5. It is obvious that
analogous modifications as presented here can be adapted in other
situations as well; for a family of quadrature methods see the work
[5] of Saranen and Sloan.

2. Preliminaries. Consider Symm’s integral equation
1
(2.1) —— [ loglz —ylur(y)dsy = fr(z), zel
r

on a smooth closed Jordan curve I' ¢ R%. We fix the 27-periodic
parametric representation 6 — x(6) : R — I' of the curve such that
|2'(0)] > 0, 8 € R. With the notations

u(®) = up(z(0)(0)
22) {ﬂm: fo(2(6))

equation (2.1) reads

(2.3 (Lu)(6) = f(6), 6<R
where
(24) (L)(6) =~ [ oga(6) - o(0) u(0)do

—T

From now on we require the equation (2.3) be uniquely solvable (in
appropriate function spaces). This property is guaranteed assuming
that the capacity or the conformal radius ¢(I") of I' differs from one.
Assuming ¢(T') # 1 the operator L defines an isomorphism L : H® —
H*t! s € R between the Sobolev spaces

(25)  H = {ul lulls == [a(O)® + D 1k [ak)*]? < oo}

k0
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of the 27-periodic distributions u on R. Here u has the Fourier series
representation

1

(2.6) w(h) = Jor Z a(k)e™, a(k) = \/% /u(g)e—ikede_
keZ I

Next we recall the discrete Galerkin method considered by Atkinson
in [1]. Let

T

(2.7) (mwz/@@amw

—T

be the duality between the spaces H®, H* extending the H°-inner
product and let T" be the space of 27r-periodic trigonometric functions
Uh,

(2.8) up(0) = Z cre™ e, € C,
keA,

where A, = {k € Z| —n/2 < k < n/2}, h = 2n/n, n € N. The
operator L is decomposed as

(2.9) L=A+B,

where the main part

™

@10)  (Aw(6) =~ [ logla,(6) - a,()u(o)do,

z,(0) = pe?, p=e1/2 has the Fourier representation
1 (k) ire

2.11 Au)(0) = e’

1) a0 = =3

with |k| = max{|k|,1}, and where

(2.12) (Bu)(0) = / b6, &)u()do

—T
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is an integral operator having the smooth kernel

1| O =a(0) o
B = log 2 0)=2,(3) |’ 0 # ¢ (mod 2r)
(213)  b(0.0) = o
~Llog 7| 0=¢ (mod2m).

The operator B defines a continuous mapping B : H" — H?® for
all r,s € R. The discrete Galerkin method of [1] consists of a full
discretization of the trigonometric Galerkin problem

(2.14) up € T" : (Lup,v) = (f,v), veT"

such that the inner product (-,-) is replaced by the discrete inner
product

(2.15) (u,v)p :=h Z u(;)v(0;),

JEAR

0; = jh, and the operator L is replaced by the operator Ly,

(2.16) (Lpu)(0) = (Au)(0) + (Buu)(0),

with

(2.17) (Buu)(0) :=h > b(0,0;)u(0;).
JEAR

Thus the method of Atkinson [1] becomes

(2.18) up € T" - (Lpun,v)n = (f,0)n, veTh

which is equivalent to the trigonometric collocation problem

(2.19) up, € T" : (Lpuy)(05) = £(0;), j € An.

Due to the Fourier representation (2.11) it is inexpensive to set up
the matrix equation for the unknowns ¢ of uy in (2.8). Moreover, if

the function w is smooth, the convergence u, — wu is of high order;
even exponential if w is analytic. This fact has also been observed by
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numerical experiments [1]. However, the method (2.19) uses pointwise
values of the function f at the meshpoints 6;. For the error analysis of
(2.19) it is natural to assume that f is continuous; in fact the stronger
condition f € C* is imposed in [1].

In this paper we propose and analyze the method

(2.20) up € T" - (Lpyup,v)n = (f,v), veTh,

which can be used for any given data f being a 27-periodic distribution.
Moreover, from the computational point of view the method (2.20)
differs just slightly from (2.18); the left-hand side matrices coincide,
only the right-hand side vector has to be calculated in a different
manner. An equivalent form of (2.20), related to (2.19), reads

(2.21) Up € Th (Lhuh)(Qj) = (th)(HJ), j e A,
where P, f is the (extended) L?-projection
1 A )
2.22 Puf)(0) = —— ke)e'*?
(222) (Puf)(®) mkgnf( Je

of f onto the trigonometric subspace T". In the next section we
will show that the method (2.20) is stable and has optimal order
convergence in the all Sobolev spaces H®, s € R.

3. Analysis. To analyze (2.20) let Q : H* — T", s > 1/2 be the
trigonometric interpolation operator defined by the uniquely solvable
equations

(3.1) (Qnu)(0;) = u(0;), j € An.

First we observe that the equations (2.20) can be given in an equivalent
form as

(3.2) up € Th : Qthuh = P, Lu,
since for any solution wy of (2.20) holds

(3.3) (Lpup,v)n = (Lu,v) = (PyLu,v) = (P, Lu,v)p, v € T"
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which coincides with (3.2). In the last equality above we have used the
simple fact that

(34) (U), 1)) = (wa v)h

for all w,v € T". In the further analysis we use some basic results
concerning the accuracy of the projections @y, and Pj;

Lemma 1. The interpolation operator Qy, satisfies
(3.5) lu — Quulle < ch*™*|lulls,

0<t<s, s>1/2.

Lemma 2. The L?-projection P, satisfies
(3.6) [ — Prully < ch®*lulls,

t,se R, t<s.

For (3.5) see [4, Lemma 2.1]. The proof of (3.6) is even more
elementary. Moreover, we need the following result of Saranen and
Sloan.

Lemma 3. ([5, Lemma 5, Appendix]). Let s,t € R and 7 > 0. Then
there exists a constant ¢ > 0 such that

(3.7) (B = Bn)unll: < chT[[unlls,

for all uy, € T".

Now we are able to show the stability of our collocation-Galerkin
method. In the proof we use the inverse estimate

(3.8) lunlls < cht=*|luplle, up € T

which is valid for all ¢t < s.
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Proposition 3.1. The problem (2.20) has for any uw € H°, s€ R a
unique solution uy, € T for 0 < h < hy, if ho is small enough (hg is
independent on u and s). Moreover, there holds the stability estimate

(3.9) lurlls < c|lulls, s€R.

Proof. Tt is enough to show the estimate (3.9) assuming that uy € T"
is a solution of (2.20). Then the exzistence of a unique solution follows,
since (2.20) reduces to solution of a n x n system of equations, and by
(3.9) any solution wj, with zero right-hand side vector vanishes. First
we use the estimate

(3.10) lunlls < cllLunls+1,
with the decompositions

(3.11) QnLup = PpLu+ Qh(B - Bh)uh,
(312) (I - Qh)Luh = (I — Qh)Buh

which follow from (3.2) and (2.9), (2.11). By Lemma 2
(3.13) [1PnLulss1 < el Lufls41 < effulls
The inverse estimate (3.8) together with Lemma 1 and Lemma 3 yields

(3.14)
|Qn(B — Bi)un|ls+1 < ch™™O9Qp(B — By)us|x
< ch™ >O)|(B = Bp)uplh
< ChT”uh”s

where 7 > 0. Moreover,
(3.15) |(I — Qn)Bunlls+1 < chl|Bup||max(1,s+2) < chllun||s.

Combining (3.10)—(3.15) we obtain the required estimate (3.9) if h is
small enough. a

Next we consider the convergence.
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Theorem 3.1. For the solution uy of (2.20) holds the asymptotic
error estimate

(3.16) lu—unlle < ch*~|lulls

for allt <s.
Proof. We start with

(3.17) [ = unlle < el L(w = up)lle4a
and decompose L(u — up) as
(3.18) L(u—wup) = PoL(u—up) + (I — Pp)L(u — up).

Now, the equation (2.20) and the property QnAuy = PyAu, = Auy
give

(3.19)
PrnL(u—wup) = (Qn—1)Brup — (Pn—1I)Brup, + Pp(Bp—B)up,
(3.20)
(I - Ph)L(u - uh) = (I - Ph)LU, - (I - Ph)Buh.

Lemma 3 together with the mapping property of B implies

(3.21) | Brun|» < cllunlls, un€T"

for all r,s € R. Taking ¢t +1 > 0 and choosing r such that » +1 >
1/2, r > s we thus obtain by Lemma 1

(322)  [[(Qn = D)Brunlles1 < ch” || Bhunllrsr < ch®"[luplls.
If t +1 <0, we correspondingly get

(3.23)
1(Qn — I)Brunl|t+1 < [[(Qn — I)Brunllo < ch”||Brugl|»
< ch®Jup||s

where r is chosen such that r > 1/2, r > s — ¢. Hence the estimate

(3.24) 1(Qn = ) Brunlle+1 < ch™lunlls
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holds for all ¢, s. Moreover, by Lemma 2, Lemma 3

(3.25)
1(Ph — I)Buun|le41 < ch® | Byun |41 < ch®luns,

(3.26)
|1 Pn(Bh — B)unllir1 < ch®*|up]|s.

Combining (3.19), (3.24)—(3.26) we get
(3.27) [P L(u = un)ller1 < ch™ ™ [lunls.
Finally, by Lemma 2

(3.28)
I(1 = Pr)Lulleyr < ch® || Lullsa < ch*~lulls,

(3.29)
I(I = Pr)Buple41 < ch® 7| Bup||s41 < b [lup]|s.

From (3.17), (3.18) and (3.20) estimates (3.27)—(3.29) yield
(3.30) lu = unlle < ch*~*(lulls + lunlls), t<s

which together with the stability result (3.9) proves our assertion (3.16).
o

In the above analysis we have assumed that the Fourier coefficients
f (k), k € A, have been determined exactly. Since this is not always
possible, we shortly discuss the case where the approximations f(k)
of f (k) are used. We assume that these approximations satisfy the
accuracy

(3.31) (k) = f(k)] < ch®[k?, k€ A,

with the numbers o > 1/2, 3 € R. Define P, f € T",

(3.32) (Paf)(6) == w% S F)e.

ke,

The computed solution @, € T" satisfies

(3.33) QnLnin = Prf,
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which together with (3.2) yields

(3.34) QunLn(up, — i) = Pof — Pof = Po,LL™Y(Pyf — Puf).
By the stability (3.9) we thus obtain

(335)  llun — anlle < CllL7H(Puf = Puf)lle < cllPuf = Pufllesr-

Now we deduce from (3.31)

1Pnf = Pufll®s = > |f(k) = F(k)[* |k~
(3.36) =

< C(f)h%‘il.
Using (3.36) and the inverse estimates (3.8) we derive
(3.37) | Py f — Pufllr < c(f)no—1/2-max(5+7,0)

for any r» € R. Combining (3.35), (3.37) with the error estimate (3.16)
we have

(338) ”u _ ﬁth <c (hs—t”uHS + C(f)ha—1/2—max(ﬂ+t+1,0)) )

In the last section we will have an example where o can chosen to be
arbitrarily large. For such a case (3.38) still yields the optimal order
convergence

(3.39) llu— |l = O(R™Y),

for u € H".

Let us finally compare the result (3.16) with the convergence of the
trigonometric collocation solution. Slightly modifying the analysis of
Theorem 3.1 one obtains

Theorem 3.2. Assume u € H®, s > —1/2. Then, for sufficiently
small h there exists a unique solution up of (2.19), and the asymptotic
error estimate

(3.40) lu—unlle < eh*|lulls
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1s valid for —1 <t <s.

4. Open arc. Here we consider the case of an open Jordan
arc I'. Assume that I' has the infinitely differentiable representation
t — x(t), —1 <t < 1 such that |2/(¢)] > 0 and that the endpoints
of I don’t coincide, i.e. x(—1) # x(1). Using the cosine substitution
t =cosf, 0 <6 < and defining a : [0,7] — T by a(f) = z(cosf), we
obtain from (2.1)

s

@) -1 [w(e)logla(®) - a@)ldp = (6), 06 <
0
where
w(#) := ur(a(f))|x’'(cos )| |sin b,
42 L) = @

Since these functions can be understood as 27-periodic even functions
on R, equation (4.1) becomes

(43)  (Low)(0) = —5- / o) logla(6)—a(e)ldp = g(6), <R

where L. is decomposed as L. = A, + B, with
(4.4)

™

(Acw)(9) == —% /w(gp) log[2e_1| cos § — cos p|]dyp,

s

(Bow)(0) = / w()be(6, 9)dip,

—T

where the kernel

1 _
g |C D7 |y (mod 2m)
(46) b(0g)={ 27 |2 cosOcosy

——log ’E -2/(cos )|, 0 =—p,p (mod 27)
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is a smooth function on R x R, and is 2m-periodic with respect to both
variables.

Now the equation (4.3) will be considered in the Sobolev spaces H?
of 2m-periodic even functions on R;

(4.7) HE = {w e H*| ©(—k) = @(k), k € Z}.

Function w € H} has also the cosine expansion

(4.8) w(®) = /2 F@(O) +3 (k) cos kG] ,

m |2
k=1
_ 2 [
(4.9) w(k) =1/= [ w(0)coskbdb
™
0

and the norm is given by

o 1/2
(4.10) [wlls = <|13(0)2 +y k|25|@(k)|2) :
k=1

Since the capacity of I is assumed to be different from one, the operator
Le : HS — HT is an isomorphism for all s € R, [7]. Moreover, the
operator A. has the cosine series representation

(4.11) (Aow)(8) = \/g B@(O) +3 @](j) cos ké)}
k=1

and B, : H] — H is continuous for all , s € R.

For the numerical solution of the equation (4.1) we proceed quite
analogously with the treatment of a closed curve. However, since the
functions w and g are even functions, it is natural to impose the same
condition also on the approximate solution. For this purpose we assume
that n = 2m + 1 is an odd integer. Then we have the following
properties. The set A, = {k € Z| —m < k < m} and the mesh
{0;] j € An} = {jh] —m < j < m} are symmetric with respect to
the origin. This implies that the interpolation and the L2-projection of
even functions are trigonometric even functions. More precisely, letting

(4.12) Teh = {wh S Th‘ wh(e) =wp(—0), 6 € R}
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be the space of the trigonometric even functions, we have Quw € T,

if we HS, s> 1/2and P,w € T" for w € H?, s € R. Note that the
space T" has only m + 1 free parameters in contrast to the full space
T" with the dimension n = 2m + 1. The functions wy, in T are given
by the pure cosine representation,

m
(4.13) wp(0) = Z/ apcoskl, ai € C,
k=0

where the notation Y means that the first term of the sum is to be
halved.

Now we define the discretized operator L. ; as
(4.14) Lepw=Acw+ Bepw, weH,, s>1/2
with

(Be,hyw)(0) = h Z be(6,6;)w(b;)

JEA

(4.15) m
=20 be(0,0;)w(6;).

Analogously to (2.18) and (2.20) we consider the discretized methods
for (4.1);

(4.16) wy € T : (Lepwn, v)n = (g,0)n, v eTY,
(4.17) wy, € TP : (Lo pwp,v)n = (g,v), v €T

For functions w,v € HS, s > 1/2 the discrete inner product (w,v)p
takes the form

(4.18) (w,o)n =h S w()o(@;) = 21'S " w(8;)0(6,).
=0

JEAR

By the unique solvability of the cosine interpolation in 7/ at the points
{0;}5", we find that (4.16) is equivalent to

(4.19) wy, € T 2 (Lepwn)(0;) = g(0;), 0<j<m,
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and (4.17) is equivalent to
(4.20) wp, € TP 2 (Leywn)(0;) = (Prg)(0;), 0<j <m.

Thus, in these problems we have m + 1 equations for the unknowns
ar, 0 < k < m of the representation (4.13). Now, Lemmas 1-3 of
Section 3 are applicable for the analysis of problems (4.19) and (4.20);
especially (3.7) holds when B, By, are replaced by B, B., and T"
replaces T". Repeating the analysis of Section 3, we obtain

Theorem 4.1. For any w € HE, s € R the problem (4.20) has a
unique solution wy, € T" for 0 < h < hg, if ho is small enough, and
there holds the asymptotic error estimate

(4.21) lw = whle < ch>"|lwl]|s

for allt < s.

Theorem 4.2. Assume w € HE, s > —1/2. Then, for sufficiently
small h, there exists a unique solution wy, € T of (4.19) with the
estimate

(4.22) [w —wale < ch®~*wls,

1<t <s.

5. Examples. In this section we apply our results to solution of the
Dirichlet type boundary value problem

AP=0 inQ,
(5.1) {

‘I):fr OHF:aQ,

where Q C R? is a smooth bounded domain. Assuming that the
conformal radius of I" differs from 1 we can represent the solution ® by
the single layer representation

1
(5.2) O(x) = — /log |z — ylur(y)dsy, =z €
r
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which leads to solution of Symm'’s integral equation (2.1). Using the
previous notations (2.2) we obtain

™

(53) Ba) =~ [ loglo ~ alp)lu(e)ds.

—T
Having found, from (2.20), the approximation uj, € T" of the density
u, we define the corresponding approximation

T

(5.4 B(o) = = [ Toglo ~ ale)lun(e)d

—T

of the potential. Finally, we calculate the numerical approximation
Pl (x) of @4 (x) by using the composite trapezoidal rule such that

(55) @) = 1 3" log e — (0w (6).
JEA,

We estimate the asymptotic accuracy of @Z(m) as an approximation of
®(z) as follows. Let u € H® be the solution of (2.3) for some fixed
index s € R. First we have by Theorem 3.2

(5.6)

T

9(0) = 00(0)] = | - [ tomle — a(e)l(un(ie) ~ u()ie

—T

< cllu = unlle < b lulls

for t € R, t < s. Secondly, from [5, Lemma 4 in Appendix] and (3.9)
follows

(5.7) |n(w) — @} ()| < A7 ||unlls < chTulls

for any 7 > 0. Since t < s in (5.6) can be chosen freely, we obtain by
(5.6), (5.7)

(5.8) |@(2) — @h(2)] < chTluls
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for all 7 > 0. Thus, the asymptotic accurary of the numerical potential
@Z(a:) is of an arbitrary high order in powers of h, independent of the
smoothness of the function wu.

We have carried out several numerical experiments testing the con-
vergence of the potential outside of the boundary. Below we present
the computed results in three different cases, where the given bound-
ary function is piecewise continuous, Dirac’s distribution at a boundary
point, or has a logarithmic singularity. All these experiments confirm
the excellent convergence obtained in this paper. In the computations
we have used an even number n of the discretization points 6;, j € A,
such that n = 4,8,16,32,64,128,256. The calculations were carried
out by using the double precision accuracy. In the most experiments,
it turned out that the maximal accuracy limited by the double precision
is achieved already with relative small values of n, such as n = 128 or
even 64. It was also observed that having reached this limit, the com-
puted solution begins to lose accuracy when the number n increases.
In the following examples we give the absolute error |®(x) — ®(z)| of
the potential and the experimental convergence rate

(5.9) ecr = In ('q;(( z) = > /ln2

Example 1. Consider the case where the given boundary function
fr is piecewise constant. The numerical experiments are shown for the
circle I' = {z : |z| = 2}, and the function f(6) is defined by

0, —m<6<0
1, 0<6<m.

(5.10) 1o ={

The corresponding potential ®(z) (also known as the harmonic measure
of the arc {x € I : Imx > 0}) has the representation

(5.11) O(x) = % + %[arg@ +a)—arg(2—x)], x€Q

where the argument function is chosen such that |arg(2+x)| < 7/2, z €
Q. The convergence of the potential was tested at several interior
points z € . Below, in Table 1, we illustrate the results for the
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choices 1 = (0,1), z2 = (1,1) and 3 = (1.8,0.1) giving there
the absolute errors |6, ®(x;)| and the experimental convergence rates.
It is clearly seen that the experimental convergence rate increases
unboundedly until the double precision accuracy is achieved. Moreover,
the convergence becomes slower when = approaches a discontinuity at
the boundary.

In Table 2 we give the corresponding results when applying the
trigonometric collocation with f(0) = f(7w) = 1/2 at the discontinuity
points. There are no convergence results available for this method
(with a discontinuous right-hand side). However, we observe quadratic
convergence. The same phenomenon was observed when applying the
collocation at the midpoints of the mesh.

TABLE 1. Piecewise continuous data. Collocation-Galerkin.
Circle, r = 2. Absolute error. Experimental convergence rate.
Points 1 = (0,1), z2 =(1,1), z3=(1.8,0.1).

n [65,P(z1)] ecr |65, @ (z2)| ecr |65, ®(z3)] ecr
4 0.429-1071 0.560 - 10~1 0.311
8 0.690 1072 2.64 0.385-10"1 0.54 0.162 0.94
16 0.230-10—3 491 0.531-1072 2.86 0.941-10"' 0.76

32 0.467-10"6 894 0.176-103 492 0.399-107! 1.24
64 0.364-10"11  16.97 0.354-10°6 8.96 0.416-10~2 3.26
128 0.634-10~16 1581 0.274-10~'' 16.92 0.748-10"* 5.80

TABLE 2. Piecewise continuous data. Collocation.
Circle, r = 2. Absolute error. Experimental convergence rate.
Points 1 = (0,1), z2 =(1,1), z3 =(1.8,0.1).

n [6p®(21)| ecr [6p®(22)] ecr [0n®(x3)| ecr
4 0.321-10"1 0.111 0.314
8 0.784-1072  2.04 0.144-10"% 294  0.168 0.91
16 0.195-1072 201 0.422-1072 1.77 0.104 0.69

32 0.490-10—3 1.99  0.106-102 2.00 0.550-10"1! 0.92
64 0.123-1073  2.00 0.265-10"3 1.99 0.168-10"! 1.71
128  0.307-10~% 200 0.664-10~* 2.00 0.391-10"2  2.10
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Example 2. Here we consider numerical determination of the
Poisson kernel P(z,y), x € , y € T, which for all y € T is a harmonic
function on £ such that for given f on ' (f continuous) the function

(.12 o) = [ P fw)ds,
r

satisfies the boundary value problem (5.1). In the case of the disc
Q = {z| |z| < r} the Poisson kernel is given by

r? — |z|?

5.13 P = —.
(5.13) (z,9) 2rr|x — y|?

For more general domains the existence and construction of the kernel
P(x,y) can be derived, e.g., by means of the conformal mappings.
Formally, taking the Dirac distribution f = d,,, 2o € T in (5.12)
we find that the corresponding potential ®(x) = P(z,z() satisfies the
boundary value problem

(5.14) {AxP(:v, 2) =0 inQ

P(z,z9)|r =0z, onT.

Our trigonometric collocation-Galerkin method provides an effective
solution of (5.14). Representing the solution as

1
(5.15) P(x,x9) = - /Unmo (y) In|z —ylds,, z€Q
r

the density function ur ., satisfies

1
(5.16) —= /ur,mo (y)In|z — y|ds, = 0zy(x), x€T.
T
r

For the computations we have chosen the function f(6) in (2.4) to be
the 2m-periodic Dirac’s distribution corresponding the point 68y = 0.
Then the potential is, ®(z) = P(z,z¢)|z'(60)|,2z0 = x(fp). In the
Table 3 we give the absolute errors and the experimental convergence
rates at the points z; = (0,1), 2o = (1,1), 23 = (1.8,0.1) for the
circle with the radius » = 2. The singularity is located at the point
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xg = (2,0). Similar phenomena occur as in the previous example. In
particular the accuracy decreases and the convergence slows down when
the singularity is approached.

Example 3. In this example the right-hand side function f(6) in
(2.3) has a logarithmic singularity at the point 8y = 0, such that

(5.17) £(6) = —% cos - In |(6) — 2(6o)|.

In the case of a circle the Fourier coefficients of f(6) can be given
explicitly, but for the general smooth curves we need to use numerical
integration. To compute the approximations f(k) of f(k) we proceed
as follows. Abbreviating

(5.18) 9(0) = = In2(0) — 2(6o)|
we have
(519) FR) = 50k = 1)+ 40k + 1),

Now, by using (2.11)—(2.13) we obtain
(5.20)

§k) = \/%/ (— ~in $(9)—$(90)|)6ik9d0

1 /1 . 17 i
:E/(—;lnxp(e)—xp(%))e ked%—ﬁ/b(e)e k6 g

1
= ——+blk

with the smooth function b(6) := b(6,60y). We determine the approxi-
mation f(k) using (5.19), (5.20) such that the Fourier coefficient b(k)
is replaced by the composite trapezoidal approximation b(k);

(5.21) b(k) == g > b(0;)e .

JEAR
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It is easy to see that the approximation f (k) satisfies the estimate
(3.31) with 8 = 0 for any o > 0. Hence we obtain the optimal order
convergence (3.39) for the boundary and thus the estimate

(5.22) [B(x) — B ()] < b,

¢ = c(u,7,z), for any 7 > 0. Here the approximation &)Z(x) is
determined by the formula (5.5) replacing us(6;) by @ (6;).

The computed results are shown in the Table 4 for the ellipse I' =
{z(0) = (6cosh,2sin0)} at the points z; = (—5,0), 2 = (0,1) and
z3 = (5,0). Now the exact potential is not known. Therefore we have
replaced the value ®(z;) by the value ®/(z;), n = 256, in calculation
of the absolute error |0, ®(x;)| and the experimental convergence rate.

TABLE 3. Dirac’s distribution. Circle, » = 2.
Absolute error. Experimental convergence rate.
Points 1 = (0,1), z2 =(1,1), z3=(1.8,0.1).

n [6p®(21)] ecr [6p®(x2)| ecr [0n®(x3)] ecr
4 0134 0.885 13.18
8 0.136-10"! 3.30  0.159 247  9.62 0.45
16 0.534-1073 4.67 0.201-10"" 2.98  5.52 0.80
32 0.113-107° 8.89  0.802-1073 4.65 1.93 1.52
64 0.890-10—11 16.94 0.173-10~° 8.85  0.252 2.94

128 0.347-1012 470 0.135-10710 16.97  0.523-1072  5.59
256  0.413-10~12 -0.251 0.158-10"1!  3.09 0.343-10"° 10.57

TABLE 4. Logarithmic singularity. Ellipse, half axis 6 and 2.
Absolute error. Experimental convergence rate.
Points z1 = (—5,0), z2 =(0,1), z3 = (5.0,0.0).

n [65,P(z1)] ecr [65,®(z2)] ecr |65, ®(z3)| ecr
4 0.139-1071 0.135 0.985-10"1

8 0.138-10"' 0.10-10"2 0.318-10"' 2.09 0.136-10"1! 2.85
16 0.201-103 6.11 0.335-10"2 3.24 0.143-1073 6.58
32 0.659-10-6 8.25 0.104-103 5.01 0.110-107° 7.02

64 0.140-10-10 15.52 0.221-10-¢ 8.88 0.692-10—1 17.27
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