
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 5, Number 4, Fall 1993

A SINGULAR NONLINEAR
VOLTERRA INTEGRAL EQUATION

B.H. GILDING

ABSTRACT. This paper concerns the integral equation

x(t) = f(t) +

∫ t

0

g(s)/x(s) ds

in which the functions and variables are real-valued and x
is the unknown. The interest is in nonnegative continuous
solutions of this equation for t ≥ 0 when f ∈ C([0,∞)), f(0) ≥
0 and g ∈ L1(0, τ) for all τ ∈ (0,∞). Of particular interest is
the singular case f(0) = 0. This equation arises in the study
of travelling waves in nonlinear reaction-convection-diffusion
processes. It is shown that the integral equation has none,
one or an uncountable number of solutions. Subsequently, it
is shown that, even if there is an infinite number of solutions,
there is one which is maximal. Moreover, a method for
constructing this particular solution is provided. This permits
the establishment of necessary and sufficient conditions for the
existence of a solution. Comparison principles for solutions
of the equation with different sets of coefficients are then
presented. Rather detailed analyses follow for the case that
f(0) = 0 and g(s) ≤ 0 for almost all s in a right neighborhood
of zero and for the case that f(0) = 0 and the inequality for g is
reversed. These analyses demonstrate that the equation may
indeed have none, one or an uncountable number of solutions,
among other phenomena.

1. Introduction. This paper concerns the integral equation

(1) x(t) = f(t) +
∫ t

0

g(s)/x(s) ds

in which the functions and variables are real-valued and x is the
unknown. We shall be interested in nonnegative continuous solutions
of this equation for t ≥ 0 when

(2) f ∈ C([0,∞)) with f(0) ≥ 0
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and

(3) g ∈ L1(0, τ ) for all τ ∈ (0,∞).

This equation may be classified as a nonlinear Volterra integral equation
of the second kind with an integrand which is singular (when x = 0).
In this respect, we shall be especially interested in the case f(0) = 0.

The motivation for studying equation (1) stems from the field of
nonlinear reaction-convection-diffusion processes. Many such processes
can be modelled by the nonlinear partial differential equation

(4) ut = (a(u))xx + (b(u))x + c(u)

in which subscripts denote partial differentiation. Areas in which an
equation of this type arises are nonlinear heat transfer, combustion,
reaction chemistry, hydrodynamics, soil-moisture physics, thin viscous
fluid flow, and biological population dynamics, to name but a few. In
these settings, the unknown u corresponds to a temperature, concentra-
tion, density or similar nonnegative variable, and the coefficients have
the properties

a, b ∈ C([0,∞)), c ∈ C(0,∞),
a is strictly increasing on [0,∞)

and
a(0) = b(0) = c(0) = 0.

Specific prototypes for equation (4) are the Burgers equation, the
porous media equation, the Richards equation, the Fishers equation
and the KPP equation [2, 3]. The search for a travelling-wave solution
of equation (4) of the form

(5) u(x, t) = U(ξ) with ξ = x − λt,

with U monotonic decreasing for ξ ∈ (−∞,∞) and

U(ξ), (a(U))′(ξ) → 0 as ξ → ∞

formally leads to consideration of the ordinary differential equation

−λU ′ = (a(U))′′ + (b(U))′ + c(U)
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upon substitution of (5) into (4). Whence integrating

λU(ξ) = −(a(U))′(ξ) − b(U(ξ)) +
∫ ∞

ξ

c(U(η)) dη

for all ξ ∈ (−∞,∞). Subsequently defining the function θ in some right
neighborhood of zero by

θ(U(ξ)) = −(a(U))′(ξ)

gives rise to the equation

θ(U) = λU + b(U) −
∫ U

0

c(s)/θ(s) da(s).

Changing the dependent variable to z := a(U) finally yields an equation
of the form (1) with f(0) = 0.

To commence the study of (1), we need to clarify what we mean by
a solution of this equation. Ambiguousness in the definition of the
integrand in (1) will be avoided by interpreting this as

(6) I(s, x) :=

⎧⎪⎪⎨
⎪⎪⎩

g(s)/x if x > 0
∞ if g(s) > 0 and x = 0
0 if g(s) = 0 and x = 0
−∞ if g(s) < 0 and x = 0,

and generality will be supported by considering the integral as an
improper Lebesgue integral.

Definition 1. A function x is a solution of equation (1) if it is
defined, real, nonnegative and continuous in a right neighborhood of
zero [0, τ ) with 0 < τ ≤ ∞, I(s, x(s)) ∈ L1

loc (0, τ ),

∫ t

0

I(s, x(s)) ds := lim
ε↓0

∫ t

ε

I(s, x(s)) ds exists

and satisfies

x(t) = f(t) +
∫ t

0

I(s, x(s)) ds for all t ∈ (0, τ ).
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Note that if g ≥ 0 almost everywhere or if g ≤ 0 almost everywhere in
a right neighborhood of zero, the definition infers I(s, x(s)) ∈ L1(0, t)
for all t ∈ (0, τ ) although, in general, the latter need not be the case.
Either way a solution possesses the attributes

∫ t

0

I(s, x(s)) ds → 0 as t ↓ 0

and
x(0) = f(0).

The remainder of this paper is arranged as follows. In the next section
we prove some useful preliminary results. Thereafter, in Section 3
we show that equation (1) either has no solution, a unique solution
or an uncountable number of solutions. Subsequently, in Section 4
we show that even if (1) does have an infinite number of solutions
there is one which is maximal. Moreover, we provide a method for
constructing this particular solution. This permits us to establish
necessary and sufficient conditions for the existence of a solution of
equation (1) in Section 5. Following this, in Section 6, we state and
prove comparison principles for solutions of equation (1) with different
sets of coefficients. In Section 7 we then present a rather detailed
analysis of (1) in the case that f(0) = 0 and g(s) ≤ 0 for almost all s in
a right neighborhood of zero. In Section 8 this exercise is repeated with
the last-mentioned inequality reversed. These analyses signal examples
of equation (1) which may indeed have none, one or an uncountable
number of solutions. Thus, in general, our results on the uniqueness of
solutions of (1) cannot be improved upon, and the concept of a maximal
solution is not superfluous. In the final section we discuss a particular
equation of the form (1) which may be solved explicitly.

We refer the interested reader to [1 3] for a discussion of consequences
of the results in this paper for the study of travelling-wave solutions of
equation (4).

2. Preliminaries. Throughout the remainder of this paper, the
letters f and g, with or without subscripts or superscripts, will be
assumed to denote functions of the types (2) and (3), respectively.
Furthermore, any expression of the form g/x will be interpreted in the
sense of the right-hand side of (6).
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Lemma 1. If f(0) > 0, then (1) has a unique positive solution
x ∈ C([0, δ)) for some δ ∈ (0,∞).

Proof. Since if x > 0 the integrand I(s, x) defined by (6) is locally
Lipschitz continuous with respect to x, the lemma is a straightforward
consequence of a standard existence theorem for nonlinear Volterra in-
tegral equations based on a contraction-mapping principle [4, Theorem
12.2.6; 5, Theorem II.1.2].

Lemma 2. Let x denote a solution of (1) on some interval [0, T ) �
[0,∞). Then

(7) x(T ) := lim
t↑T

x(t) exists and is finite,

(8)
∫ T

0

g(s)/x(s) ds := lim
t↑T

∫ t

0

g(s)/x(s) ds exists

and is finite, and

(9) x(T ) = f(T ) +
∫ T

0

g(s)/x(s) ds.

Moreover, either x(T ) = 0 or x is continuously extendible as a solution
of (1) onto an interval [0, T ′) with [0, T ) � [0, T ′) � [0,∞).

Proof. Suppose to begin with that

(10) lim inf
t↑T

x(t) < ρ < lim sup
t↑T

x(t)

for some ρ ∈ (0,∞). Consider the equation

(11) x(t) = ρ + f(t) − f(T ) +
∫ t

T

g(s)/x(s) ds.

By Lemma 1, this equation has a continuous positive solution x∗ on an
interval (T − δ, T ] for some δ ∈ (0, T ). Moreover, in view of (10) there
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must be a point t∗ ∈ (T − δ, T ) such that x(t∗) = x∗(t∗) > 0. However,
since both (1) and (11) can be rewritten as

x(t) = x(t∗) + f(t) − f(t∗) +
∫ t

t∗
g(s)/x(s) ds,

by Lemma 1 this can only be the case if x ≡ x∗ on [t∗, T ). This
contradicts (10). We therefore deduce that x(T ) exists with 0 ≤ x(T ) ≤
∞.

Suppose next that x(T ) = ∞. Then x0 := inf {x(s) : T − δ < s <
T} > 0 for some δ ∈ (0, T ). So that, by (1),

x(t) ≤ f(t) +
∫ T−δ

0

g(s)/x(s) ds +
∫ t

T−δ

|g(s)| ds/x0

for any t ∈ (T − δ, T ). However, in the limit t ↑ T this contradicts
the datum that g ∈ L1(0, T ). We must conclude that x(T ) < ∞. This
proves (7). Furthermore, letting t ↑ T in (1), it also proves (8) and (9).

Lastly, we note that if x(T ) > 0, then g/x ∈ L1(T − δ, T ) for any
δ ∈ (0, T ) and using Lemma 1 we can subsequently continuously extend
x as a solution of (1) beyond [0, T ].

Lemma 3. For any ρ > 0 and t∗ ∈ (0,∞), the equation

(12) x∗(t) = ρ + f(t) − f(t∗) +
∫ t

t∗
g(s)/x∗(s) ds

has a unique positive solution x∗ on a maximal interval of existence
(t−, t+) with

(13) 0 ≤ t− < t∗ < t+ ≤ ∞

such that

(14) x∗ ∈ C([t−, t+)),

and

(15) t− = 0 or x∗(t−) = 0.
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Furthermore, x∗ solves

(16) x∗(t) = x∗(t−) + f(t) − f(t−) +
∫ t

t−
g(s)/x∗(s) ds

on [t−, t+) in the sense of Definition 1.

Proof. Apply Lemmata 1 and 2 to equation (12) for t ≥ t∗ and for
t ≤ t∗.

Lemma 4. Let x1 denote a solution of the equation

(17) x1(t) = f1(t) +
∫ t

0

g1(s)/x1(s) ds

on some interval [0, δ) with 0 < δ < ∞. Suppose that

f(0) > f1(0),

(18) (f − f1) is nondecreasing on [0, δ)

and

(19) g(t) ≥ g1(t) for almost all t ∈ (0, δ).

Then if (1) has a solution x on [0, δ) such that x(t) > 0 for all t ∈ [0, δ)
there holds x(t) > x1(t) for all t ∈ [0, δ).

Proof. Let us hypothesize that the lemma is false. Then there exists
a point t∗ ∈ (0, δ) such that

(20) x(t) > x1(t) for all t ∈ [0, t∗)

and

(21) x(t∗) = x1(t∗) > 0.
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Let t0 ∈ [0, t∗) be such that x1(t) > 0 for all t ∈ [t0, t∗] and

∫ t∗

t0

|g(s)|
x1(s)x(s)

ds ≤ 1
2
.

Using (1), (17) and (21),

x(t) − x1(t) = (f − f1)(t) − (f − f1)(t∗) +
∫ t∗

t

{
g1(s)
x1(s)

− g(s)
x(s)

}
ds

for any t ∈ [t0, t∗]. Whence

x(t) − x1(t) ≤
∫ t∗

t

g(s)
{

1
x1(s)

− 1
x(s)

}
ds

≤
∫ t∗

t

|g(s)| {x(s) − x1(s)}
x1(s)x(s)

ds

≤ 1
2
||x − x1||L∞(t0,t∗)

for all t ∈ [t0, t∗]. However, this is only possible if

||x − x1||L∞(t0,t∗) = 0

which contradicts (20). Thus, the lemma cannot be false.

Combination of Lemmata 1 and 2 yields our first major result.

Theorem 1. If f(0) > 0, then equation (1) has a unique positive
solution x on an interval [0, τ ) such that τ = ∞ or x(t) → 0 as t ↑ τ .

3. Uniqueness. The principal result of this section is the following.

Theorem 2. Equation (1) has none, one or an uncountable number
of solutions.

Proof. To prove this theorem, it is enough to show that if (1) has two
distinct solutions, x1 and x2 in an interval [0, τ ) ⊆ [0,∞), then we can
actually construct a one-parameter family of such solutions.
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Let t∗ ∈ (0, τ ) be such that 0 ≤ x1(t∗) < x2(t∗). Next, for fixed
ρ ∈ (x1(t∗), x2(t∗)) consider the integral equation (12). Lemma 3 states
that this equation has a unique positive continuous solution x∗ on some
interval (t−, t+), such that (13) (15) hold and x∗ solves (16) in the sense
of Definition 1. Furthermore, by Lemma 4,

(22) x1(t) < x∗(t) < x2(t) for all t ∈ (t−, t∗].

If now t− = 0, by (14), (16) and (22), x∗ must be a solution of (1)
on [0, t+). On the other hand, if t− > 0, then by (14), (15) and
(22), necessarily x∗(t−) = x1(t−) = 0; in which case, extending x∗

by defining x∗ ≡ x1 on [0, t−), it can still be shown that the former
function generates a solution of (1) on [0, t+). We conclude that for any
ρ ∈ (x1(t∗), x2(t∗)) we can construct a solution of (1) which takes the
value ρ at t∗. Since ρ was arbitrary, this confirms the theorem.

Under the particular constraint that g is nonnegative almost every-
where in a right neighborhood of zero, we can improve on Theorem
2.

Theorem 3. Suppose that ess inf {g(t) : 0 < t < τ} ≥ 0 for some
0 < τ ≤ ∞. Then equation (1) has at most one solution in [0, τ ).

Proof. Suppose, contrary to the assertion of the theorem, that (1)
has two distinct solutions on [0, τ ), x1 and x2 say. Then there exist a
point t0 ∈ [0, τ ) and a point t1 ∈ (t0, τ ) such that

x1(t0) = x2(t0)

and x1(t) �= x2(t) for all t ∈ (t0, t1]. Without loss of generality, we may
assume that

(23) x1(t) < x2(t) for t ∈ (t0, t1].

Using (1), this infers

x1(t1) − x2(t1) = x1(t0) − x2(t0) +
∫ t1

t0

{
g(s)
x1(s)

− g(s)
x2(s)

}
ds ≥ 0
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which contradicts (23).

4. The maximal solution. As we have seen with Theorem 1, when
f(0) > 0 equation (1) is amenable to treatment with the standard
theory for nonlinear Volterra integral equations. The real difficulty
with the study of (1) is the singularity of its integrand which clearly
manifests itself in the event that f(0) = 0. To circumvent this difficulty,
in this and the following section we shall study equation (1) as the limit
as μ ↓ 0 of the regularized equation

(24) x(t) = μ + f(t) +
∫ t

0

g(s)/x(s) ds

where μ is a positive real parameter.

From Theorem 1 we know that (24) has a unique positive solution in
a right neighborhood of zero for any μ > −f(0). We shall denote this
solution by x(t; μ) and its maximal interval of existence by [0, T (μ)),
where recalling Theorem 1, either T (μ) = ∞ or x(t; μ) → 0 as t ↑ T (μ).
Moreover, by Lemma 4 there holds T (μ1) ≤ T (μ2) and
(25)

x(t; μ1) < x(t; μ2) for all t ∈ [0, T (μ1)) if − f(0)<μ1 <μ2 <∞.

In fact, we can state more about T (μ).

Lemma 5. The function T is nondecreasing and continuous from
the left on (−f(0),∞). Moreover,

(26) T (μ) ↑ ∞ as μ ↑ ∞.

Proof. The monotonicity of T was already established in Lemma 4.
Furthermore, in the light of the remarks made in the proof of Lemma
1, we can deduce that T is lower semi-continuous from the standard
theory of Volterra integral equations [4, Theorem 13.2.3; 5, Theorem
II.4.2]. Together these observations yield the stated monotonicity and
continuity. To prove the lemma, it therefore remains to confirm (26).

Suppose that (26) is false. Then

t∗ := sup{T (μ) : −f(0) < μ < ∞} ∈ (0,∞).
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Let ρ ∈ (0,∞) and consider (12). Lemma 3 states that this equation
has a positive continuous solution x∗ on an interval (t−, t+) such that
(13) (15) hold and (16) holds in the sense of Definition 1. If, though,
x∗(t−) > 0, then t− = 0 by (15). Consequently, x∗(t) can be identified
as x(t; μ) with μ = x∗(0) − f(0). Whence for this value we have
T (μ) = t+ > t∗, which clearly provides a contradiction of the definition
of t∗. On the other hand, if x∗(t−) = 0, choosing μ so large that
T (μ) > t− there holds x(t−; μ) > 0 = x∗(t−). Whence, by Lemma 4,
T (μ) ≥ t+ for any such μ. So, either way, we arrive at a contradiction
of the definition of t∗. We can only conclude that t∗ = ∞ as it were.

Note that, in general, we are unable to say that the monotonicity
of T is strict. By way of illustration consider equation (24) with
f(t) := −4t and g(t) := 1 − t. It can be verified that x(t; μ) = μ(1− t)
is a solution of this equation when μ = 2 − √

3 or μ = 2 +
√

3.
Thus, for this combination of coefficients, we have T (μ) = 1 for every
μ ∈ [2 −√

3, 2 +
√

3].

Lemma 5 and the inequality (25) justify the definition of the function
x̃(t; 0) on [0,∞) by

x̃(t; 0) = inf {x(t; μ) : μ ∈ (0,∞) such that T (μ) > t}.

Our major assertion is that if equation (1) has a solution, then x̃(t; 0)
constitutes its maximal solution.

Theorem 4. If equation (1) has a solution x on an interval [0, δ),
then x̃(t; 0) is a solution of (1) on an interval [0, τ ) ⊇ [0, δ) and
x̃(t; 0) ≥ x(t) for all t ∈ [0, δ). Furthermore, τ = ∞ or x̃(t; 0) → 0
as t ↑ τ .

To prove this theorem, we introduce the following additional notation.
For fixed μ ≥ 0, we let

S(μ) := lim
μ′↓μ

T (μ′).

Subsequently, we define
T (0) := 0



476 B.H. GILDING

and

Ω := {t ∈ (0,∞) : T (μ) < t < S(μ) for some μ ∈ [0,∞)}.

These definitions are sensible in view of Lemma 5. Furthermore, since
by Lemma 5, T is a monotonic function and a monotonic function has
at most a countable number of discontinuities,

(27) Ω =
∞⋃

k=1

(T (μk), S(μk))

for some sequence of values {μk}∞k=1 ⊆ [0,∞).

Using this notation we state and prove five lemmata which culminate
in the verification of Theorem 4.

Lemma 6. The function x̃(t; 0) is continuous on [0,∞). Moreover,

(28) x̃(0; 0) = f(0)

and

(29) x̃(t; 0) = 0 for all t ∈ (0,∞)\Ω.

Proof. Let t∗ ∈ (0,∞) and recalling Lemma 5 choose μ∗ ∈ [0,∞)
such that

T (μ∗) ≤ t∗ < T (μ) for all μ > μ∗.

Next, for ρ > 0 let x∗ denote the positive continuous solution of (12)
on its maximal interval of existence (t−, t+) ⊆ (0,∞). This function
exists and (13) holds by Lemma 3.

Suppose now that ρ > x̃(t∗; 0). Then there exists a μ > μ∗

such that 0 < x(t∗; μ) < ρ. Lemma 4 subsequently implies that
t∗ ∈ (0, T (μ)) ⊆ (t−, t+) and x(t; μ) < x∗(t) for all t ∈ (0, T (μ)).
Hence, x̃(t; 0) < x∗(t) for all t ∈ (0, T (μ)) and t∗ ∈ (0, T (μ)). This
gives

lim sup
t→t∗

x̃(t; 0) ≤ x∗(t∗) = ρ.
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Noting though that ρ was arbitrary, this establishes the upper semi-
continuity of x̃ at t∗.

Suppose next that ρ < x̃(t∗; 0). Then ρ < x(t∗; μ) for all μ > μ∗.
Whence, by Lemma 4, (t−, t+) ⊆ (0, T (μ)) and x∗(t) < x(t; μ) for
any t ∈ (t−, t+) and μ > μ∗. In the limit μ ↓ μ∗ this means that
(t−, t+) ⊆ (T (μ∗), S(μ∗)) and that x∗(t) ≤ x̃(t; 0) for any t ∈ (t−, t+).
So t∗ ∈ (T (μ∗), S(μ∗)) and

lim inf
t→t∗

x̃(t; 0) ≥ x∗(t∗) = ρ.

Subsequently, if x̃(t∗; 0) > 0 then necessarily t∗ ∈ Ω and x̃ is lower
semi-continuous at t∗.

For t∗ = 0 we may likewise show that x̃(t; 0) is upper semi-continuous
in t∗ and that if x̃(0; 0) > 0 then x̃(t; 0) is lower semi-continuous in t∗.
The only adaptation we have to make to the above argument is to
replace the function x∗ by x(t; ρ − f(0)).

Finally, noting the definition of x̃(0; 0) and that x̃(t; 0) is nonnegative
and therefore trivially lower semi-continuous at any point t∗ ∈ [0,∞)
for which x̃(t∗; 0) = 0 the above yields the lemma.

Lemma 7. Suppose that

(30) g(t)/x̃(t; 0) ∈ L1
loc (0, δ)

for some δ ∈ (0,∞). Then

x̃(t+; 0) ≥ x̃(t−; 0) + f(t+) − f(t−)

+
∫ t+

t−
min{0, g(s)}/x̃(s; 0) ds

for any 0 < t− < t+ < δ. Moreover, if T (μk) ≤ t− < t+ ≤ S(μk) for
some μk ∈ [0,∞), then

(31)
x̃(t+; 0) = x̃(t−; 0) + f(t+) − f(t−)

+
∫ t+

t−
g(s)/x̃(s; 0) ds.
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Proof. Fix 0 < t− < t+ < δ. Define μ∗ by T (μ∗) ≤ t+ < T (μ) for all
μ > μ∗, and set

x̃(t; μ∗) := lim
μ↓μ∗

x(t; μ)

for every t ∈ [0, t+]. Observe that

(32) x̃(t; μ∗) ≥ x̃(t; 0) for t ∈ [0, T (μ∗))

and

(33) x̃(t; μ∗) = x̃(t; 0) for t ∈ [T (μ∗), t+].

Now, for any μ > μ∗, (31) holds with x(t; μ) in the place of x̃(t; 0) since
the former is an appropriate solution of (24). Subsequently, considering
(25), (30), (32) and (33) and applying the dominated convergence
theorem, (31) also holds with x̃(t; μ∗) in lieu of x̃(t; 0). The conclusions
of the lemma are now immediate from (32) and (33).

Lemma 8. Under the assumptions of Lemma 7,

x̃(t+; 0) ≥ x̃(t−; 0) + f(t+) − f(t−) +
∫ t+

t−
g(s)/x̃(s; 0) ds

for any 0 < t− < t+ < δ.

Proof. Let {μk}∞k=1 denote the sequence defined implicitly by (27).
Set

g1(t) = min{0, g(t)} for all t ∈ (0,∞)

and using induction define

(34) gk+1(t) =
{

g(t) for t ∈ (T (μk), S(μk))
gk(t) otherwise

for every k ≥ 1. Plainly

(35) min{0, g(t)} ≤ gk(t) ≤ gk+1(t) ≤ g(t)

for all t ∈ (0,∞). Furthermore, gk(t) ↑ g(t) as k ↑ ∞ for every
t ∈ S1 := {s ∈ (0,∞) : g(s) ≤ 0 or s ∈ Ω}. However, since by (30) the
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set S2 := {s ∈ (0, δ) : g(s) �= 0 and x̃(s; 0) = 0} must have Lebesgue
measure zero, and by (29) the interval (0, δ) ⊆ S1 ∪S2 this means that

(36) gk(t) ↑ g(t) as k ↑ ∞ for almost all t ∈ (0, δ).

We next observe that, as a consequence of (30) and (35),

(37)
∫ t+

t−
|gk(s)/x̃(s; 0)| ds ≤

∫ t+

t−
|g(s)/x̃(s; 0)| ds < ∞

for any 0 < t− < t+ < δ and k ≥ 1.

For each k ≥ 1 we assert that

(38) x̃(t+; 0) ≥ x̃(t−; 0) + f(t+) − f(t−) +
∫ t+

t−
gk(s)/x̃(s; 0) ds

for every 0 < t− < t+ < δ. This assertion is certainly true
when k = 1 by Lemma 7. Suppose now that it is true for an
arbitrary k ≥ 1. In this event, with 0 < t− < t+ < δ fixed,
(38) holds with t+ replaced by min{t+, max{t−, T (μk)}}. Likewise
(38) holds with t− replaced by max{t−, min{t+, S(μk)}}. More-
over, (31) holds with max{t−, min{t+, T (μk)}} in lieu of t− and with
min{t+, max{t−, S(μk)}} in lieu of t+, by Lemma 7. Adding these
three inequalities yields (38) with gk succeeded by gk+1. By induction
the assertion is subsequently true for all k ≥ 1.

The lemma finally results upon letting k ↑ ∞ in (38). In the light of
(36) and (37), the dominated convergence theorem may be invoked to
substantiate the desired conclusion.

Lemma 9. Let x1 denote a solution of (17) on some interval [0, δ)
with 0 < δ < ∞. Suppose that f(0) ≥ f1(0) and that (18) and (19)
hold. Then

(39) x̃(t; 0) ≥ x1(t) for all t ∈ [0, δ).

Proof. For any μ > 0 we have x(t; μ) > x1(t) for all t ∈
[0, min{T (μ), δ}) by Lemma 4. Whence considering the definition of
x̃(t; 0), (39) follows.
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Lemma 10. Suppose that the hypotheses of Lemma 9 hold and (30)
holds. Then x̃(t; 0) is a solution of (1) on [0, δ).

Proof. First we show that

(40) x̃(t+; 0) ≤ x̃(t−; 0) + f(t+) − f(t−) +
∫ t+

t−
g(s)/x̃(s; 0) ds

for any 0 < t− < t+ < δ. The demonstration of this has much in
common with the proof of Lemma 8.

Using the sequence {μk}∞k=1 defined by (27) we construct a sequence
of functions {xk}∞k=1 by

xk+1(t) =
{

x̃(t; 0) if t ∈ [T (μk), S(μk))
xk(t) otherwise

and a sequence of functions {gk}∞k=1 by (34). By (29) and (39)

xk(t) ↑ x̃(t; 0) as k ↑ ∞

for every t ∈ [0, δ). Furthermore,

(41) |gk(t)/xk(t)| ≤ |g1(t)/x1(t)| + |g(t)/x̃(t; 0)|

for any t ∈ (0, δ) and k ≥ 1. So gk/xk ∈ L1
loc (0, δ) for every k ≥ 1.

When k = 1:

(42) xk(t+) ≤ xk(t−) + f(t+) − f(t−) +
∫ t+

t−
gk(s)/xk(s) ds

for any 0 < t− < t+ < δ, since x1 solves (17) on (0, δ) and (18)
holds. However, recalling (29) and (39), and applying an induction
argument similar to that used in the proof of Lemma 8, this infers
that (42) actually holds for any 0 < t− < t+ < δ and k ≥ 1.
Whence, letting k ↑ ∞ and invoking (41) to justify application of the
dominated convergence theorem, we obtain (40) with g(s) replaced by
g∞(s) := sup{gk(s) : k ≥ 1}. Observing though that g∞(s) ≤ g(s) for
all s ∈ (0, δ), this yields (40) as it stands.
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Combining (40) with Lemma 8 yields (40) with equality for any
0 < t− < t+ < δ. Subsequently, letting t− ↓ 0 and using the continuity
of x̃(t; 0) and (28), we derive that x̃(t; 0) is indeed a solution of (1).

Theorem 4 follows from Lemmata 9, 10 and 2.

5. Necessary and sufficient conditions for existence. The
analysis developed in the previous section can be used to extend our
initial knowledge of positive solutions of (24) when μ > 0 to nonnegative
ones for all μ ≥ 0.

From the previous analysis, we know that (24) has a unique positive
solution x(t; μ) on a maximal interval of existence [0, T (μ)) for any
μ > 0. Moreover, we know that

x̃(t; μ) = inf {x(t; μ′) : μ′ ∈ (μ,∞) such that T (μ′) > t}

defines a continuous function which is the maximal solution to this
equation. With little effort it can be seen that this definition is
equivalent to

x̃(t; μ) =
{

x(t; μ) for t < T (μ)
x̃(t; 0) for t ≥ T (μ).

Hence,

x̃(t; μ1) ≤ x̃(t; μ2) for all t ∈ [0,∞) if 0≤μ1 <μ2 <∞,

and
x̃(t; μ) ↓ x̃(t; 0) as μ ↓ 0 for all t ∈ [0,∞).

Now, for any μ ≥ 0, let [0, T̃ (μ)) denote the maximal interval of
existence of x̃(t; μ) as a solution of (24) with the convention that
T̃ (0) = 0 if (1) has no solution. Plainly T̃ (μ) ≥ T (μ), and by Theorem
4

x̃(T̃ (μ), μ) = 0 if T̃ (μ) < ∞
for every μ ≥ 0. Furthermore, by Lemma 10, T̃ is monotonic increasing
on [0,∞). Subsequently, for any μ ≥ 0 we may define

S̃(μ) := lim
μ′↓μ

T̃ (μ′).
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We can now state necessary and sufficient conditions for the existence
of a solution of (1).

Theorem 5. Equation (1) has a solution if and only if

(43) S̃(0) > 0

and there exists a σ ∈ (0, S̃(0)) such that

(44) g(t)/x̃(t; 0) ∈ L1
loc (0, σ).

Moreover, in this event, T̃ (0) = sup{σ ∈ [0, S̃(0)) : (44) holds}.

Proof. Suppose firstly that (1) admits a solution, i.e., T̃ (0) > 0.
Then the necessity of (43) and of (44) for any σ ∈ (0, T̃ (0)) follow
immediately from Lemma 10 and the definition of a solution. On the
other hand, suppose that (43) holds. Then, since x̃(t; μ) is a solution
of (24) on [0, T̃ (μ)) ⊇ [0, S̃(0)) for every μ > 0,

(45) x̃(t+; μ) = x̃(t−; μ) + f(t+) − f(t−) +
∫ t+

t−
g(s)/x̃(s; μ) ds

for any 0 < t− < t+ < S̃(0). In addition, if (44) holds for some
σ ∈ (0, S̃(0)) and if 0 < t− < t+ < σ, we may take the limit μ ↓ 0 in
(45). Hereafter, letting t− ↓ 0 it can be deduced that x̃(t; 0) solves (1)
on [0, σ) as in the completion of the proof of Lemma 10.

If the coefficient g is nonnegative almost everywhere or is nonpositive
almost everywhere in a right neighborhood of zero, Theorem 5 can be
improved upon.

Theorem 6. Suppose that ess inf {g(t) : 0 < t < τ} ≥ 0 for some
0 < τ ≤ ∞. Then equation (1) has a solution if and only if S̃(0) > 0.
Moreover, in this event, min{T̃ (0), τ} = min{S̃(0), τ}.

Proof. This theorem is actually no more than a corollary of the
previous one. Under the additional hypothesis,∫ σ

0

|g(s)/x̃(s; μ)| ds =
∫ σ

0

g(s)/x̃(s; μ) ds = x̃(σ; μ) − μ − f(σ)
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for any σ ∈ (0, min{T̃ (μ), τ}) and μ > 0. Thus, letting μ ↓ 0 and
invoking the monotone convergence theorem, (44) is automatically
satisfied for every σ ∈ (0, min{S̃(0), τ}).

Theorem 7. Suppose that ess sup {g(t) : 0 < t < τ} ≤ 0 for some
0 < τ ≤ ∞. Then equation (1) has a solution if and only if S(0) > 0.
Moreover, in this event, min{T̃ (0), τ} = min{S(0), τ}.

Recall that S(0) is defined as the limit of T (μ) as μ ↓ 0 where
T (μ) = sup{t ∈ [0, T̃ (μ)) : x̃(s; μ) > 0 for all s ∈ [0, t)}.

Proof of Theorem 7. If T̃ (0) > 0, then we have

x̃(t; μ) = μ + f(t) +
∫ t

0

g(s)/x̃(s; μ) ds

≥ μ + f(t) +
∫ t

0

g(s)/x̃(s; 0) ds

= μ + x̃(t; 0) ≥ μ

for all t ∈ [0, min{T̃ (0), τ}) and μ > 0. Thus S(0) ≥ min{T̃ (0), τ}. On
the other hand, if S(0) > 0, then

∫ σ

0

|g(s)/x̃(s; μ)| ds = −
∫ σ

0

g(s)/x(s; μ) ds

= μ + f(σ) − x(σ; μ)

for any σ ∈ (0, min{T (μ), τ}) and μ > 0. Hence, arguing as in the
proof of Theorem 6, T̃ (0) ≥ min{S(0), τ}.

Under the assumption in Theorem 7, we can also provide an alterna-
tive criterion for the existence of a solution of (1).

Theorem 8. Suppose that ess sup {g(t) : 0 < t < τ} ≤ 0 for some
0 < τ ≤ ∞. Set

σ0 := τ

and
x0(t) := f(t) for all t ∈ [0, σ0).
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Subsequently, using induction define

σk+1 := sup{δ ∈ [0, σk) : xk(s) ≥ 0
for all s ∈ [0, δ] and g/xk ∈ L1(0, δ)}

and

(46) xk+1(t) := f(t) +
∫ t

0

g(s)/xk(s) ds for all t ∈ [0, σk+1)

for every k ≥ 0. Then equation (1) has a solution if and only if
σ∞ := inf {σk : 0 ≤ k < ∞} > 0. Moreover, in this event,
min{T̃ (0), τ} = σ∞ and x̃(t; 0) = inf {xk(t) : 0 ≤ k < ∞} for all
t ∈ [0, σ∞).

Proof. We observe, to begin with, that by definition the sequence
of values σk is decreasing. Moreover, x1(t) ≤ x0(t) for all t ∈ [0, σ1).
Subsequently substituting in (46),

xk+1(t) ≤ xk(t) for all t ∈ [0, σk+1),

for every k ≥ 0. Furthermore,

∫ t

0

|g(s)/xk(s)| ds = −
∫ t

0

g(s)/xk(s) ds ≤ f(t)

for any t ∈ (0, σk). It follows that, if σ∞ > 0, then

x∞(t) := inf {xk(t) : 0 ≤ k < ∞}

is well defined for every t ∈ [0, σ∞), and g/x∞ ∈ L1(0, δ) for every
δ ∈ (0, σ∞). Moreover, letting k ↑ ∞ in (46), x∞ solves (1) on
[0, σ∞). On the other hand, if (1) is supposed to have a solution
x̃(t; 0) on an interval [0, T̃ (0)), then from (1) itself follows simply
x0(t) = f(t) ≥ x̃(t; 0) for all t ∈ [0, min{τ, T̃ (0)}). Whence, using
induction, this infers that

xk+1(t) ≥ f(t) +
∫ t

0

g(s)/x̃(s; 0) ds = x̃(t; 0)
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and ∫ t

0

|g(s)/xk(s)| ds ≤ −
∫ t

0

g(s)/x̃(s; 0) ds < ∞

for all t ∈ (0, min{τ, T̃ (0)}) and any k ≥ 0. Thus, we deduce that
σ∞ ≥ min{τ, T̃ (0)} and x∞(t) ≥ x̃(t; 0) for all t ∈ [0, min{τ, T̃ (0)}).

6. Comparison principles. The objective of this section is to
present some results indicating how the solvability of one equation of
the type (1) may be used to deduce the solvability of another.

Our first result along this line is the following.

Theorem 9. Suppose that, for some f1 and g1, the equation

(47) x1(t) = f1(t) +
∫ t

0

g1(s)/x1(s) ds

has a solution x1 in an interval [0, τ ) with 0 < τ < ∞. Suppose
furthermore that

(48) f(0) ≥ f1(0),

(49) (f − f1) is nondecreasing on [0, τ ),

g(t) ≥ g1(t) for almost all t ∈ (0, τ )

and

(50) g/x1 ∈ L1
loc (0, τ ).

Then x̃(t; 0) solves (1) on [0, τ ) and

(51) x̃(t; 0) ≥ x1(t) for all t ∈ [0, τ ).

Moreover, if

(f − f1)(s) < (f − f1)(t) for all s ∈ [0, t)
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for some t ∈ (0, τ ), then

x̃(t; 0) = x1(t) if and only if x̃(t; 0) = 0.

Proof. The primary conclusions of this theorem are contained in
Lemmata 9 and 10. Furthermore, if x̃(t; 0) = 0 for some point t ∈ [0, τ ),
then by (51), plainly, x̃(t; 0) = x1(t). The proof of the theorem
therefore boils down to the establishment of the impossibility of

(52) x̃(t∗; 0) = x1(t∗) > 0

for some t∗ ∈ (0, τ ), for which

(53) (f − f1)(t∗) > (f − f1)(t) for all t ∈ [0, t∗).

This we achieve by contradiction.

If there is a t∗ ∈ (0, τ ) such that (52) and (53) hold, then there must
be a 0 ≤ t− < t∗ < t+ < ∞ such that x̃(t; 0) and x1 are defined as
solutions of (1) and (47), respectively, on [0, t+) and

x̃(t; 0) ≥ x1(t) > 0 for all t ∈ [t−, t+).

Should, though, x̃(t; 0) = x1(t) for all t ∈ [t−, t∗], then

0 = x̃(t∗; 0) − x1(t∗)

=
{

x̃(t−; 0) + f(t∗) − f(t−) +
∫ t∗

t−
g(s)/x̃(s; 0) ds

}

−
{

x1(t−) + f1(t∗) − f1(t−) +
∫ t∗

t−
g1(s)/x1(s) ds

}

= (f − f1)(t∗) − (f − f1)(t−) +
∫ t∗

t−
{g(s) − g1(s)}/x1(s) ds

≥ (f − f1)(t∗) − (f − f1)(t−)

which contradicts (53). Thus, if (53) holds, there is a t0 ∈ (t−, t∗) for
which x̃(t0; 0) > x1(t0). However, in this event, Lemma 4 implies
x̃(t; 0) > x1(t) for all t ∈ [t0, t+). This provides the sought-after
contradiction.
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Remark. If g ≡ g1 in Theorem 9, then the assumption (50) is
automatically satisfied. Moreover, in general, (50) can be replaced
by the weaker hypothesis g(t)/x̃(t; 0) ∈ L1

loc (0, τ ).

Note that, in general, even if the coefficients in (1) and (47) are
smooth and only positive solutions of these equations are considered,
hypotheses (48) and (49) in Theorem 9 cannot be replaced by the
weaker assumption

(54) f(t) ≥ f1(t) for all t ∈ [0, τ ).

As a counter-example, consider

f1(t) := 1, f(t) := 1 + (1 + 5t)−2(1 + 7t + t2)

and
g1(t) := g(t) := 6(1 + 5t)−3(1 + 11t).

It can be checked that, with this set of coefficients, x1(t) = (1 +
5t)−1(1 + 11t) is the unique solution of (47) on [0,∞) whilst x(t) = 2
is the unique solution of (1) on [0,∞). However, whereas

f(t) > f1(t) for all t ∈ [0,∞)

there holds
x(t) ≥ x1(t) only if t ≤ 1.

Notwithstanding, if g1 ≤ 0 almost everywhere in a right neighborhood
of zero, we may replace (48) and (49) in Theorem 9 by (54). Moreover,
in this event we can also drop hypothesis (50).

Theorem 10. Suppose that, for some f1 and g1, the equation (47)
has a solution x1 in an interval [0, τ ) with 0 < τ < ∞. Suppose,
furthermore, that (54) holds and

(55) min{0, g(t)} ≥ g1(t) for almost all t ∈ (0, τ ).

Then x̃(t; 0) solves (1) on [0, τ ) and

(56) x̃(t; 0) ≥ x1(t) + f(t) − f1(t) for all t ∈ [0, τ ).
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Proof. For every μ > 0,

(57)
x(t; μ) > x1(t) + f(t) − f1(t)

+
∫ t

0

max{0, g(s)}/x(s; μ) ds

for all t in a small enough neighborhood of zero. Supposing, however,
that there is a t∗ < min{T (μ), τ} which demarcates the supremum of
all such t, we compute

x(t∗; μ) = μ + f(t∗) +
∫ t∗

0

max{0, g(s)}/x(s; μ) ds

+
∫ t∗

0

min{0, g(s)}/x(s; μ) ds

≥ μ + f(t∗) +
∫ t∗

0

max{0, g(s)}/x(s; μ) ds

+
∫ t∗

0

g1(s)/x1(s) ds

= μ + x1(t∗) + f(t∗) − f1(t∗) +
∫ t∗

0

max{0, g(s)}/x(s; μ) ds.

We must therefore conclude that (57) actually holds for all t ∈ [0, τ )
and moreover, as a consequence, T (μ) ≥ τ . This yields (56) and
the observation that S(0) ≥ τ . Recalling Theorem 5, it subsequently
suffices to show that

(58) g(t)/x̃(t; 0) ∈ L1
loc (0, τ )

to prove the present theorem. From (55) and (56), though, we have

∫ t

0

min{0, g(s)}/x(s; μ) ds ≥
∫ t

0

g1(s)/x1(s) ds = x1(t) − f1(t)

for any t ∈ (0, τ ), whilst by (57)

∫ t

0

max{0, g(s)}/x(s; μ) ds ≤ x(t; μ)
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for any t ∈ (0, τ ). This yields

∫ t

0

|g(s)/x(s; μ)| ds ≤ x(t; μ) + f1(t)

for all t ∈ (0, τ ). Whence, in the limit μ ↓ 0, (58) is obtained.

7. Negative kernel. As has been indicated by a number of
theorems in the previous sections, if the function g does not effectively
change sign in a right neighborhood of zero, then certain inferences of
the general theory for equation (1) can be sharpened. In this and the
next section, we shall present a number of further results specifically
concerning (1) under this assumption. Since if f(0) > 0 then we
definitely know that the equation has a unique positive solution in
a right neighborhood of zero (cf. Theorem 1), we shall concentrate on
the more open case of

(59) f(0) = 0.

The results we obtain serve to illustrate the three possibilities regarding
the number of solutions of the equation mentioned in Theorem 2.

In this section we consider the option

(60) ess sup {g(t) : 0 < t < τ} ≤ 0 for some 0 < τ ≤ ∞.

For convenience, we define

(61) G(t) =
∣∣∣∣2

∫ t

0

g(s) ds

∣∣∣∣
1/2

for all t ∈ [0, τ ). Since when g = 0 almost everywhere in a right
neighborhood of zero, (1) reduces to the trivial identity x = f , we shall
generally henceforth assume that

(62) G(t) > 0 for all t ∈ (0, τ ).

The next two theorems illustrate that, under the conditions (59), (60)
and (62), equation (1) may or may not admit a solution. Moreover, this
is dependent upon the behavior of f(t) as t ↓ 0.
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Theorem 11. Suppose that (60) and (62) hold. Set

(63) L(t) := | ln G(t)|−1

and

(64) J(t) := | ln L(t)|−1.

Then if

f(t) ≥ (2G − GL2{1 + J2}/4)(t) for all t ∈ (0, τ ),

equation (1) has a (maximal) solution x̃(t; 0) on an interval [0, δ) with
0 < δ ≤ τ such that

(65) −(G+GL{1+J}2/2)(t) ≤ x̃(t; 0)−f(t) ≤ 0 for all t ∈ (0, δ).

Proof. Define

D := 2 + L(1 + J + J2) + L2(1 + J)(1 + 2J2)

and

E := 1 − J{2 + LJ−4(1 + J + J2)(3 + 2J + 5J2 + 4J3)
+ L2J−4(1 + J)(1 + J2)(1 + 2J2)}/4

as functions of t. Then it can be verified that, when

f1 := 2G − GL2{1 + J2}/4 − GL2J3E/D

and g1 := g, the function

x1 := 2G/D

is a solution of (47) in any interval [0, δ) ⊆ [0, τ ) for which G(t) <
exp(−1) for all t ∈ [0, δ). Hence, when δ is chosen so small that
G(t) < exp(−1) and E(t) > 0 for all t ∈ (0, δ), the assertion that
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(1) has a solution on [0, δ) is a corollary of Theorem 10. Moreover, this
theorem supplies the estimate

x̃(t; 0) ≥ x1(t) + f(t) − f1(t) = f(t) − (G + GL{1 + J + J2}/2)(t)

for t ∈ (0, δ), which gives the left-hand inequality in (65). The right-
hand inequality in (65) is evident.

Theorem 12. Suppose that the introductory assumptions of Theorem
11 hold. Then if

(66) f(t) ≤ (2G − αGL2)(t) for all t ∈ (0, τ )

for some α > 1/4, equation (1) has no solution.

Proof. Let us suppose that (1) does have a solution x on an interval
[0, δ) ⊆ [0, τ ). Without loss of generality, we may take δ to be so small
that

(67) L(t) ≤ 8 for all t ∈ (0, δ).

Set
H(t) := G−1(t)L−1(t) for t ∈ (0, δ)

and note that H is locally absolutely continuous on (0, δ) with

(68) H ′(t) = G−2(t)H(t){1 + L(t)}g(t) ≤ 0

for almost all t ∈ (0, δ). Next, set

(69) Y (t) := −
∫ t

0

g(s)/x(s) ds.

Our goal is to obtain an estimate of Y which is absurd.

By (1) and (66), x(t) ≤ f(t) ≤ 2G(t) for all t ∈ [0, δ). Hence, we can
define

A := sup{x(t)/G(t) : 0 < t < δ}
with the assurance that 0 ≤ A ≤ 2. By the definition of A, though, for
any ε > 0 one can find a t ∈ (0, δ) such that (A − ε)G(t) ≤ x(t) whilst
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x(s) ≤ (A + ε)G(s) for all s ∈ (0, t). Substituting these inequalities in
(1) gives

(A − ε)G(t) ≤ f(t) +
∫ t

0

g(s)/{(A + ε)G(s)} ds

= f(t) − G(t)/(A + ε)
≤ 2G(t) − G(t)/(A + ε).

Whence, multiplying by (A + ε)/G(t) and thereafter letting ε ↓ 0, we
obtain (A − 1)2 ≤ 0. This implies A = 1 and, thus, x(s) ≤ G(s) for
any s ∈ [0, δ). So, for a start, we have the estimate

(70) Y (ε) ≥ −
∫ ε

0

g(s)/G(s) ds = G(ε)

for any ε ∈ (0, δ).

To sharpen (70), we utilize the formula for integration by parts:

(71) Y (t)H(t) − Y (ε)H(ε) =
∫ t

ε

{Y ′(s)H(s) + Y (s)H ′(s)} ds

for any 0 < ε < t < δ. Applying (69) to eliminate Y ′ and (1) to
eliminate Y , (71) becomes

Y (t)H(t) =
∫ t

ε

{−gH/x + (f − x)H ′} ds + Y (ε)H(ε)

=
∫ t

ε

[{|xH ′|1/2 − |Hg/x|1/2}2 + 2|HH ′g|1/2 + H ′f ] ds

+ Y (ε)H(ε)

≥
∫ t

ε

{2|HH ′g|1/2 + H ′f} ds + Y (ε)H(ε).

Hence, inserting (68), (66) and (70) in this expression,

Y (t)H(t) ≥
∫ t

ε

G−1H{2(1 + L)1/2 − (1 + L)(2 − αL2)}|g| ds + L−1(ε)

≥
∫ t

ε

G−1H{2(1 + L)1/2 − 2 − 2L + αL2}|g| ds + L−1(ε).
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In the last integral we now substitute the inequality 2(1 + L)1/2 ≥
2 + L−L2/4 which can be verified under the constraint (67) by taking
the square of both its sides. This yields

Y (t)H(t) ≥
∫ t

ε

G−2{(α − 1/4)L − 1}|g| ds + L−1(ε)

= (α − 1/4) ln{L(t)/L(ε)} + L−1(t).

Subsequently, letting ε ↓ 0 gives Y (t) = ∞ for any t ∈ (0, δ).

Thus, supposing that when (66) holds, (1) does have a solution on an
interval [0, δ), we have indeed obtained an absurdity. By means of this
contradiction, the theorem is proved.

An alternative necessary condition for the existence of a solution of
(1) is contained below.

Theorem 13. Suppose that (60) holds. Then, if

f(s) ≤ f(t) + β{G2(t) − G2(s)}1/2 for all 0 ≤ s < t

and

(72) f(t) < AG(t)

where

(73) A = 2/(
√

β2 + 4 + β)

for some t ∈ (0, τ ) and −∞ < β ≤ ∞, equation (1) has no solution on
[0, τ ).

The next lemma will be used for the proof of this theorem.

Lemma 11. Suppose that ess inf {g(t) : 0 < t < τ} ≥ 0 and
f(t) ≤ βG(t) for all t ∈ [0, τ ) where G(t) is defined by (61), for some
0 < τ < ∞ and −∞ < β ≤ ∞. Then, given any μ > 0, there exists a
ρ > 0 such that

(74) x(t; μ) ≥ ρ + f(t) + AG(t) for all t ∈ [0, min{T (μ), τ})
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where A is defined by (73).

Proof. Since ess inf {g(t) : 0 < t < τ} ≥ 0, equation (24) immediately
gives x(t; μ) ≥ μ + f(t) for all t ∈ [0, min{T (μ), τ}). This yields (74)
with ρ = μ in the case β = ∞. To confirm (74) when β < ∞, set

Y (t) := μ +
∫ t

0

g(s)/x(s; μ) ds = x(t; μ) − f(t)

and

δ := sup{t ∈ [0, min{T (μ), τ}) : x(s; μ) > f(s)
+ AG(s) for all s ∈ [0, t)}.

Multiplying (24) by Y ′ this equation can be rewritten as

0 = Y (t)Y ′(t) + f(t)Y ′(t) − G(t)G′(t)
≤ Y (t)Y ′(t) + βG(t)Y ′(t) − G(t)G′(t)

for almost all t ∈ (0, δ). Whence, multiplying by (A + 1/A)−1(Y +
G/A)A−1(Y − AG)1/A−1 and integrating from 0 to t we obtain

μA+1/A ≤ (Y + G/A)A(Y − AG)1/A(t)

or

{x(t; μ)−f(t)+G(t)/A}A{x(t; μ)−f(t)−AG(t)}1/A ≥ μA+1/A

for every t ∈ [0, δ). If, though, x(t; μ) − f(t) − AG(t) → 0 as t ↑ δ
with δ < ∞, this last inequality is self-contradictory. We are therefore
forced to conclude that δ ≥ min{T (μ), τ} and there exists a ρ > 0 such
that (74) holds. This completes the proof in the case β < ∞.

Proof of Theorem 13. Suppose that (1) has a solution on [0, τ ). Pick
μ > 0. By Theorem 10, necessarily T (μ) > t. Subsequently setting
μ∗ := x(t; μ), f∗(s) := f(t − s) − f(t) and g∗(s) := −g(t − s), it can
be verified that x∗(s) := x(t − s; μ) is the solution on [0, t) of equation
(24) with μ, f and g replaced by μ∗, f∗ and g∗, respectively. Applying
Lemma 11 to this variant of (24) yields

x(s; μ) ≥ ρ + f(s) − f(t) + A{G2(t) − G2(s)}1/2
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for all s ∈ (0, t) for some ρ > 0. Whence letting s ↓ 0, we obtain

f(t) > AG(t) − μ.

Passing to the limit μ ↓ 0 delivers a contradiction of (72).

Corollary. Suppose that (60) holds. Then (1) has a solution on
[0, τ ) only if f(t) ≥ 0 for all t ∈ [0, τ ). Moreover, if f is nondecreasing
on [0, τ ), then (1) has a solution on [0, τ ) only if f(t) ≥ G(t) for all
t ∈ [0, τ ).

Proof. The first assertion is trivial but can be obtained from the
theorem by taking β = ∞. The second assertion is deducible by letting
β = 0.

Having established that if (59) and (60) hold equation (1) may or
may not have a solution, we turn now to a discussion of the possible
number of solutions in the first event. Our main result in this direction
will call upon the following simple corollary of Theorem 12.

Lemma 12. Suppose that (60) holds and f(t) ≤ αG(t) for all
t ∈ [0, τ ) for some α < 2. Then x̃(t; 0) solves (1) on [0, τ ) only if
x̃(t; 0) = f(t) = G(t) = 0 for all t ∈ [0, τ ).

The main result itself is the following.

Theorem 14. Suppose that (59), (60), and (62) hold, and further-
more, given any t ∈ (0, τ ), there exist a δ > 0 and an α < 2 such
that

(75) f(s) − f(t) ≤ α{G2(s) − G2(t)}1/2

for all s ∈ (t, t + δ). Then either (1) has no solution or it has an
uncountable number of solutions.

Proof. Since (62) holds, if T̃ (0) > 0 we can pick an arbitrarily small
t∗ ∈ (0, min{T̃ (0), τ}) such that x̃(t∗; 0) > 0. For fixed ρ ∈ (0, x̃(t∗; 0))
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consider the integral equation (12). By Lemma 3 there is a unique
positive solution x∗ to this equation, and when (t−, t+) denotes its
maximal interval of existence, (13) (16) hold. Furthermore, by Lemma
4, we have

(76) x̃(t; 0) > x∗(t) for all t ∈ (t−, t+).

Applying Lemma 12 to (16), though, the possibility that t− > 0
is excluded by (75). So t− = 0; by (76) necessarily x∗(0) = 0;
and, subsequently, x∗ is a solution of (1) on [0, t∗). In view of the
arbitrariness of t∗ and ρ, this yields the theorem.

Remark. As much as if (1) is solvable, then it has a maximal solution
by Theorem 4, the proof of Theorem 14 shows that, in general, the
equation has no complementary minimal solution.

In the last section we discuss a specific example of (1) in which this
phenomenon is overtly apparent.

8. Positive kernel. This section comprises a similar study to that
in the previous section for equation (1) when

(77) ess inf {g(s) : 0 < s < τ} ≥ 0 for some 0 < τ ≤ ∞.

As in the previous section, it is convenient to define G by (61).
Moreover, in order that (1) does not reduce to the trivial identity x = f ,
we shall again generally assume that (62) holds. On the one hand, this
case is easier to analyze than the previous one. This is because, by
Theorem 3, the equation is now known to have at most one solution
in [0, τ ). On the other hand, we are handicapped in that instead of
Theorem 10 we now have to fall back on Theorem 9 for comparison
arguments. This specifically means that, given equations (1) and (47)
with g1 ≡ g we can only deduce the existence of a solution of (1) from
the existence of a solution of (47) when (48) and (49) hold. Thus, for
instance, although for f1 := −γG for some constant γ > 0 and g1 := g
we can compute that

x1(t) := {(
√

γ2 + 4 − γ)/2}G(t)
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is a solution of (47), this only infers the existence of a solution of (1)
when (f+γG) is nondecreasing. When this information is not available,
the next result can be of help.

Theorem 15. Suppose that (77) and (62) hold and that

(78) αG(t) ≤ f(t) ≤ βG(t) for all t ∈ [0, τ )

for some −∞ < α ≤ β ≤ ∞. Set

A = 2/(
√

β2 + 4 + β) and B = 2/(
√

α2 + 4 + α).

Then, if

(79) α ≥ −A

equation (1) has a (unique) solution x̃(t; 0) on [0, τ ) such that

(80) AG(t) ≤ x̃(t; 0) − f(t) ≤ BG(t) for all t ∈ [0, τ ).

Proof. Without loss of generality, we may assume that τ < ∞.
Referring to the machinery set up in Sections 4 and 5, for every μ > 0
the equation (24) has a unique positive solution on a maximal interval
of existence [0, T (μ)). Furthermore, by Lemma 11, there is a ρ > 0
such that (74) holds. Whence, by (78) and (79), x(t; μ) ≥ ρ > 0 for all
t ∈ [0, min{T (μ), τ}). However, seeing that x(t; μ) → 0 as t ↑ T (μ) if
T (μ) < ∞ this is only possible if T (μ) ≥ τ . Consequently, T (μ) ≥ τ
and

(81) x(t; μ) > f(t) + AG(t) for all t ∈ [0, τ ).

Theorem 6 now states that x̃(t; 0) is a solution of (1) on [0, τ ). Letting
μ ↓ 0 in (81) yields the left-hand inequality in (80).

It remains to establish the right-hand inequality in (80). Supposing
though that this is not true, there must be a t0 ∈ [0, τ ) and a t1 ∈ (t0, τ )
such that

x̃(t0; 0) = f(t0) + BG(t0)
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and

(82) x̃(t; 0) > f(t) + BG(t) for all t ∈ (t0, t1].

Setting

Y (t) :=
∫ t

0

g(s)/x̃(s; 0) ds,

we may rewrite (1) as

0 = Y (t)Y ′(t) + f(t)Y ′(t) − G(t)G′(t)
≥ Y (t)Y ′(t) + αG(t)Y ′(t) − G(t)G′(t)

for almost all t ∈ (0, τ ). Whence, multiplying by (B + 1/B)−1(Y +
G/B)B−1(Y − BG)1/B−1, integrating from t0 to t1, and finally using
(1) to eliminate Y , we compute

{x̃(t1; 0) − f(t1) + G(t1)/B}B{x̃(t1; 0) − f(t1) − BG(t1)}1/B

≤ {x̃(t0; 0)− f(t0) + G(t0)/B}B{x̃(t0; 0)− f(t0)−BG(t0)}1/B = 0,

which contradicts (82).

Our final result in this section basically infers that if g is positive in
a right neighborhood of zero and f is relatively smooth, then equation
(1) has a solution no matter how rapidly f may become negative away
from zero.

Theorem 16. Suppose that (77) holds, and that given any t ∈ (0, τ )
there exists a δ ∈ (0, τ ] and an α < 2 such that

f(s) − f(t) ≤ α{G2(t) − G2(s)}1/2

for all s ∈ (t−δ, t). Then equation (1) has a (unique) solution on [0, τ ).

For the proof of this theorem, we use a lemma. Note that in this
lemma we do not necessarily need any of the assumptions (59), (60),
(77) or (62).
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Lemma 13. Let μ ≥ 0. Suppose that x̃(t; μ) = 0 for some point
t ∈ (0,∞) such that

g(s) ≥ 0 for almost all s ∈ (t − δ, t)

and

f(s) − f(t) ≤ α{G2(t) − G2(s)}1/2 for all s ∈ (t − δ, t)

for some δ ∈ (0, t] and α < 2. Then if t ≤ T̃ (μ), there holds x̃(s; μ) = 0
for all s ∈ [t − δ, t].

Proof. Set f1(s) := f(t−s)−f(t) and g1(s) := −g(t−s) for s ∈ (0, δ).
Then, invoking Lemma 2 if need be, the function x1(s) := x̃(t − s; μ)
can be verified to be a solution of the equation (47) on [0, δ). Applying
Lemma 12 to (47) yields the stated result.

Proof of Theorem 16. If T (μ) < τ for any μ > 0, then by Lemma 13
necessarily x̃(t; μ) = 0 for all t ∈ [0, T (μ)). However, this is at odds
with x̃(0; μ) = μ. So T (μ) ≥ τ for all μ > 0. The present theorem now
follows from Theorem 6.

9. A special case. In this final section we examine equation (1)
when

(83)
∫ t

0

g(s) ds < 0 for all t ∈ (0,∞)

and

(84) f(t) = αG(t) for all t ∈ [0,∞)

with α ≥ 2 and G defined by (61). Because of the peculiar structure
of the equation in this instance, we are able to show that it admits an
uncountable number of solutions which can be precisely characterized
by their behavior as t ↓ 0.

Theorem 17. Suppose that (83) and (84) hold. Let L and J be
defined by (63) and (64). Set

β1 = (α −
√

α2 − 4)/2, β2 = (α +
√

α2 − 4)/2
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and

κ =
{

exp(−1) for α = 2
{ββ1

1 (1 − β1/β2)β2}1/(β2−β1) for α > 2.

(i) If α = 2 equation (1) admits the maximal solution

x̃(t; 0) = G(t),

for each γ ∈ R a unique solution xγ such that

xγ(t) = (G − GL + GL2J−1 + γGL2)(t) + O((GL3J−2)(t)) as t ↓ 0

with maximal interval of existence of [0, Tγ) where Tγ = sup{t ∈ [0,∞) :
G(s) ≤ κ exp(γ) for all s ∈ [0, t)}, and no other solutions.

(ii) If α > 2 equation (1) admits the maximal solution

x̃(t; 0) = β2G(t),

for each γ ∈ R a unique solution xγ such that

xγ(t) = (β1G + γGβ2/β1)(t) + O(G(2β2−β1)/β1(t)) as t ↓ 0

with maximal interval of existence [0, Tγ) where Tγ = ∞ if γ ≥ 0 and
Tγ = sup{t ∈ [0,∞) : G(s) ≤ κ|γ|−β1/(β2−β1) for all s ∈ [0, t)} if γ < 0,
and no other solutions.

In both cases, x̃(t; 0) > xγ′(t) > xγ(t) for all t ∈ (0, Tγ) for any
∞ > γ′ > γ > −∞.

Proof. Suppose, to begin with, that x is a solution of (1) on [0, δ) for
some 0 < δ ≤ ∞. Define Y by (69). Then multiplying (1) by Y ′ this
equation may be reformulated as

(85) {Y (t) − αG(t)}Y ′(t) + G(t)G′(t) = 0

for almost all t ∈ (0, δ). The trick is now to observe that (85) becomes
exact using the integrating factor

X(t) := |Y (t) − β1G(t)|−αβ2 .
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Consequently, if Y is a solution of (85), either Y = β1G or we may
multiply (85) by X and integrate to obtain

(86) ln |Y − G| + G/(Y − G) = C when α = 2

or

(87) (Y − β1G)|Y − β1G|−αβ2(β2G − Y ) = C when α>2

for some constant C. Analysis of (86) and (87), which is tedious and
will therefore be skipped, reveals that if Y → 0 as G → 0 in these
relationships, then necessarily Y > β1G. Consequently, using (1) to
eliminate Y we may conclude that either

(88) x(t) = β2G(t),

or x(t) < β2G(t) and

(89) {ln(G − x) + G/(G − x)}(t) = C for α = 2

(90) {(β2G − x)−β2/β1(x − β1G)}(t) = C for α > 2

for some real constant C. Retracing the above argument, one may
furthermore ascertain that any function x which satisfies (88), (89), or
(90) on (0, δ) for some δ > 0 is a solution of (1). The theorem now
follows from analysis of the relations (88) (90). Incidentally, this may
also be used to obtain the corollary below. We omit further details.

Corollary. Suppose that α > 2. Then x0 ≡ β1G. Furthermore, if
G(t) → ∞ as t → ∞, then for every γ > 0 there holds xγ(t) ∼ β2G(t)
as t → ∞.

Inspiration for Theorem 17 was obtained from the results of de Pablo
and Vazquez [6] on the occurrence of ‘finite’ travelling-wave solutions
of the reaction-diffusion equation (4) with a(s) ≡ sm, b(s) ≡ 0 and
c(s) ≡ sp for some real parameters m > 1 and p = 2 − m, and
the correspondence between travelling-wave solutions of (4) and the
integral equation (1) outlined in the introduction.
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We remark that the method of reformulating (1) as an ordinary
differential equation with the integral in (1) as the unknown and then
identifying an integrating factor for the ensuing differential equation
may also be applied when (83) holds and f(t) = μ + αG(t) for any
μ ≥ 0 and α ∈ R. This technique can furthermore be applied
when the inequality sign in (83) is reversed and f has the form
just mentioned. However, for these cases the analysis yields little
particularly noteworthy information which has not been covered by
the preceding results.
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