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PHASE TRANSITION PROBLEMS
IN MATERIALS WITH MEMORY

PIERLUIGI COLLI AND MAURIZIO GRASSELLI

1. Introduction. In this paper phase transition problems in mate-
rials with memory are formulated and studied. As usual for this kind of
material, the classical Fourier conduction law is modified by adding a
memory term to the heat flux. Also, since different phases are involved,
the internal energy e is allowed to depend on the phase variable χ. By
considering the standard equilibrium condition at the interface between
two phases, we deal with the Stefan problem accounting for memory
effects. Next, replacing this equilibrium condition by a relaxation dy-
namics, we represent superheating and supercooling phenomena. The
application of a fixed point argument helps us to show the existence
and uniqueness of the solution to the latter relaxed problem. Hence,
taking the limit as a kinetic parameter goes to 0, we prove an existence
result for the former Stefan problem. In this case the uniqueness is
deduced by contradiction.

Let us now introduce and briefly discuss the models. In order
to account for memory effects in heat conduction phenomena, some
modifications of the classical Fourier law have been proposed along
with different constitutive assumptions on the internal energy. Here
we follow a well known and widely investigated theory (see, e.g., [8]
and its references) to approach materials having a memory of the past
histories. Let us consider a sample of such a material (supposed to be
homogeneous and isotropic) located in a bounded domain Ω ⊂ R3 at
each point x ∈ Ω for each time t ∈ R. According to Coleman and
Gurtin [4] (see also [2, 9]) we assume that the following linear non
Fourier law holds:

(1.1) q(x, t) = −ko∇ϑ(x, t)−
∫ t

−∞
k(t−s)∇ϑ(x, s)ds, (x, t) ∈ Ω×R,

where q : Ω × R → R3 represents the heat flux, ϑ : Ω × R → R
is the absolute temperature, and, as usual, ∇ denotes the gradient
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operator with respect to the space variables. Moreover, letting k0 be
a given positive constant, the datum k : ]0,+∞[ → R is the so-called
heat flux relaxation function. Next, consider a two-phase system and
denote by χ : Ω × R → [0, 1] the concentration of the more energetic
phase (e.g., water in a water-ice system). Then, for the internal energy
e : Ω × R → R a physically reasonable constitutive relation in the
linear case is (cf., e.g., [9, 12, 13])
(1.2)

e(x, t) = ϕ0ϑ(x, t)+ψ0χ(x, t)+
∫ t

−∞
{ϕ(t−s)ϑ(x, s)+ψ(t−s)χ(x, s)} ds

for (x, t) ∈ Ω × R. Here ϕ0, ψ0, k0 are positive constants and ϕ, ψ :
]0,+∞[ → R represent energy relaxation functions. We remark that
if k = ϕ = ψ ≡ 0 then the equation (1.1) turns out to be the Fourier
law and (1.2) reduces to the usual linear constitutive assumption on
the internal energy.

We assume now that the histories of ϑ and χ are known up to t = 0,
that is,

(1.3) ϑ ≡ ϑ̄, χ ≡ χ̄ in Ω × ]−∞, 0[ ,

and recall the classical energy balance equation

(1.4) ∂te = −∇ · q + r,

where ∂t = ∂/∂t, ∇· denotes the divergence operator and r :
Ωx ]0,+∞[ → R is the heat supply. Then, with the help of (1.1 4)
we deduce the following integrodifferential equation

(1.5)
∂t(ϕ0ϑ+ ψ0χ+ ϕ ∗ ϑ+ ψ ∗ χ) = k0Δϑ+ k ∗ Δϑ+ f

in Ω × ]0,+∞[ ,

where Δ stands for the Laplacian, the symbol “∗” denotes the usual
convolution product with respect to time over ]0, t[, and f is defined
for x ∈ Ω and t > 0 by

(1.6)
f(x, t) := r(x, t) +

∫ 0

−∞
k(t− s)Δϑ̄(x, s) ds

− ∂t

( ∫ 0

−∞
{ϕ(t− s)ϑ̄(x, s) + ψ(t− s)χ̄(x, s)} ds

)
.
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In order to describe the evolution of ϑ and χ, in addition to (1.5) we
need a further equation relating these variables. We examine two dif-
ferent conditions. First, for simplicity letting ϑ = 0 be the equilibrium
temperature at which the two phases can coexist, as relationship be-
tween ϑ and χ we take the well known equilibrium condition of Stefan
problem (see, e.g., [5, 11] and their references)

(1.7) χ ∈ H(ϑ) in Ω × ]0,+∞[ ,

where H denotes the Heaviside graph (i.e., H(η) = 0 if η < 0,
H(0) = [0, 1], H(η) = 1 if η > 0). Then, as we intend to take dynamical
supercooling and superheating effects into account, we also consider
a nonequilibrium condition, represented by the following relaxation
dynamics for the phase variable χ (cf., e.g., [10 13])

(1.8) αχt +H−1(χ) 	 β(ϑ, χ) in Ω × ]0,+∞[ ,

where χt = ∂tχ. Here α is a small, positive, kinetic constant and
β : R × [0, 1] → R is a given continuous function such that β(·, η) is
increasing in a neighborhood of 0 and β(0, η) = 0 for any η ∈ [0, 1].

The equations (1.5), (1.7) (or (1.8)) must be coupled with suitable
boundary and initial conditions. For instance, letting {Γ0,Γν} be a
partition of ∂Ω into two measurable subsets, one can take

ϑ = g on Γ0 × ]0,+∞[ ,(1.9)
k0∂νϑ+ k ∗ ∂νϑ = h on Γν × ]0,+∞[ ,(1.10)
ϑ(·, 0) = ϑ0, χ(·, 0) = χ0 in Ω,(1.11)

where ∂ν denotes the outward normal derivative on ∂Ω, g, ϑ0, χ0 are
given functions and, letting l represent the normal heat flux, h is defined
for x ∈ ΓN and t > 0 by (cf. (1.1))

(1.12) h(x, t) := l(x, t) −
∫ 0

−∞
k(t− s)∂ν ϑ̄(x, s) ds.

In this work we prove existence and uniqueness results both for the
Stefan problem (1.5), (1.7), (1.9 11) (where the initial condition (1.11)
has to be suitably modified) and for the relaxed problem (1.5), (1.8 11).
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Assuming the function β in (1.8) to be Lipschitz continuous with
respect to both variables, we show the existence and uniqueness of a
pair (ϑ, χ) solving (1.5), (1.8 11) on a given time interval ]0, T [ (T > 0).
Then, choosing β(ϑ, χ) = Λϑ (where Λ denotes a positive constant),
with the help of a priori estimates and compactness arguments we
pass to the limit in (1.5), (1.8 11) as α goes to 0. Thus, we get a
solution (ϑ, χ) of the Stefan problem (1.5), (1.7), (1.9 11). Finally,
taking advantage of an inversion formula for Volterra equations, we
prove that this problem has at most one solution.

By reviewing the related literature (cf., e.g., [5, 8, 9, 12] and
references therein) it appears that equations and conditions (1.5),
(1.7 11) yield quite general models for phase transitions in materials
which exhibit a memory. As far as we know, it does not seem that the
related problems have yet been studied, unless the memory functions
k, ϕ, ϑ vanish (see, e.g., [5, 13]) or a one-phase Stefan problem is
considered (cf. [2]). However, in the paper [2] (which is the only work
we found on this subject) Barbu proves an existence and uniqueness
result under rather heavy assumptions on the function k (allowing
application of monotonicity techniques).

The outline of our paper is the following. In the next section we
introduce variational formulations of the two problems and state our
main results. In Section 3 we show the existence and uniqueness of the
solution to the relaxed problem (1.5), (1.8 11) by using the Contraction
Mapping Principle. Sections 4 and 5 are completely devoted to the
proof of our results on the Stefan problem (1.5), (1.7), (1.9 11).

2. Variational formulations and main results. In this sec-
tion we shall present weak formulations of both problems along with
our existence and uniqueness theorems. In order to avoid too many
technicalities, we replace the mixed boundary conditions (1.9 10) by
the homogeneous Dirichlet boundary condition (however, see the later
Remark 2.3).

Let Ω ⊂ RN , N ≥ 1, be a bounded domain with boundary ∂Ω of class
C0,1 and let Q := Ω × ]0, T [. We set H := L2(Ω) and V := H1

0 (Ω). As
usual, we identify H with its dual space H ′. Then it is well known that
V ⊂ H ⊂ V ′ with dense and compact injections. We also introduce
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the following closed and convex subset of H,

(2.1) K := {γ ∈ H : 0 ≤ γ ≤ 1 a.e. in Ω}.
Henceforth we denote by 〈·, ·〉 either the duality pairing between V ′

and V or the scalar product in H. Besides, let (·, ·) represent the scalar
product in HN and let || · || denote the norm either in H or in HN .
The symbol “ ′ ” will be used to indicate the derivative of functions
only depending on time.

First we consider the phase transition problem accounting for super-
cooling and superheating effects. In this case for the data we assume
that

ϕ ∈W 1,1(0, T ),(H1)
ψ ∈ L1(0, T ),(H2)
k ∈W 1,1(0, T ),(H3)

f ∈ L1(0, T ;H) + L2(0, T ;V ′),(H4)
∃ Λ > 0 : ∀ϑ1, ϑ2 ∈ R, ∀χ1, χ2 ∈ [0, 1](H5)

|β(ϑ1, χ1) − β(ϑ2, χ2)| ≤ Λ{|ϑ1 − ϑ2| + |χ1 − χ2|},
ϑ0 ∈ H,(H6)
χ0 ∈ K.(H7)

A precise variational formulation reads as follows.

Problem (P1). Find ϑ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and χ ∈
H1(0, T ;H) satisfying

ϑt ∈ L1(0, T ;H) + L2(0, T ;V ′),(2.2)
χ(·, t) ∈ K ∀ t ∈ [0, T ],(2.3)

(2.4)
〈∂t(ϕ0ϑ+ ψ0χ), v〉 + 〈∂t(ϕ ∗ ϑ+ ψ ∗ χ), v〉
+ (k0∇ϑ+ k ∗ ∇ϑ,∇v) = 〈f, v〉 ∀ v ∈ V, a.e. in ]0, T [ ,

α〈χt, χ− γ〉 ≤ 〈β(ϑ, χ), χ− γ〉 ∀ γ ∈ K, a.e. in ]0, T [ ,(2.5)
ϑ(·, 0) = ϑ0 a.e. in Ω,(2.6)
χ(·, 0) = χ0 a.e. in Ω.(2.7)



6 P. COLLI AND M. GRASSELLI

Remark 2.1. One can easily check that, for instance, ∂t(ψ ∗ χ) =
ψχ0 + (ψ ∗ χt) a.e. in Q. Also, owing to a well-known inequality (see,
e.g., [7, Theorem 2.2, p. 39]), the following estimate ||ψ∗χt||L2(0,T ;H) ≤
||ψ||L1(0,T )||χt||L2(0,T ;H) holds. Therefore, it is not difficult to see that
(H1 3) and (H7) imply ϕ ∗ ϑ ∈ W 1,∞(0, T ;H), ψ ∗ χ ∈ W 1,1(0, T ;H),
and k ∗ ∇ϑ ∈ H1(0, T ;HN ), so that the variational equation (2.4)
makes sense. Owing to (H5), the same conclusion holds for (2.5). We
also observe that (2.3) and (2.5) yield an equivalent formulation of
(1.8).

Remark 2.2. As ϑ fulfills (2.2), then (cf., e.g., [6, Vol. 8, Ch. XVIII])
ϑ ∈ C0([0, T ];H) and this, along with χ ∈ H1(0, T ;H), gives meaning
to the initial conditions (2.6 7).

Here is our first existence and uniqueness result.

Theorem 2.1. Under the assumptions (H1 7) there exists one and
only one solution of Problem (P1).

We shall use this result to show the existence of a solution to the
following Stefan problem with memory. Here, we do not need to know
the initial values for ϑ and χ separately, but it just suffices to give the
initial energy (cf. (1.2)) e0.

Problem (P2). Find ϑ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and χ ∈ L∞(Q)
satisfying

∂t(ϕ0ϑ+ ψ0χ) ∈ L1(0, T ;H) + L2(0, T ;V ′),(2.8)
χ ∈ H(ϑ) a.e. in Q,(2.9)

(ϕ0ϑ+ ψ0χ)|t=0 = e0 in V ′,(2.10)

and fulfilling (2.4).

For this problem we are able to prove the following results.
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Theorem 2.2. Assume that (H1), (H4),

ψ ∈W 1,1(0, T ),(H8)
k ∈ L2(0, T ),(H9)
e0 ∈ H(H10)

hold. Then there exists at least one solution of Problem (P2).

Theorem 2.3. Under the assumptions (H1), (H8), (H3 4), (H10)
there exists at most one solution of Problem (P2).

Remark 2.3. We point out that existence and uniqueness results
analogous to Theorems 2.1 3 hold for the more general boundary
conditions (1.9 10) provided that, e.g., g ∈ W 1,1(0, T ;H1/2(Γ0)) and
h ∈ L2(0, T ;L2(Γν)). Indeed, it suffices to argue as in [10], for instance,
and conveniently modify the space V , the unknown ϑ, and the right
hand side 〈f, v〉 of (2.4). However, in order to allow the case Γν ≡ ∂Ω
too, in our proofs we will never use the well-known Friedrichs inequality.

Remark 2.4. It is not difficult to state regularity properties on
the functions ϑ̄, χ̄, r, l (cf. (1.6), (1.12)) in order to ensure that f ∈
L1(0, T ;H) +L2(0, T ;V ′) and that h ∈ L2(0, T ;L2(Γν)). For instance,
one can assume (H1 3) holding for T = +∞ and take

ϑ̄ ∈ L2(−∞, 0;V ∩H2(Ω)), χ̄ ∈W 1,1(−∞, 0;H),
r ∈ L1(0, T ;H) + L2(0, T ;V ′), l ∈ L2(0, T ;L2(Γν)).

3. Proof of Theorem 2.1. In this section we shall show that
Problem (P1) has a unique solution by applying the Banach fixed
point theorem to a suitable functional operator. First, we introduce
the following Hilbert space

(3.1) X := {(u, η) ∈ L2(0, T ;H2) : 1 ∗ u ∈ L∞(0, T ;V )}
(obviously (1 ∗ u)(·, t) =

∫ t

0
u(·, s) ds for any t ∈ [0, T ]) and we endow

X with the norm || · ||X := || · ||T , where

||(u, η)||2t := ||u||2L2(0,t;H) + ||∇(1 ∗ u)||2L∞(0,t;HN ) + ||η||2L2(0,t;H)
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for (u, η) ∈ X and t ∈ [0, T ]. It is easy to see (cf. (2.1)) that

(3.2) Y := {(u, η) ∈ X : η(·, t) ∈ K for a.e. t ∈ ]0, T [}

is a closed and convex subset of X. Since, by a simple integration by
parts, k ∗ u = k(0)(1 ∗ u) + k′ ∗ (1 ∗ u), with the help of (H1), (H3) and
(H5) (cf. also Remark 2.1) it is not difficult to check that

(3.3)
ϕ ∗ u ∈ H1(0, T ;H), k ∗ u ∈ L∞(0, T ;V ),

β(u, η) ∈ L2(0, T ;H) ∀ (u, η) ∈ Y.

We want to construct an operator J : Y → Y such that, letting m be
a positive integer sufficiently large, Jm is a contraction mapping in Y .
To this aim, we prepare the following lemma.

Lemma 3.1. Let (u, η) ∈ Y be given. Then there exists one and
only one pair (Θ,X ) satisfying

Θ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), X ∈ H1(0, T ;H)(3.4)
Θt ∈ L1(0, T ;H) + L2(0, T ;V ′),(3.5)

X (·, t) ∈ K ∀ t ∈ [0, T ],(3.6)
α〈Xt,X − γ〉 ≤ 〈β(u, η),X − γ〉 ∀ γ ∈ K, a.e. in ]0, T [ ,(3.7)

(3.8)
〈ϕ0Θt, v〉 + (k0∇Θ,∇v) = −〈∂t(ψ0X + ψ ∗ X + ϕ ∗ u), v〉

− (∇(k ∗ u),∇v) + 〈f, v〉 ∀ v ∈ V, a.e. in ]0, T [ ,

Θ(·, 0) = ϑ0 a.e. in Ω,(3.9)
X (·, 0) = χ0 a.e. in Ω.(3.10)

Proof. From (3.3) and (H7) it follows that (cf., e.g., [3, Chapter III,
Sections 2, 3]) there exists one and only one X ∈ H1(0, T ;H) satisfying
(3.6 7) and (3.10). Then, by (3.3), (H2), and (H4) we infer that the
right hand side of (3.8) turns out to be a linear and continuous form
on L∞(0, T ;H) ∩ L2(0, T ;V ). Owing also to (H6), it is easy to check
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that (see, e.g., [6, Vol. 8, Ch. XVIII]) the problem (3.8 9) has a unique
solution Θ ∈ C0([0, T ];H) ∩ L2(0, T ;V ) that satisfies (3.5).

Thanks to (3.4) and (3.6), the pair (Θ,X ) belongs to Y . Therefore
Lemma 3.1 allows us to define the following (nonlinear) mapping

(3.11) J : Y → Y, J(u, η) := (Θ,X ) is the solution of (3.4 10).

Let us point out that (Θ,X ) is more regular than (u, η). Also, it is
straightforward to see that any fixed point of the mapping J yields
a solution of Problem (P1). The next lemma shows the contraction
properties of J .

Lemma 3.2. There is a positive constant C, depending only on
ϕ0, ψ0, k0, ||ϕ||L2(0,T ), ||ψ||L1(0,T ), ||k||W 1,1(0,T ), α,Λ, and T , such that
for any (u1, η1), (u2, η2) ∈ Y one has
(3.12)

||J(u1, η1) − J(u2, η2)||2t ≤ C

∫ t

0

||(u1, η1) − (u2, η2)||2τ dτ ∀ t ∈ [0, T ].

Proof. Let (u1, η1), (u2, η2) ∈ Y be given and let (Θi,Xi) := J(ui, ηi),
i = 1, 2. First we replace u, η,X by ui, ηi,Xi, i = 1, 2, in (3.7), taking
γ = X2 and γ = X1, respectively. Next we sum them and integrate in
time. Note that both X1 and X2 satisfy (3.10). By applying (H5), the
Hölder inequality in space and time, and the elementary inequality

(3.13) ab ≤ (δ/2)a2 + (2δ)−1b2 ∀ a, b ∈ R, ∀ δ > 0,

we deduce that
(3.14)

||(X1 −X2)(·, τ )||2 ≤ Λ2T

α2
{||u1 − u2||2L2(0,τ ;H) + ||η1 − η2||2L2(0,τ ;H)}

+
1

2T

∫ τ

0

||(X1 −X2)(·, ς)||2 dς ∀ τ ∈ [0, T ].

We integrate (3.14) from 0 to t ∈ [0, T ] and estimate the last term of
the right hand side. Thus, we obtain

(3.15) ||(X1 −X2)||2L2(0,t;H)

≤ 2Λ2T

α2

∫ t

0

{||u1 − u2||2L2(0,τ ;H) + ||η1 − η2||2L2(0,τ ;H)} dτ
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for any t ∈ [0, T ]. Then we consider (3.8) and substitute X , u with Xi,
ui, i = 1, 2. Taking the difference between the equations corresponding
to Θ1 and Θ2, hence integrating in time and accounting for (3.9 10),
we infer that

(3.16) 〈ϕ0(Θ1 − Θ2)(·, t), v〉 +
(
k0∇

∫ t

0

(Θ1 − Θ2)(·, ς) dς,∇v
)

= −〈ψ0(X1 −X2)(·, t), v〉
− 〈(ψ ∗ (X1 −X2) + ϕ ∗ (u1 − u2))(·, t), v〉

−
(
∇

∫ t

0

(k ∗ (u1 − u2))(·, ς) dς,∇v
)

for any v ∈ V and any t ∈ [0, T ]. In order to simplify the notations,
in the rest of the proof Θ,X , u will denote the differences Θ1 − Θ2,
X1 −X2, u1 − u2, respectively. Then, by choosing v = Θ(·, t) in (3.16)
and integrating it from 0 to τ ∈ [0, T ], we have

(3.17) ϕ0||Θ||2L2(0,τ ;H) +
k0

2
||∇(1 ∗ Θ)(·, τ )||2 = −

3∑
i=1

Ii(τ ),

where

I1(τ ) :=
∫ τ

0

{〈ψ0X (·, ς),Θ(·, ς)〉 + 〈(ψ ∗ X )(·, ς),Θ(·, ς)〉} dς,

I2(τ ) :=
∫ τ

0

〈(ϕ ∗ u)(·, ς),Θ(·, ς)〉 dς,

I3(τ ) :=
∫ τ

0

(∇(1 ∗ (k ∗ u))(·, ς),∇Θ(·, ς)) dς,

for any τ ∈ [0, T ]. We now estimate each one of these inte-
grals. As (cf., e.g., [7, Theorem 2.2, p. 39]) ||ψ ∗ X ||L2(0,τ ;H) ≤
||ψ||L1(0,τ)||X ||L2(0,τ ;H), with the help of the Hölder inequality and
(3.13) it is straightforward to deduce that

(3.18) |I1(τ )| ≤ 2
ϕ0

{ψ2
0 + ||ψ||2L1(0,τ)}||X ||2L2(0,τ ;H) +

ϕ0

4
||Θ||2L2(0,τ ;H)

for any τ ∈ [0, T ]. Next, (3.13) and a further application of the Hölder
inequality in time yield

(3.19) |I2(τ )| ≤
||ϕ||2L2(0,τ)

ϕ0

∫ τ

0

||u||2L2(0,ς;H) dς +
ϕ0

4
||Θ||2L2(0,τ ;H)

∀ τ ∈ [0, T ].
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Recalling that the convolution product is associative and commutative
and that k ∗ u = k(0)(1 ∗ u) + k′ ∗ 1 ∗ u, by means of an integration by
parts in time we obtain the following equality

I3(τ ) = (∇(k ∗ 1 ∗ u)(·, τ ),∇(1 ∗ Θ)(·, τ ))
−

∫ τ

0

(∇(k(0)(1 ∗ u) + k′ ∗ (1 ∗ u))(·, ς),∇(1 ∗ Θ)(·, ς)) dς
∀ τ ∈ [0, T ].

Then, owing the Hölder inequality and (3.13), we have

(3.20)

|I3(τ )| ≤ 1
k0

{||k||2L2(0,τ) + 2|k(0)|2 + 2||k′||2L1(0,τ)}

×
∫ τ

0

||∇(1 ∗ u)(·, ς)||2 dς

+
k0

4
||∇(1 ∗ Θ)(·, τ )||2 +

∫ τ

0

k0

4
||∇(1 ∗ Θ)(·, ς)||2 dς

∀ τ ∈ [0, T ].

By estimating the right hand side of (3.17) with the help of (3.18 20)
and then applying the Gronwall lemma (cf., e.g., [3, p. 156]), we find a
constant C1 such that for any t ∈ [0, T ] and any τ ∈ [0, t] the inequality

(3.21)
ϕ0

2
||Θ||2L2(0,τ ;H) +

k0

4
||∇(1 ∗ Θ)(·, τ )||2

≤ C1

{
||X ||2L2(0,t;H)+

∫ t

0

(||u||2L2(0,ς;H)+||∇(1∗u)||2L∞(0,ς;HN )) dς
}

holds. Moreover, the constant C1 depends only on T , ϕ0, ψ0, k0,
||ϕ||L2(0,T ), ||ψ||L1(0,T ), and ||k||W 1,1(0,T ). Taking the maximum of the
left hand side of (3.21) with respect to τ ∈ [0, t] and making use of
(3.15), we easily get (3.12). Thus the lemma is completely proved.

The inequality (3.12) allows us to easily conclude the proof of Theo-
rem 2.1. Indeed, from (3.12) it follows that

(3.22) ||J(u1, η1)−J(u2, η2)||2t ≤ Ct||(u1, η1)−(u2, η2)||2t ∀ t ∈ [0, T ].
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Hence (3.12) and (3.22) yield

||J2(u1, η1)−J2(u2, η2)||2t ≤ C

∫ t

0

||J(u1, η1) − J(u2, η2)||2τ dτ

≤ C2t2

2
||(u1, η1)−(u2, η2)||2t ∀ t ∈ [0, T ].

Then by induction we obtain

||Jm(u1, η1) − Jm(u2, η2)||2X ≤ (CT )m

m!
||(u1, η1) − (u2, η2)||2X

for any m ∈ N and any (u1, η1), (u2, η2) ∈ Y . Therefore, for m
sufficiently large, Jm is a contraction mapping in Y and Problem (P1)
has one and only one solution.

Remark 3.1. Concerning the case without memories (i.e., ϕ = ψ =
k ≡ 0) observe that Theorem 2.1 yields an existence and uniqueness
result similar to those stated in [10, 13]. As one can easily check,
actually our proof is quite different and allows us to skip a lot of
technical details.

4. Proof of Theorem 2.2. Here we shall prove the existence of
a solution to Problem (P2). To this aim, letting (cf. (H10) and (2.1))
ϑ0 ∈ H, χ0 ∈ K be an arbitrary pair such that
(4.1) ϕ0ϑ0 + ψ0χ0 = e0,

we introduce a sequence {κn} of smooth functions (e.g., κn ∈ C1([0, T ])
for any n ∈ N) such that
(4.2) κn → k strongly in L2(0, T ) as n↗ ∞.

Then for any n ∈ N we consider the following

Problem (Pn). Find ϑn ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and χn ∈
H1(0, T ;H) satisfying (2.2 3) and

〈∂t(ϕ0ϑn + ψ0χn), v〉 + 〈∂t(ψ ∗ χn + ϕ ∗ ϑn), v〉(4.3)
+ (k0∇ϑn+κn ∗ ∇ϑn,∇v) = 〈f, v〉 ∀ v ∈ V, a.e. in ]0, T [ ,

1
n
〈∂tχn, χn− γ〉 ≤ 〈Λϑn, χn− γ〉 ∀ γ ∈ K, a.e. in ]0, T [ ,(4.4)

ϑn(·, 0) = ϑ0 a.e. in Ω,(4.5)
χn(·, 0) = χ0 a.e. in Ω.(4.6)
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Owing to Theorem 2.1, for any n ∈ N, there exists a unique solution
(ϑn, χn) of Problem (Pn). The following lemma states some estimates
which will help us to pass to the limit as n goes to ∞.

Lemma 4.1. There exists a positive constant B such that, for any
n ∈ N, the solution (ϑn, χn) of Problem (Pn) satisfies

(4.7) ||ϑn||2L∞(0,T ;H)∩L2(0,T ;V ) +
1
n
||∂tχn||2L2(0,T ;H) + ||χn||2L∞(Q) ≤ B.

Moreover, B depends only on ϕ0, ψ0, k0, ||ϕ||W 1,1(0,T ), ||ψ||W 1,1(0,T ),
||k||L2(0,T ), ||e0||, ||f ||L1(0,T ;H)+L2(0,T ;V ′), Λ, T , and on the Lebesgue
measure |Ω| of the domain Ω.

Proof. First we observe that (2.3) and (4.4) imply (see, e.g., [3,
Lemma 3.3, p. 73])

(4.8)
1
n
||∂tχn||2L2(0,t;H) = Λ

∫ t

0

〈ϑn(·, τ ), ∂tχn(·, τ )〉 dτ ∀ t ∈ [0, T ].

Then we choose v = ϑn in (4.3) and integrate it in time from 0 to
t ∈ ]0, T ]. Accounting for the initial condition (4.5), we obtain

(4.9)
ϕ0

2
||ϑn(·, t)||2 + k0||∇ϑn||2L2(0,t;H)

=
ϕ0

2
||ϑ0||2 − ψ0

∫ t

0

〈∂tχn(·, τ ), ϑn(·, τ )〉 dτ −
7∑

i=4

Ii(t),

where

I4(t) :=
∫ t

0

〈∂t(ψ ∗ χn)(·, τ ), ϑn(·, τ )〉 dτ,

I5(t) :=
∫ t

0

〈∂t(ϕ ∗ ϑn)(·, τ ), ϑn(·, τ )〉 dτ,

I6(t) :=
∫ t

0

((κn ∗ ∇ϑn)(·, τ ),∇ϑn(·, τ )) dτ,

I7(t) := −
∫ t

0

〈f(·, τ ), ϑn(·, τ )〉 dτ,
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for any t ∈ [0, T ]. Since ∂t(ψ ∗ χn) = ψ(0)χn + (ψ′ ∗ χn) and
||ψ′ ∗ χn||L2(0,t;H) ≤ ||ψ′||L1(0,t)||χn||L2(0,t;H), then from the Hölder
inequality, (3.13), (2.3), and (2.1) it follows that
(4.10)

|I4(t)| ≤ t|Ω|
2

{|ψ(0)|2 + ||ψ′||2L1(0,t)} + ||ϑn||2L2(0,t;H) ∀ t ∈ [0, T ].

By arguing in a similar way, we infer that

(4.11) |I5(t)| ≤ {|ϕ(0)| + ||ϕ′||L1(0,t)}||ϑn||2L2(0,t;H) ∀ t ∈ [0, T ].

A further application of the Hölder inequality in time along with (3.13)
gives
(4.12)

|I6(t)| ≤ k−1
0 ||κn||2L2(0,t)

∫ t

0

||∇ϑn||2L2(0,τ ;HN ) dτ +
k0

4
||∇ϑn||2L2(0,t;HN )

for any t ∈ [0, T ]. Recalling (H4) and letting f1 ∈ L1(0, T ;H) and
f2 ∈ L2(0, T ;V ′) be such that f = f1 + f2, we easily have

(4.13) |I7(t)| ≤
∫ t

0

||f1(·, τ )|| ||ϑn(·, τ )|| dτ + k−1
0 ||f2||2L2(0,t;V ′)

+
k0

4
{||ϑn||2L2(0,t;H) + ||∇ϑn||2L2(0,t;HN )} ∀ t ∈ [0, T ].

Now we multiply (4.8) by ψ0/Λ and add it to (4.9). Then, with the
help of (4.10 13) it is straightforward to deduce that

(4.14)
ϕ0

2
||ϑn(·, t)||2 +

k0

2
||∇ϑn||2L2(0,t;H) +

ψ0

Λn
||∂tχn||2L2(0,t;H)

≤ ϕ0

2
||ϑ0||2 +

||f2||2L2(0,T ;V ′)

k0

+
T |Ω|

2
{|ψ(0)|2 + ||ψ′||2L1(0,T )}

+
{

1 + |ϕ(0)| + ||ϕ′||L1(0,T ) +
k0

4

}∫ t

0

||ϑn(·, τ )||2 dτ

+
||κn||2L2(0,T )

k0

∫ t

0

||∇ϑn||2L2(0,τ ;HN ) dτ

+
∫ t

0

||f1(·, τ )|| ||ϑn(·, τ )|| dτ
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for any t ∈ [0, T ]. Setting now

(4.15) Rn(t) :=
(
||ϑn(·, t)||2+||∇ϑn||2L2(0,t;H)+

1
n
||∂tχn||2L2(0,t;H)

)1/2

for t ∈ [0, T ], by (4.14) and (4.1 2) it is easy to see that there are two
positive constants C2, C3 and a positive function C4 ∈ L1(0, T ) such
that

(4.16) R2
n(t) ≤ C2+C3

∫ t

0

R2
n(τ ) dτ+

∫ t

0

C4(τ )Rn(τ ) dτ ∀ t ∈ [0, T ],

where C2, C3, C4 are independent of n and have (at most) the same
dependences as does B. By applying to (4.16) an extended version of
the Gronwall lemma (see, e.g., [1, Theorem 2.1]) we infer that there is
a constant C5, depending only on C2, C3, and ||C4||L1(0,T ), such that

(4.17) Rn(t) ≤ C5 ∀ t ∈ [0, T ].

Finally, (4.15), (4.17), (2.3), and (2.1) imply (4.7) and this concludes
the proof of the lemma.

Thanks to the a priori estimate (4.7), there exists a pair (ϑ, χ) such
that, possibly taking subsequences,

ϑn → ϑ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ),(4.18)
χn → χ weakly star in L∞(Q),(4.19)

1
n
∂tχn → 0 strongly in L2(0, T ;H)(4.20)

as n ↗ ∞. We are going to show that (ϑ, χ) solves Problem (P2). By
(H1), (H8 9) (cf. also Remark 2.1), (4.2), (4.18 19) it is not difficult to
deduce the following convergences

ϕ ∗ ϑn → ϕ ∗ ϑ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ),
(4.21)

ψ ∗ χn → ψ ∗ χ weakly star in W 1,∞(0, T ;H),(4.22)

κn ∗ ϑn → k ∗ ϑ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ).
(4.23)
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Next we fix two functions f1 ∈ L1(0, T ;H) and f2 ∈ L2(0, T ;V ′) such
that f = f1 + f2. By comparing the terms of (4.3), from the previous
estimates it follows that the sequence ξn := ∂t(ϕ0ϑn + ψ0χn) − f1
is bounded in L2(0, T ;V ′) independently of n. Hence, at least for a
subsequence, ξn weakly converges to some limit ξ in L2(0, T ;V ′). But,
as ∫ T

0

〈ξn(·, t), v(·, t)〉 dt = −
∫ T

0

〈(ϕ0ϑn + ψ0χn)(·, t), vt(·, t)〉 dt

+
∫ T

0

〈f1(·, t), v(·, t)〉 dt

for any v ∈ H1
0 (0, T ;V ), then one can easily check that ξ = ∂t(ϕ0ϑ +

ψ0χ) − f1. Therefore,
(4.24)
(∂t(ϕ0ϑn +ψ0χn)−f1) → (∂t(ϕ0ϑ+ψ0χ)−f1) weakly in L2(0, T ;V ′)

as n↗ ∞ and the pair (ϑ, χ) satisfies (2.8). Besides, because of (4.5 6)
and (4.1), it is straightforward to recover the initial condition (2.10).

Now we consider (4.3) and replace f by f1 + f2. With the help of
(4.24), (4.18) and (4.21 23), by standard arguments we can pass to the
limit as n goes to ∞ to get the variational equality

(4.25) 〈∂t(ϕ0ϑ+ ψ0χ) − f1, v〉 + 〈∂t(ϕ ∗ ϑ), v〉 + 〈∂t(ψ ∗ χ), v〉
+ k0(∇ϑ,∇v) + (k ∗ ∇ϑ,∇v) = 〈f2, v〉

∀ v ∈ V, a.e. in ]0, T [ ,
which coincides with (2.4). It remains to show (2.9). As χn satisfies
(2.3), from (4.19) it follows that 0 ≤ χ ≤ 1 a.e. in Q. Then, in order to
complete the proof of Theorem 2.2, it is sufficient to prove, for instance,
that

(4.26)

∫ T

0

〈ϑ(·, t), (χ− γ)(·, t)〉 dt ≥ 0

∀ γ ∈ K := {η ∈ L2(0, T ;H) : η(·, t) ∈ K for a.e. t ∈ ]0, T [}.
Taking an arbitrary γ ∈ K as test function in (4.4) and integrating this
inequality in time, we obtain

1
n

∫ T

0

〈∂tχn(·, t), (χn − γ)(·, t)〉 dt ≤ Λ
∫ T

0

〈χn(·, t), ϑn(·, t)〉 dt

− Λ
∫ T

0

〈ϑn(·, t), γ(·, t)〉 dt
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for any γ ∈ K. Hence, owing to (4.18 20), to get (4.26) it suffices to
check that

(4.27) lim sup
n↗∞

∫ T

0

〈χn(·, t), ϑn(·, t)〉 dt ≤
∫ T

0

〈χ(·, t), ϑ(·, t)〉 dt.

In order to show (4.27) we observe that
(4.28)∫ T

0

〈χn(·, t), ϑn(·, t)〉 dt

=
1
ψ0

∫ T

0

〈(ϕ0ϑn + ψ0χn − 1 ∗ f1)(·, t), ϑn(·, t)〉 dt

− ϕ0

ψ0
||ϑn||2L2(0,T ;H) +

1
ψ0

∫ T

0

〈(1 ∗ f1)(·, t), ϑn(·, t)〉 dt.

By (4.18 19), (4.24), and by compactness we have that

(ϕ0ϑn + ψ0χn − 1 ∗ f1) → (ϕ0ϑ+ ψ0χ− 1 ∗ f1)
weakly star in H1(0, T ;V ′)∩L∞(0, T ;H) and strongly in L2(0, T ;V ′).
Then (4.28), (4.18) and the weak lower semicontinuity of the norm in
L2(0, T ;H) imply that

(4.29) lim sup
n↗∞

∫ T

0

〈χn(·, t), ϑn(·, t)〉 dt

≤ 1
ψ0

∫ T

0

〈(ϕ0ϑ+ ψ0χ− 1 ∗ f1)(·, t), ϑ(·, t)〉 dt

− ϕ0

ψ0
||ϑ||2L2(0,T ;H) +

1
ψ0

∫ T

0

〈(1 ∗ f1)(·, t), ϑ(·, t)〉 dt,

that is (4.27). Therefore, (ϑ, χ) is a solution of Problem (P2).

Remark 4.1. Note that the proofs of both the a priori estimate (4.7)
and the passage to the limit strongly depend on the fact that β (cf. (4.4)
and (2.5)) is linear. Otherwise, the asymptotic behavior of Problem
(P1) as α goes to 0 still remains an open question.

5. Proof of Theorem 2.3. In this section we shall prove that
Problem (P2) has a unique solution. By contradiction we assume that
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there exist two different solutions (ϑ1, χ1), (ϑ2, χ2) and set Θ := ϑ1−ϑ2,
X := χ1 − χ2. Taking the difference of the equations (2.4) written for
ϑ1, χ1 and ϑ2, χ2, then integrating in time and using (2.10), we obtain
(cf. (3.16))

(5.1) 〈ψ0X + ψ ∗ X , v〉 = 〈F , v〉,

where

〈F , v〉 := −〈ϕ0Θ + ϕ ∗ Θ, v〉 − (k0∇(1 ∗ Θ) + ∇(1 ∗ k ∗ Θ),∇v),

for any v ∈ V , a.e. in ]0, T [. Note that F ∈ L∞(0, T ;V ′) since
Θ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and (H1), (H8), (H3) hold (one can
see Remark 2.1 too). Owing to (H8), there exists one and only one
function Ψ ∈ W 1,1(0, T ) satisfying (cf., e.g., [7, Chapter 2, Theorem
3.1])

ψ0Ψ + ψ ∗ Ψ = ψ in [0, T ].

This function Ψ, named resolvent of ψ/ψ0, allows one to rewrite the
equation (5.1) as (cf., e.g., [7, Chapter 2, Theorem 3.5])

(5.2) ψ0X = F − Ψ ∗ F in V ′, a.e. in ]0, T [ .

By means of (5.1 2) we deduce that

(5.3)

〈ϕ0Θ, v〉 + 〈ψ0X , v〉 + (k0∇(1 ∗ Θ),∇v)
= −〈ϕ ∗ Θ, v〉 − (∇(1 ∗ k ∗ Θ),∇v) + 〈ϕ0Ψ ∗ Θ + Ψ ∗ ϕ ∗ Θ), v〉

+ (k0∇(Ψ ∗ 1 ∗ Θ) + ∇(Ψ ∗ 1 ∗ k ∗ Θ),∇v)

for any v ∈ V , a.e. in ]0, T [. Now, choosing v = Θ in (5.3) and
integrating it in time, we have

(5.4) ϕ0||Θ||2L2(0,t;H) +ψ0

∫ t

0

∫
Ω

XΘ+
k0

2
||∇(1∗Θ)(·, t)||2 =

13∑
i=8

Ii(t),
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where

I8(t) := −
∫ t

0

〈(ϕ ∗ Θ)(·, τ ),Θ(·, τ )〉 dτ,

I9(t) := −
∫ t

0

(∇(1 ∗ k ∗ Θ)(·, τ ),∇Θ(·, τ )) dτ,

I10(t) :=
∫ t

0

〈ϕ0(Ψ ∗ Θ)(·, τ ),Θ(·, τ )〉 dτ,

I11(t) :=
∫ t

0

〈(Ψ ∗ ϕ ∗ Θ)(·, τ ),Θ(·, τ )〉 dτ,

I12(t) :=
∫ t

0

(k0∇(Ψ ∗ 1 ∗ Θ)(·, τ ),∇Θ(·, τ )) dτ,

I13(t) :=
∫ t

0

(∇(Ψ ∗ 1 ∗ k ∗ Θ)(·, τ ),∇Θ(·, τ )) dτ,

for any t ∈ [0, T ]. By comparing I8, I9 with I2, I3 and arguing as in the
deduction of (3.19 20), it is easy to see that

(5.5) |I8(t)| ≤
||ϕ||2L2(0,t)

ϕ0

∫ t

0

||Θ||2L2(0,τ ;H) dτ +
ϕ0

4
||Θ||2L2(0,t;H),

(5.6)

|I9(t)| ≤
{2||k||2L2(0,t)

k0
+ |k(0)| + ||k′||L1(0,t)

}∫ t

0

||∇(1 ∗ Θ)(·, τ )||2 dτ

+
k0

8
||∇(1 ∗ Θ)(·, t)||2 ∀ t ∈ [0, T ].

Accounting for Ψ ∈ W 1,1(0, T ), the same reasoning leads to the



20 P. COLLI AND M. GRASSELLI

following estimates

|I10(t)| ≤ ϕ0||Ψ||2L2(0,t)

∫ t

0

||Θ||2L2(0,τ ;H) dτ +
ϕ0

4
||Θ||2L2(0,t;H),

(5.7)

|I11(t)| ≤
||Ψ ∗ ϕ||2L2(0,t)

ϕ0

∫ t

0

||Θ||2L2(0,τ ;H) dτ+
ϕ0

4
||Θ||2L2(0,t;H),

(5.8)

|I12(t)| ≤ k0{2||Ψ||2L2(0,t)+|Ψ(0)|+||Ψ′||L1(0,t)}
∫ t

0

||∇(1 ∗ Θ)(·, τ )||2 dτ
(5.9)

+
k0

8
||∇(1 ∗ Θ)(·, t)||2,

|I13(t)| ≤
{2||Ψ ∗ k||2L2(0,t)

k0
+||(Ψ ∗ k)′||L1(0,t)

}∫ t

0

||∇(1 ∗ Θ)(·, τ )||2 dτ
(5.10)

+
k0

8
||∇(1 ∗ Θ)(·, t)||2,

holding for any t ∈ [0, T ]. Next, as χi ∈ H(ϑi), i = 1, 2, a.e. in Q (see
(2.9)), owing to the monotonicity of the Heaviside graph H, we have
that

(5.11)
∫ t

0

∫
Ω

XΘ ≥ 0 ∀ t ∈ [0, T ].

Then, from (5.5 11) it follows that there is a constant C6, only depend-
ing on the values ϕ0, k0, ||ϕ||L2(0,T ), ||Ψ||W 1,1(0,T ), and ||k||W 1,1(0,T ),
such that

ϕ0

4
||Θ||2L2(0,t;H) +

k0

8
||∇(1 ∗ Θ)(·, t)||2

≤ C6

∫ t

0

{||Θ||2L2(0,τ ;H) + ||∇(1 ∗ Θ)(·, τ )||2} dτ

for any t ∈ [0, T ]. Hence, by applying the Gronwall lemma (cf., e.g.,
[3, p. 156]), we infer that Θ ≡ 0, i.e., ϑ1 = ϑ2. Finally, by comparison
in (5.3), it is straightforward to conclude that χ1 = χ2. Thus, we get
a contradiction and uniqueness is completely proved.
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Remark 5.1. It is easy to see that, replacing (H1) by the weaker
assumption ϕ ∈ L2(0, T ), the uniqueness result for Problem (P2) still
holds (cf. (5.5) and (5.8)).

Remark 5.2. We point out that our existence and uniqueness results
for the Stefan problem with memory improve and generalize the re-
search developed in [2]. Indeed, it suffices to compare the hypotheses
(2.2 3) of [2] with our assumptions on k, ϕ and observe that Barbu
does not require the internal energy e to depend on the past history
of χ. As one can easily check, also the techniques used in proofs are
rather different.

REFERENCES

1. C. Baiocchi, Sulle equazioni differenziali astratte lineari del primo e del
secondo ordine negli spazi di Hilbert, Ann. Mat. Pura. Appl. 76 (4) (1967), 233 304.

2. V. Barbu, A variational inequality modeling the non Fourier melting of a solid,
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