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GLOBAL DYNAMICS OF STRONGLY MONOTONE
RETARDED EQUATIONS WITH INFINITE DELAY

JIANHONG WU

ABSTRACT. This paper formulates several axioms for the
ordering structure of state spaces and establishes a strong
monotonicity principle for solutions to a class of cooperative
and irreducible retarded functional differential equations with
infinite delay. By using this strong monotonicity principle, the
monotone dynamical systems theory due to Hirsch, Matano
and Smith, the spectral theory of positive semigroups due to
Nussbaum and the decomposition theory of solution operators
due to Hale, Kato and Naito, we obtain some results about
the (generic) convergence and stability of solutions as well as
the existence of heteroclinic orbits. It will be demonstrated
that our results can be applied to a class of integrodifferential
equations enjoying certain monotonicity properties. In par-
ticular, we will apply our results to a mathematical model of
schistosomiasis japonicum to give a rather complete qualita-
tive description of the overall transmission dynamics.

1. Introduction. In [42], Smith has shown that a cooperative
and irreducible functional differential equation generates an eventually
strongly monotone semiflow so that the powerful monotone dynamical
systems theory due to Hirsch [14 16], Matano [23 25] and Smith
[40 42] as well as the spectral theory of positive operators due to
Nussbaum [33 36] can be applied.

It is natural to ask if Smith’s results can be extended to some Volterra
integrodifferential equations and, more generally, to some functional
differential equations with infinite delay. However, in the case where the
limits of integration are infinity or the delay is unbounded, the solution
operator always coincides with its initial value, and thus the solution
semiflow can never be strongly monotone nor eventually strongly mono-
tone if the state space is endowed with the natural pointwise ordering
structure. Therefore, in order to apply the aforementioned monotone
dynamical systems theory to integrodifferential equations and retarded
equations with infinite delay, one needs to find a nice ordering structure
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of the state space and develop some sufficient conditions to guarantee
the strong monotonicity of solution semiflows. For detailed discussion,
we refer to Wu [44] where a simple example was given to illustrate how
the choice of the ordering structure of state spaces is dictated by the
form of the integrodifferential equation and the desired strong mono-
tonicity of solutions.

The main purpose of this paper is to develop a strong monotonic-
ity principle and to explore its consequences to global dynamics for
general retarded equations with infinite delay. As will be shown in
2-E, our strong monotonicity principle can be applied to a class of
Volterra integrodifferential equations enjoying certain quasimonotonic-
ity and irreducibility conditions. For more examples and applications
of integrodifferential equations, we refer to Burton [2], MacDonald [21]
and Miller [27].

In order to illustrate the dependence of global dynamics on the
structure of state spaces and to avoid duplication of effort, we will
employ an axiomatic approach to develop the global theory and strong
monotonicity principles of retarded equations with infinite delay. It
should be mentioned that this approach is not new. In fact, Coleman
and Mizel [3 5], Coleman and Owen [6], Hale and Kato [13], Kappel
and Schappacher [17], Schumacher [38, 39], etc., have developed a
rather complete theory of phase spaces and retarded equations with
infinite delay. One of the major contributions of this paper is to propose
some axioms for the ordering structure of state spaces and formulate
certain reasonable quasimonotonicity and irreducibility conditions of
vector fields such that the ordering structure is consistent with the
topological and algebraical structure formulated in Hale and Kato [13],
and the solution semiflow is eventually strongly monotone.

For illustrative purposes, we will apply the established strong mono-
toncity principles to an integrodifferential equation describing the
transmission of schistosomiasis japonicum, to prove that the solution
defines an eventually strongly monotone semiflow. Applying the de-
composition theory of solution operators of Hale and Kato [13], the
spectral theory of linear systems due to Naito [29, 30] and Nussbaum
[33, 34] and the general monotone dynamical system theory due to
Hirsch [14 16], Matano [23 25] and Smith [40 42], we will give a
rather complete picture of the global behavior of solutions. Particularly,
in the case of a unique equilibrium point, we obtain a global conver-
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gence result which indicates that the infection cannot maintain itself;
in the case of multi-equilibria we show that the equilibrium point set
together with the invariant curves associated with each unstable equi-
librium point form a tree-like structure with the minimum equilibrium
at the base, and the infection maintains itself in stable configurations.
Moreover, we will show that the qualitative theory is not sensitive to
the delay. This coincides with the theoretical analysis, qualitative study
and computer simulation by Lee and Lewis [19], Lewis [20], May [26],
Nasell [31] and Nassel and Hirsch [32]. In this paper, we focus on the
mathematical analysis of the model equation. Detailed parasitological
background of schistosomiasis japonicum and biological discussion of
our results will be published in Wu [45].

This paper is organized as follows. In Section 2 we introduce a list
of axioms for state spaces, formulate the local theory, global theory
and spectral theory obtained in Hale and Kato [13], and Naito [29,
30], and establish a strong monotonicity principle. We also provide an
example of integrodifferential equations to illustrate the consistency of
the topological, algebraical and ordering structure of the phase spaces.
In Section 3, we apply some recent theory of monotone dynamical
systems to establish some general results of convergence, stability and
the existence of heteroclinic orbits. An equivalence result for the
stability of equilibria between a retarded equation and a corresponding
ordinary differential equation is established. In Section 4, we first
describe a model equation of the transmission dynamics of s. japonicum
by using the transit-time distribution to describe the delay in the
transmission process, and then we apply results in Sections 2 and 3 to
the model equation to provide a qualitative description of the overall
dynamics.

2. Fundamental axioms for global dynamics and strong
monotonicity principles. This section is divided into five parts.
In Sections 2-A-C, in order to make this paper as self-contained as
possible, we present some fundamental axioms of phase spaces and the
local theory, global theory as well as spectral analysis of linear systems
from Hale and Kato [13] and Naito [29, 30] which will be used for
the global dynamics analysis. This material can be safely omitted by
the expert. In Section 2-D we propose a list of axioms for the ordering
structure of phase spaces and establish several sufficient conditions to
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guarantee the strong monotonicity of solutions. Section 2-E contains an
example of Volterra integrodifferential equations to which our results
can be applied.

2-A. Axioms for phase spaces. Let R− = (−∞, 0] and R+ =
[0,+∞), X̃ be a linear space of mappings from R− into Rn with
elements designated by ϕ̃, ψ̃, . . . , where ϕ̃ = ψ̃ means ϕ̃(t) = ψ̃(t)
for t ∈ R−. Suppose that there is a seminorm | · |X̃ on X̃ such that
the quotient space X = X̃/| · |X̃ is a Banach space with a norm | · |X
naturally induced by | · |X̃ . For any ϕ ∈ X, corresponding elements
in the equivalence classes are denoted by ϕ̃ and ϕ = ψ in X means
|ϕ̃ − ψ̃|X̃ = 0 for all ϕ̃ ∈ ϕ, ψ̃ ∈ ψ. Our first axiom for phase spaces
requires that there exists a constant L such that |ϕ̃(0)| ≤ L|ϕ̃|X̃ for
any ϕ̃ ∈ X̃. This implies that ϕ̃(0) = ψ̃(0) for ϕ̃, ψ̃ ∈ X̃ with ϕ = ψ.
Therefore, for every equivalence class ϕ there is associated a unique
ϕ(0), and thus, we have

Axiom 1. There is a constant L such that |ϕ(0)| ≤ L|ϕ|X for all
ϕ ∈ X.

To introduce other axioms, we use the following notation: for any
A ≥ 0 and x : (−∞, A] → Rn and t ∈ [0, A], define xt : R− → Rn by
xt(θ) = x(t+ θ) for θ ∈ R−. For any ϕ̃ ∈ X̃, define

F̃A(ϕ̃) = {x̃ : (−∞, A] → Rn, x̃0 = ϕ̃ and x̃ is continuous on [0, A]}
and

F̃A =
⋃
ϕ̃∈X̃

F̃A(ϕ̃).

We require that for any x̃ ∈ F̃A, x̃t ∈ X̃ for t ∈ [0, A], and for any
x̃, ỹ ∈ F̃A with x0 = y0 and x̃(s) = ỹ(s) for s ∈ [0, A], |x̃t − ỹt|X̃ = 0.
Introducing an equivalence relation ∼ on F̃A as follows:

x̃ ∼ ỹ in F̃A iff x0 = y0 and x̃(s) = ỹ(s) on [0, A],

and denoting by FA the quotient space F̃A/ ∼ and by x the equivalence
class of x̃ ∈ F̃A with respect to ∼, then we can define x(t) = x̃(t) and
xt the equivalence class of x̃t for t ∈ [0, A]. Our next axiom is
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Axiom 2. If x̃ ∈ F̃A, A > 0, then x̃t ∈ X̃ and xt ∈ X is continuous
in t ∈ [0, A].

Axioms 1 and 2 constitute fundamental axioms for phase spaces.
Extensive examples can be found in Hale and Kato [13].

To introduce axioms for local theory, we need two seminorms in X
defined as follows

|ϕ|β = inf
η̃∈X̃

{
infψ̃∈X̃{|ψ̃|X̃ ; ψ̃(θ) = η̃(θ), θ ∈ (−∞,−β)}; η = ϕ

}

|ϕ|(β) = inf
η̃∈X̃

{
infψ̃∈X̃{|ψ̃|X̃ ; ψ̃(θ) = η̃(θ), θ ∈ [−β, 0]}; η = ϕ

}

for any β ≥ 0. Let Xβ = X/| · |β be the Banach space generated by the
seminorm | · |β on X and {ϕ}β the representative element of ϕ ∈ X in
Xβ. By τ̃β, β ≥ 0, we shall denote a linear operator on X̃ into

X̃β = {{ψ̃ ∈ X̃; ψ̃(θ) = ϕ̃(θ) on (−∞,−β)}; ϕ̃ ∈ X̃}⊆ 2B̃

such that ψ̃ ∈ τ̃βϕ̃ if and only if ψ̃(θ) = ϕ̃(θ + β) for θ ∈ (−∞,−β).
Our next axiom is

Axiom 3. If ϕ = ψ in X, the |η − ξ|β = 0 for any β ≥ 0, where
η̃ ∈ τ̃βϕ̃ and ξ̃ ∈ τ̃βψ̃.

Under this assumption, we can define τβ : X → Xβ by τβϕ = {ψ}β
for a ψ ∈ X such that ψ̃ ∈ τ̃βϕ̂. We then assume

Axiom 4. |ϕ|X ≤ |ϕ|β + |ϕ|(β) for any ϕ ∈ X, β ≥ 0.

Axiom 5. There is a continuous function K : R+ → R+ such that
for any A ≥ 0, x ∈ FA and β ≥ 0, |xA|(β) ≤ K(A) supθ∈[0,A] |x(θ)|.

Axiom 6. τβ : X → Xβ is a bounded linear operator whose norm
M(β) = sup|ϕ|X=1 |τβϕ|β is locally bounded for β ≥ 0.
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Axioms 4 6 imply the following fundamental inequality

|xA|X ≤ K(A) sup
θ∈[0,A]

|x(θ)| +M(A)|x0|X for A ≥ 0, x ∈ FA.

We consider the following retarded functional differential equation
with infinite delay

(2.1) ẋ(t) = f(xt)

where f : X → Rn is continuous. The Cauchy initial value problem
for equation (2.1) is posed as follows: for given initial data (σ, ϕ) ∈
R+ × X, find δ ∈ (0,∞] and a continuously differentiable function
x : [σ, σ + δ] → Rn such that, if x is extended onto (−∞, σ + δ) by
x(θ) = ϕ̃(θ − σ) for θ ≤ σ with any ϕ̃ ∈ ϕ, the equality ẋ(t) = f(xt)
holds for t ∈ [σ, σ + δ) (see, e.g., Kappel and Schappacher [17] and
Schumacher [38]). Such a function x on [σ, σ + δ] is called a solution
of equation (2.1) through (σ, ϕ) and will be denoted by x(t;σ, ϕ).

The fundamental theory of existence, uniqueness, continuation and
continuous dependence of solutions to the Cauchy problem was estab-
lished in Hale and Kato [13] and Schumacher [38]. We formulate their
results as follows

Theorem 2.1. Suppose that axioms 1 6 hold. Then

(i) (Existence) : for any (σ, ϕ) ∈ R+ ×X, there exists τ (σ, ϕ) > σ
and a solution, defined on [σ, τ (σ, ϕ)), of (2.1) through (σ, ϕ);

(ii) (Uniqueness) : if for any bounded subset W ⊆X there exists a
constant L(W ) > 0 such that

(2.2) |f(ϕ) − f(ψ)| ≤ L(W )|ϕ− ψ|X for ϕ, ψ ∈W,

then the solution defined in (i) is unique for any (σ, ϕ) ∈ R+ ×X;

(iii) (Continuation) : if f is completely continuous, then for any
(σ, ϕ) ∈ R+ × X and any given noncontinuable solution x(t;σ, ϕ) of
(2.1) defined on [σ, b) with b <∞, limt→b− |xt|X = ∞;

(iv) (Continuous Dependence) : let Γ be a subset of some Banach
space and f : X ×Γ → Rn be continuous. If (λ0, σ0, ϕ0) ∈ Γ×R+ ×X
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is given such that there exists a unique solution of ẋ(t) = f(xt, λ0)
through (σ0, ϕ0) defined in [σ0, b), then for any b∗ ∈ (σ0, b), there
exists a neighborhood N of (σ0, ϕ0, λ0) such that for any (σ, ϕ, λ) ∈ N ,
a solution of ẋ(t) = f(xt, λ) through (σ, ϕ) exists on [σ, b∗] and is
continuous in all arguments (t, σ, ϕ, λ) at (t, σ0, ϕ0, λ0), where t ∈
[σ, b∗].

2-B. Global attractors and decompositions of solution op-
erators. In what follows, we always assume that the local Lipschitz
condition (2.2) is satisfied, f is completely continuous and solutions
of (2.1) are defined for all t ≥ 0. Let T (t) : X → X be defined by
T (t)ϕ(θ) = x(t+θ; 0, ϕ), θ ∈ R−, ϕ ∈ X and t ≥ 0. Then, by Theorem
2.1, T (t) is a semiflow, that is, (i) T (0) = I, (ii) T (t + s) = T (t)T (s)
for t, s ≥ 0, (iii) T (t)ϕ is continuous in (t, ϕ) ∈ R+ ×X.

To discuss the global theory, we need some other axioms of phase
spaces.

Axiom 7. All constant function belongs to X.

Define the translation operator S(t) : X → X, t ≥ 0, by

S(t)ϕ(θ) =
{
ϕ(0), t+ θ ≥ 0,
ϕ̃(t+ θ), t+ θ < 0

for ϕ ∈ X, and let S0(t) denote the restriction of S(t) to

X0 = {ϕ ∈ X; ϕ(0) = 0}.

Our next axiom is

Axiom 8. |S0(t0)| < 1 for some t0 > 0.

The norm S0(t0) can be estimated by |S0(t0)ϕ| = |τ t0ϕ|t0 . Therefore,
|S0(t0)| ≤M(t0).

For any given subset B⊆X, the ω-limit set ω(B) of B is defined by
ω(B) = ∩t≥0cl ∪s≥t T (s)B and consists of the limits of T (tk)ϕk for
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tk → ∞ and ϕk ∈ B. When B = {ϕ} for some ϕ ∈ X, we denote ω(B)
by ω(ϕ). To obtain some classical properties of ω-limit sets, we make
the following assumption

Axiom 9. If {ϕ̃k} converges to ϕ̃ uniformly on compact subsets of
R− and if {ϕk} is a Cauchy sequence in X, then ϕ ∈ X and ϕk → ϕ
in X.

The following result can be found in Hale and Kato [13].

Theorem 2.2. Suppose that axioms 1 8 are satisfied. Then the
ω-limit set ω(ϕ) of any bounded solution T (t)ϕ, t ≥ 0, is nonempty,
compact and connected. If, in addition, Axiom 9 is satisfied, then ω(ϕ)
is invariant.

To describe the property of the solution operator T (t), we let

U1(t)ϕ = T (t)ϕ− S(t)ϕ for ϕ ∈ X.

Then we have (see Hale [11])

Theorem 2.3. If axioms 1 7 are satisfied, then

(i) U1(t) is conditional completely continuous,

(ii) for any bounded set B⊆X for which T (s)B is uniformly bounded
for 0 ≤ s ≤ t, then

α(T (t)B) = α(S(t)B) ≤ α(S(t))α(B)

where α(B) denotes the Kuratowski measure of noncompactness of B
and

α(S(t)) = inf{k; α(S(t)B) ≤ kα(B) for all bounded sets B⊆X}.

α(S(t)) can be estimated by

α(S(t)) = α(S0(t)) ≤ |S0(t)| = M(t).
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It should be mentioned that the solution operator can be decomposed
as follows

(2.3) T (t)ϕ = S0(t)[ϕ− ϕ̂(0)] + U2(t)ϕ,

where ϕ̂(0) denotes a constant function on R− with value ϕ(0), the
conclusions for Theorem 2.3 hold for this decomposition.

By Theorem 2.3, if Axiom 8 is satisfied and, if for any bounded set
B⊆X, T (s)B is uniformly bounded for 0 ≤ s ≤ t0, then T (t0) is an
α-contraction map. This property has an important consequence about
the existence of global attractors, as stated in the following

Theorem 2.4. Suppose that

(i) Axioms 1 8 are satisfied,

(ii) for any bounded set W ⊆X, the orbits γ+(W ) = ∪t≥0T (t)W is
bounded,

(iii) system (2.1) is point dissipative, that is, there exists a bounded
set B⊆X such that for any ϕ ∈ X, there exists τ (ϕ) > 0 such that
T (t)ϕ ∈ B for t ≥ τ (ϕ).

Then the orbit of each bounded set is precompact, and ω(B) =
∩t≥0T (t)B is a global attractor, i.e., ω(B) is compact, invariant, stable
and attracts each bounded set W ⊆X.

This is an immediate consequence of Theorem 2.3 and Theorem 3.4.7
in Hale [12].

2-C. Spectral analysis of linear systems. In this subsection we
suppose F : X → Rn is a continuous linear operator and consider the
following autonomous linear system

(2.4) ẋ(t) = F (xt).

The solution operator T (t) : X → X, t ≥ 0, is a strongly continuous
semigroup of bounded linear operators on X. Naito [29, 30] has
shown that the spectral analysis can be carried out independently of the
specific form of the infinitesimal generator, denoted by A. The following
results due to Hale and Kato [13] and Naito [29, 30] formulate some
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characteristic of the spectrum σ(A) of A, the point spectrum Pσ(A) of
A, the resolvent set ρ(A) of A, the spectral radius rσ(T (t)) of T (t) and
the essential spectral radius rσ(T (t)) of T (t).

Theorem 2.5. Assume that axioms 1 7 and 9 are satisfied. Then

(i) Pσ(A) is the set of λ for which there exists a b �= 0, b ∈ Rn such
that eλ·b ∈ X and det Δ(λ) = 0, where eλ·b(θ) = eλθb for θ ∈ (−∞, 0]
and

Δ(λ) = λI − L(eλ·I),

where L(eλ·I) = (L(eλ·ε1), . . . , L(eλ·εn)), (ε1, . . . , εn) is the standard
basis of Rn;

(ii) re(T (t)) = re(S0(t)) = eβt, t ≥ 0, where

β = inf
t>0

lnα(S0(t))
t

,

(iii) rσ(T (t)) = eαt, t ≥ 0, where

α = max{β, sup{Reλ; λ ∈ Pσ(A)}},
(iv) for any ε > 0, there is a c(ε) > 0 such that

|T (t)| ≤ c(ε)e(α+ε)t, t ≥ 0,

(v) any point λ such that Reλ > β is a normal point of A, that is,
λ does not lie in the essential spectrum of A.

In the next section the following assumption plays an important role

Assumption 1. There exists t0 > 0 such that re(T (t)) < rσ(T (t))
for all t ≥ t0.

According to (ii) and (iii) of Theorem 2.5, this is equivalent to

Assumption 1∗. β < sup{Reλ;λ ∈ Pσ(A)}.

If the above assumption is not satisfied, then by (iv) of Theorem 2.5,
for any ε > 0, there exists a c(ε) > 0 such that |T (t)| ≤ c(ε)e(β+ε)t
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for t ≥ 0. In many phase spaces, β < 0 (see examples in Section 2-
E). Therefore, |T (t)| ≤ c(ε)e(β+ε)t implies that if Assumption 1 is not
satisfied, then the system is exponentially convergent to 0.

2-D. Axioms for ordering structure and strong monotonicity
principles. Our major concern is ordering structure axioms of state
spaces and monotonicity properties of solutions to retarded equations
with infinite delay. For this purpose, we assume that there exists a
closed order relation P ⊆X ×X defined by a closed cone V+ such that
V+ ∩ (−V+) = {0}. Using the following standard notations

ϕ ≤P ψ iff (ϕ, ψ) ∈ P,

ϕ <P ψ iff ϕ ≤P ψ and ϕ �= ψ,

ϕ�P ψ iff (ϕ, ψ) ∈ IntP,

we can formulate the first set of axioms for ordering structure:

Axiom 10. ϕ ≤P ψ implies ϕ(0) ≤Rn ψ(0).

Axiom 11. For any τ > 0, x, y ∈ Fτ with x0 ≤P y0 and
x(t) ≤Rn y(t) for t ∈ [0, τ ], it follows xτ ≤P yτ .

Axiom 12. For any given ϕ ∈ X there exists a sequence {ϕm}⊆X
such that ϕ ≤P ϕm, ϕ(0) �Rn ϕm(0) and ϕm → ϕ as m→ ∞.

Here, and in what follows, for any given v = (v1, . . . , vn)T , u =
(u1, . . . , un)T ∈ Rn, v ≤Rn (�Rn)u means vi ≤ (<)ui for 1 ≤ i ≤ n,
and v <Rn u means v ≤Rn u but v �= u.

Axioms 10 and 11 indicate the consistency of the ordering structure
with the fundamental axioms 1 and 2. Axiom 12 shows that the zero
element in X can be approximate by a sequence of elements ϕm in X
with 0 �Rn ϕm(0). This axiom will be used in some approximation
processes.

To obtain a comparison and monotonicity property of solutions, we
assume the following quasimonotonicity condition of the vector field
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Assumption 2. For any ϕ, ψ ∈ X with ϕ ≤P ψ and ϕi(0) = ψi(0),
it follows that fi(ϕ) ≤ fi(ψ).

Theorem 2.6. Suppose that Axioms 1 6, 10 12 and Assumption 2
are satisfied. Then the solution semiflow T (t) : X → X, t ≥ 0, defined
by equation (2.1) is monotone, i.e., ϕ ≤P ψ implies T (t)ϕ ≤P T (t)ψ
for t ≥ 0.

Proof. By Axiom 12, we can find a sequence {ψm}⊆X such that
ψ ≤P ψm, ψ(0) �Rn ψm(0) and ψm → ψ as m → ∞. Let
xm(t) = xm(t; 0, ψm) be a solution of ẋ(t) = f(xt) + 1/m through

(0, ψm). Then we claim that x(t)
�
=x(t; 0, ϕ) �Rn xm(t) for sufficiently

large m, and all t ∈ [0, τ ], where τ > 0 is any fixed constant. Suppose,
to the contrary, there must be an integer m > 0, t1 ∈ (0, τ ] and an
integer i, 1 ≤ i ≤ n, such that x(t) �Rn xm(t) for t ∈ [0, t1) and
xi(t1) = xmi (t1). Therefore, at t = t1, ẋmi (t) ≤ ẋi(t). On the other
hand, by Axiom 11, xt1 ≤P xmt1 . Hence, by the quasimonotonicity
condition, we have

fi(xt1) ≤ fi(xmt1)

from which it follows that at t = t1,

ẋi(t) = fi(xt1) ≤ fi(xmt1 ) < fi(xmt1 ) +
1
m

≤ ẋmi (t)

which is contrary to ẋi(t) ≥ ẋmi (t) at t = t1.

Therefore, x(t) ≤Rn xm(t) on [0, τ ]. By Axiom 11, we get T (t)ϕ ≤P
T (t)ψm on [0, τ ]. Taking the limit as m → ∞ and by the continuous
dependence of solutions ((iv) of Theorem 2.1), we obtain that T (t)ϕ ≤P
T (t)ψ. This proves the conclusion.

To obtain certain strong monotonicity properties of solutions, we need
further restrictions on the state space and vector field. The following
axioms are useful

Axiom 13. IntP �= ∅;
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Axiom 14. There exists a constant T0 > 0 such that for any τ > T0

and x, y ∈ Fτ with x0 ≤P y0 and x(t) �Rn y(t) for t ∈ [0, τ ], it follows
xτ �P yτ .

Axiom 13 is natural. Axiom 14 indicates a “facing memory” property
from the viewpoint of ordering structure which states that the memory
of a system on its past history grows dim with passing time. Much
has been written about fading memory as a natural physical concept.
For details, we refer to Coleman and Mizel [3 5], Coleman and Owen
[6], Hale and Kato [13], Kappel and Schappacher [17] and Schumacher
[38, 39].

The following one-sided Lipschitz condition on the vector field will
be needed.

Assumption 3. There exists a functional gi : R+ × X2 → R such
that for any i, 1 ≤ i ≤ n, fi(t, ψ) − fi(t, ϕ) ≥ gi(t, ϕ, ψ)[ψi(0) − ϕi(0)]
for ϕ, ψ ∈ X with ϕ ≤P ψ.

To guarantee “ignition” of some component of solutions, we assume

Assumption 4. There exists a constant T1 > 0 such that for any
given x, y ∈ FT1 with x0 <P y0 and x(t) = y(t) on (0, T1] there exists
k, 1 ≤ k ≤ n, such that sup{fk(yt) − fk(xt); 0 ≤ t ≤ T1} > 0.

Finally, we present the following irreducible type of condition which
is essential for strong monotonicity of solutions.

Assumption 5. There exists a constant T2 > 0 such that if Σ is a
property, nonempty subset of {1, . . . , n}, τ > T2, and x, y ∈ Fτ , where

(i) xj(t) < yj(t) for all j ∈ Σ and t ∈ [τ − T2, τ ],

(ii) xj(t) = yj(t) for all j ∈ Σc and t ∈ [τ − T2, τ ],

(iii) xt ≤P yt for t ∈ [0, τ − T2],

then there is a k ∈ Σc such that fk(yτ ) − fk(xτ ) > 0.

We are now in the position to state a strong monotonicity property
of solutions.
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Theorem 2.7. Suppose that axioms 1 6, 10 14 and assumptions 3 5
are satisfied. Then the solution of equation (2.1) defines an eventually
strongly monotone semiflow T (t) : X → X, t ≥ 0, i.e., ϕ <P ψ implies
that T (t)ϕ�P T (t)ψ for t > T0 + T1 + (n− 1)T2.

Proof. Evidently, Assumption 3 implies Assumption 2. Therefore,
by Theorem 2.6, the solution semiflow is monotone. Consequently,
x(t; 0, ϕ) ≤Rn x(t; 0, ψ) and xt(ϕ) ≤P xt(ψ) for all t ≥ 0. If x(t; 0, ϕ) =
x(t; 0, ψ) on (0, T1], by Assumption 4, we can find k, 1 ≤ k ≤ n,
and t∗ ∈ (0, T1] such that fk(xt(ψ)) > fk(xt(ϕ)) at t = t∗. Hence,
from the assumption that xk(t∗; 0, ϕ) = xk(t∗; 0, ψ) it follows that the
existence of a constant δ > 0 such that xk(t; 0, ϕ) < xk(t; 0, ψ) for all
t ∈ (T1, T1 + δ). This property, together with the one-sided Lipschitz
condition (Assumption 3), guarantees that xk(t; 0, ϕ) < xk(t; 0, ψ) for
all t > T1. If n = 1, then we are done. Otherwise, by Assumption
5 and using the same argument as above, we can obtain an integer
j, 1 ≤ j ≤ n, j �= k such that xj(t; 0, ϕ) < xj(t; 0, ψ) for all
t > T1 + T2. Continuing this process for a finite number of steps and
using assumptions 3 and 5, we get that xl(t; 0, ϕ) < xl(t; 0, ψ) for all
t > T1 + (n− 1)T2 and all 1 ≤ l ≤ n. Therefore, our conclusion follows
from Axiom 14. This proves the theorem.

2-E. Examples. In this part we give some examples of state spaces
and retarded equations which satisfy the axioms, quasimonotonicity
and irreducibility conditions described in previous sections.

Example 2.1. Let X̃ be the set of all bounded and continuous
functions from R− to Rn. For any given r = (r1, . . . , rn) ∈ Rn with
0 ≤Rn r, let |r| = max1≤j≤n rj . We define a nonnegative functional
p : X̃ → R+ as follows

p(ϕ̃) = max
1≤i≤n

sup
−ri≤θi≤0

|ϕ̃i(θi)|.

Evidently, p is a seminorm and the quotient space X̃/p is the Banach
space

Cr = {ϕ = (ϕ1, . . . , ϕn); ϕi : [−ri, 0] → R is continuous, 1 ≤ i ≤ n}
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with the norm
||ϕ|| = max

1≤i≤n
sup

−ri≤θi≤0
|ϕi(θi)|.

Clearly, axioms 1 9 are satisfied with

L = 1; K(θ) ≡ 1 for θ ≥ 0; M(θ) = 1 if θ ≤ |r|,
M(θ) = 0 if θ > |r|, and t0 = |r| + 1.

If we define P ⊆Cr × Cr by

(ϕ, ψ) ∈ P iff ϕi(θi) ≤ ψi(θi) for 1 ≤ i ≤ n, −ri ≤ θi ≤ 0,

then it is easy to verify axioms 10 14. A retarded equation on Cr is
essentially a retarded equation with finite delay. It can be shown that
a cooperative and irreducible retarded equation defined in Smith [42]
satisfies assumptions 2 5 with T0 = T1 = T2 = |r|. Therefore, the
corresponding semiflow is eventually strongly monotone.

Example 2.2. Let X̃ be the set of all bounded and continuous func-
tions from R− to Rn. Suppose αij > 0 and kij are given nonnegative
integers, i, j = 1, . . . , n. Denote by α = (αij) and k = (kij), we define
p : X̃ → R+ by

p(ϕ̃) = max
1≤i≤n

sup
−ri≤θi≤0

|ϕ̃i(θi)|

+ sup
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ 0

−∞
(−s)kij−meαijsϕ̃j(s) ds

∣∣∣∣.
Evidently, p is a seminorm and the quotient space X = X̃/p, denoted
by Cr,α,k, is a Banach space with the norm

|ϕ| = max
1≤i≤n

sup
−ri≤θi≤0

|ϕi(θi)|

+ sup
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ 0

−∞
(−s)kij−meαijsϕj(s) ds

∣∣∣∣.
In fact, we can show that the mapping

ϕ→ (ϕ|[−rj ,0],

∫ 0

−∞
(−s)kij−meαijsϕ(s) ds, 1 ≤ i, j ≤ n, 0 ≤ m ≤ kij)
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for ϕ ∈ Cr,α,k is a homeomorphism between Cr,α,k and

Cr ×R

∑n

i=1

∑n

j=1
(kij+1).

Axiom 1 is clearly satisfied with L = 1. For any A > 0, x̃ ∈ F̃A and
t ∈ [0, A], we have

(2.5)∫ 0

−∞
(−s)kij−meαijsx̃jt(s) ds =

∫ t

−∞
(t− θ)kij−meαij(θ−t)x̃j(θ) dθ

=
kij−m∑
l=0

(
l

kij −m

)
tle−αijt

∫ 0

−∞
(−θ)kij−m−leαijθx̃j(θ) dθ

+
∫ t

0

(t− θ)kij−meαij(θ−t)x̃j(θ) dθ,

from which Axiom 2 follows.

It is easy to verify that

|ϕ|(β) ≤ max
1≤i≤n

sup
−β≤θi≤0

|ϕi(θi)|

+ max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ 0

−β
(−s)kij−meαijsϕj(s) ds

∣∣∣∣,
0 ≤ β ≤ |r|,

|ϕ|(β) ≤ max
1≤i≤n

sup
−ri≤θi≤0

|ϕi(θi)|

+ max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ 0

−β
(−s)kij−meαijsϕj(s) ds

∣∣∣∣,
β ≥ |r|,

|ϕ|β ≤ max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ −β

−∞
(−s)kij−meαijsϕj(s) ds

∣∣∣∣,
β ≥ |r|,

|ϕ|β ≤ max
1≤i≤n

sup
−ri≤θi≤−β

|ϕi(θi)|

+ max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ −β

−∞
(−s)kij−meαijsϕj(s) ds

∣∣∣∣,
0 ≤ β ≤ |r|.
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Therefore, axioms 3 5 hold with

K(β) = 1 + max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ 0

−β
(−s)kij−meαijs ds

∣∣∣∣ for β ≥ 0.

On the other hand,

|τβϕ| ≤ max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ −β

−∞
(−s)kij−meαijsϕj(β + s) ds

∣∣∣∣
= max

1≤i,j≤n
sup

0≤m≤kij

∣∣∣∣
∫ 0

−∞
(β − u)kij−meαij(u−β)ϕj(u) du

∣∣∣∣
≤ max

1≤i,j≤n
sup

0≤m≤kij

kij−m∑
l=0

(
l

kij −m

)
βle−αijβ

·
∣∣∣∣
∫ 0

−∞
(−u)kij−m−leαijuϕj(u) du

∣∣∣∣
≤ N max

1≤i,j≤n
sup

0≤m≤kij

sup
0≤l≤kij−m

βle−αijβ|ϕ|, β ≥ |r|,

where N is a constant, or

|τβϕ|β ≤ max
1≤i≤n

sup
−ri≤θi≤−β

|ϕi(θi + βi)|

+ max
1≤i,j≤n

sup
0≤m≤kij

∣∣∣∣
∫ −β

−∞
(−s)kij−meαijsϕj(β + s) ds

∣∣∣∣
≤ (1 +N) max

1≤i,j≤n
sup

0≤m≤kij

sup
0≤l≤kij−m

βle−αijβ|ϕ|, 0 ≤ β ≤ |r|.

Therefore, Axiom 6 holds with
(2.6)

M(β) ≤

⎧⎪⎪⎨
⎪⎪⎩
N max1≤i,j≤n sup0≤m≤kij

sup0≤l≤kij−m β
le−αijβ ,

β ≥ |r|
1 +N max1≤i,j≤n sup0≤m≤kij

sup0≤l≤kij−m β
le−αijβ ,

0 ≤ β ≤ |r|,
from which Axiom 8 follows. Axioms 7 and 9 can be easily verified.
Moreover, using α(S0(t)) ≤M(t) and (2.6), we get

lnα(S0(t))
t

≤ lnM(t)
t

≤ − min
1≤i,j≤n

αij for sufficiently t,
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from which and by Theorem 2.5 we obtain

re(S0(t)) = eβt

with

(2.7) β ≤ − min
1≤i,j≤n

αij .

We further define a relation P ⊆X ×X as follows

(ϕ, ψ) ∈ P iff ϕi(θi) ≤ ψi(θi) for θi ∈ [−ri, 0], i = 1, . . . , n

and ∫ 0

−∞
(−s)kij−meαijsϕj(s) ds ≤

∫ 0

−∞
(−s)kij−meαijsψj(s) ds,

0 ≤ m ≤ kij , 1 ≤ i, j ≤ n.

Evidently, Axioms 10 and 13 are satisfied. By (2.5), we get Axioms 11,
12 and 14 with T0 = |r|.

To illustrate the quasimonotonicity and irreducibility conditions, we
consider the following Volterra integrodifferential equation

(2.8) ẋi(t) = fi

( ∨
1≤j≤n

xj(t),
∨

1≤j≤n
xj(t− τij),

∨
1≤j≤n

∫ t

−∞
(t− s)kijeαij(t−s)xj(s) ds

)

where τij ≥ 0, for any y ∈ Rn, ∨1≤j≤nyj denotes yT , fi : R3n →
R is continuous and satisfies local Lipschitz conditions. Let rj =
max1≤i≤n τij . We assume

(H1) for any x, y, z, x̄, ȳ, z̄ ∈ Rn with xi = yi and (x, y, z) ≤R3n

(x̄, ȳ, z̄), it follows that fi(x, y, z) ≤ fi(x̄, ȳ, z̄),

(H2) there exists a constant L ≥ 0 such that fi(x̄, ȳ, z̄)− f(x, y, z) ≥
−L(x̄i − xi) for all x, y, z, x̄, ȳ, z̄ ∈ Rn with (x, y, z) ≤R3n (x̄, ȳ, z̄),

(H3) for any x, y, z, x̄, ȳ, z̄ ∈ Rn with x ≤Rn x̄ and (y, z) <R2n (ȳ, z̄),
there exists j, 1 ≤ j ≤ n such that if xj = x̄j , then fj(x, y, z) <
fj(x̄, ȳ, z̄),
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(H4) for any nonempty proper subset Σ⊆{1, 2, . . . , n} and x, y, z, x̄,
ȳ, z̄ ∈ Rn with xj < x̄j , yj < ȳj , zj < z̄j for j ∈ Σ, xj = x̄j , yj ≤ ȳj ,
zj ≤ z̄j for j ∈ Σc, we have sup{fk(x̄, ȳ, z̄) − fk(x, y, z); k ∈ Σc} > 0.

It is easy to verify that (H1) (H4) imply Assumptions 2 5, respec-
tively. Therefore, if (H1) (H4) are satisfied, then the solution of equa-
tion (2.8) defines an eventually strongly monotone semiflow on Cr,α,k.

3. Global dynamics. In this section we give some application to
retarded equations with infinite delay of the general theory of strongly
monotone dynamical systems due to Hirsch [14 16], Matano [23 25],
Nussbaum [33 36], and Smith [41, 42].

First of all, we notice that if Axiom 7 is satisfied, then any equilibrium
point is of the form x̂0 and f(x̂0) = 0, where x0 ∈ Rn and x̂0 denotes
a constant map on R− with value x0. In the following part, we assume
that f : X → Rn is twice continuously differentiable. Then, by using
the fundamental inequality in 2-A and the same argument as that for
functional differential equations with finite delay (cf. pp. 47 of [9]), we
can show that the semiflow T (t) : X → X, t ≥ 0, is a C2-semiflow on
X, and the Frechet derivative of T (t)x̂0 with respect to ϕ is generated
by the linear retarded equation

(3.1)x0 ẏ(t) = Dϕf(x̂0)yt
�
=Lx0(yt).

To study the stability of the above linear equation, we assume

Axiom 15. X = V+−V+,where V+−V+ = {x−y;x ∈ V+, y ∈ V+}.

Throughout this section, we use the notations in Section 2-C, replac-
ing (2.4) by (3.1)x0 ; here and in what follows the subscript indicates
the dependence on x0. As an immediate consequence of Theorem 1.3
in Nussbaum [34], we obtain

Theorem 3.1. Suppose that Axioms 1 7 and 9 15 hold, and equation
(3.1)x0 satisfies Assumptions 1, 3 5. Then αx0 is an algebraically
simple eigenvalue of Ax0 with corresponding eigenvector v in V+ and if
λ ∈ σ(Ax0) − {s(Ax0)}, then Reλ < s(Ax0).
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That αx0 is an eigenvalue of Ax0 is very important. This implies
that it suffices to consider real characteristic roots of the characteristic
equation to determine the stability of a linear system.

To provide a simple criterion to determine the stability of equation
(3.1)x0 by using the sign αx0 , we assume the following

Axiom 16. There exists λ0 ∈ [−∞, 0) such that for any b ∈ Rn and
λ > λ0, eλ·b ∈ X, and if λ0 ≤ λ1 ≤ λ2, then 0 ≤P eλ2·c ≤P eλ1·c for
any c ∈ Rn with 0 ≤Rn c.

This axiom is satisfied by Example 2.1 with λ0 = −∞ and by
Example 2.2 with λ0 = −min1≤i,j≤n αij .

Theorem 3.2. Suppose that Axioms 1 7, 9 12, 15 and 16 hold,
equation (3.1)x0 satisfies Assumptions 1 and 3, and

(3.2) lim
λ→λ+

0

s(Lx0(e
λ·I)) > λ0, lim

λ→∞
s(Lx0(e

λ·I)) < +∞,

where s(·) denotes the supremum of the real parts of the characteristic
roots of a matrix. Then αx0 < 0 (αx0 > 0) if and only if s(Lx0(e

0·I)) <
0 (s(Lx0e

0·I)) > 0). Moreover, s(Lx0(e
0·I)) < 0 if and only if

(−1)jdet

⎛
⎝Lx01(e

0·ε1) · · · Lx01(e
0·εj)

· · ·
Lx0j(e

0·ε1) · · · Lx0j(e
0·εj)

⎞
⎠ > 0, j = 2, . . . , n.

Proof. Following Smith [42], we consider Lx0(e
λ·I) for real values

λ ∈ (λ0,∞). By Assumption 3 and Axiom 16, for any λ1, λ2 ∈ (λ0,∞)
with λ1 ≤ λ2,

Lx0i(e
λ1·εj) − Lx0i(e

λ2·εj)
≥ gi(t, eλ2·εj , eλ1·εj)δij(eλ1·0 − eλ2·0) = 0,

where δij is the Kronecker notation. Therefore, Lx0i(e
λ·εj) is nonin-

creasing for i, j = 1, 2, . . . , n. Again, by Assumption 3 and Axiom 16,
one has

Lx0i(e
λ·εj) ≥ gi(t, 0, eλ·εj)δij(eλ·0 − 0) = 0 if i �= j.



GLOBAL DYNAMICS 293

Therefore, Lx0(e
λ·I) has nonnegative off-diagonal elements, and, thus,

s(Lx0(e
λ·I)) is an eigenvalue of Lx0(e

λ·I). By the nonincreasing prop-
erty of Lx0i(e

λ·εj), 1 ≤ i, j ≤ n, we obtain a continuous increas-
ing function λ → s(Lx0(e

λ·I)) from (λ0,∞) into R which has limit
as λ → λ+

∞ and λ → ∞ by our Assumption (3.2). Obviously,
if s(Lx0(e

0·I)) > 0, then there exists a unique λ∗ ∈ (λ0,∞) such
that λ∗ = s(Lx0(e

λ∗·I)) and λ∗ > 0; if s(Lx0(e
0·I)) < 0, then

by our assumption limλ→λ+
0
s(Lx0(e

λ·I)) > λ0, there exists a unique

λ∗ ∈ (λ0,∞) such that λ∗ = s(Lx0(e
λ∗·I)) and λ∗ < 0. Using the same

argument as that for Theorem 3.1 in Smith [42], we can prove that λ∗

is a unique real characteristic root. Therefore, by Theorem 3.1, α = λ∗.
This completes the proof.

The importance of the above theorem lies in the fact that the stability
of linear system (3.1)x0 is determined by the corresponding ordinary
differential equation

(3.3)x0 ẏ(t) = L̂x0(y(t))

where L̂x0 : Rn → Rn is defined by L̂x0(x) = Lx0(x̂).

We now return to nonlinear system (2.1). In the case that αx0 < 0
at the equilibrium point x̂0, this point is locally asymptotically stable.
In the case that αx0 > 0 at x̂0, the equilibrium point is unstable.
The following result indicates the existence of a heteroclinic orbit
emanating from this unstable equilibrium and terminating at another
stable equilibrium or infinity.

Theorem 3.3. Suppose that

(i) Axioms 1 7, 9 15 and

Axiom 17. V+ is normal, i.e., there exists a constant Q > 0 such
that 0 ≤P ϕ ≤P ψ implies |ϕ| ≤ Q|ψ|, are satisfied;

(ii) system (2.1) satisfies Assumptions 2 5;

(iii) x̂0 is an equilibrium point at which equation (3.1)x0 satisfies
Assumptions 1, 3 5 and αx0 > 0.

Then there exists a C1-map, y : [0,∞) → X, satisfying
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(a) y(s) = x̂0 + sv + o(s) as s→ 0+, where v is defined in Theorem
3.1,

(b) y(s) ∈ x̂0 + IntV+,

(c) T (t)y(s) = y(eαts), s ≥ 0, t ≥ 0,

(d) 0 ≤ s1 ≤ s2 implies y(s1) ≤ y(s2),

(e) lims→∞ |y(s)| = ∞ or lims→∞ y(s) = x̂1, where x̂1 is an
equilibrium point,

(f) in the case that lims→∞ y(s) = x̂1, then limt→∞ T (t)ϕ = x̂1 for
all ϕ ∈ X with x̂0 < ϕ ≤ x̂1.

This is an immediate consequence of an invariant curve theorem in
Smith [41] and Theorem 3.1.

The following result provides some information about global attrac-
tors.

Theorem 3.4. Suppose that all conditions in Theorem 2.4 are sat-
isfied, Axioms 10 13 and equation (2.1) satisfy the quasimonotonicity
condition. Denote by W the global attractor, and by Ω the set of non-
wandering points, i.e.,

Ω = {ψ ∈ X; there exist sequences ϕj → ψ in X and
tj → ∞ such that T (tj)ϕj → ψ}.

Then any maximal element ψ ∈ Ω ∩ W is an equilibrium and there
exists ψ̄ � ψ such that T (t)ϕ → ψ as t → ∞ for any ϕ ∈ X with
ψ ≤ ϕ ≤ ψ̄. A similar result holds for minimal elements.

As a consequence, we have the following global convergence theorem.

Corollary 3.1. Suppose all conditions in Theorem 3.4 are satisfied
and W contains only one equilibrium point. Then for any ϕ ∈ X,
T (t)ϕ→ ψ as t→ ∞.

The above results are consequences of Theorem 2.4 and Theorems 3.2
and 3.3 in Hirsch [14].
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Theorem 3.5. Suppose that Axioms 1 14 and Assumptions 2 5 are
satisfied, and

(i) X is separable;

(ii) any closed order interval [[ϕ, ψ]]
�
= {ξ ∈ X;ϕ ≤P ξ ≤P ψ} is

bounded in X;

(iii) for any bounded set W ⊆X, the orbit γ+(W ) is bounded;

(iv) system (2.1) is point dissipative.

Then for any equilibrium ψ, ξ in X with ψ �P ξ, if there is no other
equilibrium in [[ψ, ξ]], then either every trajectory in [[ψ, ξ]] | {ψ}
approaches to ξ, or else every trajectory in [[ψ, ξ]] | {ξ} approaches
to ψ.

Proof. By Theorem 2.4 and conditions (ii),(iii), for any closed
order interval [[ϕ, ψ]], the orbit γ+([[ϕ, ψ]]) is precompact. Therefore,
T (t) : X → X, t ≥ 0 is order-compact. Therefore, our conclusion
follows from Theorem 10.5 in Hirsch [16].

Using Theorems 2.2, 2.7, Theorem 9.6 in Hirsch [16] and the remark
following Assumption 1, we obtain the following generic convergence
theorem

Theorem 3.6. Suppose that

(i) Axioms 1 16 and Assumptions 2 5 are satisfied;

(ii) the set of equilibria is a finite set;

(iii) X is separable and β < 0, where β is defined in Theorem 2.5
which depends on only the phase space;

(iv) each orbit is bounded;

(v) for any equilibrium x̂0 such that αx0 > β, system (3.1)x0 satisfies
Assumptions 3 5, (3.2) and αx0 �= 0.

Then the union of the basins of attractions of the equilibria with either
αx0 = β or s(Lx0(e

0·)) < 0 is an open dense subset of X.

Finally, we state a consequence of Corollary 2.4 in Hirsch [14].
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Theorem 3.7. Suppose that Axioms 1 6, 10 13 and Assumption 2
are satisfied. Then there cannot exist an orbitally asymptotically stable
(nontrivial) periodic orbit.

4. Applications to global dynamics analysis of schistosomi-
asis japonicum. In this section we apply our results in previous
sections to a model equation of schistosomiasis japonicum. We focus
on mathematical analysis of the model equation and leave the detailed
parasitological background and biological discussion of our results for
another paper, Wu [45].

We consider an idealized focus of infection a relatively isolated
community where each group of definite hosts are equally exposed to
the risk of infection and are not subject to the processes of birth, death,
immigration or emigration. Births and deaths, but not immigration
or emigration, will be assumed to occur in the intermediate host
population under the simplifying hypotheses that at the instant a
snail dies an uninfected snail is born. For ease of reference, we
denote in the sequel by P1, . . . , Pn the definite host which may be
infected by s. japonicum, denote by ui(t) the average load of mated
s. japonicum in mature form in each individual of Pi at time t, by Ni
the total population of Pi and by N0 the total number of snails. Then
the transmission dynamics of s. japonicum among P1, . . . , Pn can be
modeled by the following system of functional differential equations
with infinite delay

(4.1)

u̇i(t) = −hi(ui(t))

+ gi

(
Li
∑n

j=1Kjηijuj(t− τij)∑n
j=1Kjηijuj(t−τij) +

∫ t
−∞ δij(t−s)kije−αij(t−s)uj(s) ds−ln p

+
∫ t
−∞ δij(t− s)kije−αij(t−s)uj(s) ds∑n

j=1Kjηijuj(t−τij) +
∫ t
−∞ δij(t−s)kije−αij(t−s)uj(s) ds−ln p

)

where βi > 0 is the death rate of worms in each individual of Pi,
Li > 0 measures the potential of the intermediate host population
to deliver schistosomes to a given definite host, Ki > 0 represents
the ability of a paired female schistosome to deliver viable miracidia
to a given uninfected snail, δij , ηij and αij are positive numbers, kij
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are nonnegative integers, 0 < p < 1, ηij + δij
∫∞
0
skije−αijs ds = 1,

gi(bi) is a twice continuously differentiable function of bi ≥ 0, denoting
the average load of paired schistosomes when the average load of
schistosomes is bi, and

hi(ui) = βig
′
i(g

−1
i (ui))g−1

i (ui), 1 ≤ i, j ≤ n.

In the model equation (4.1), the discrete delays and integrals are used to
characterize the transit-time distribution. Following Nasell and Hirsch
[32], we assume that

Assumption G. gi(bi) ≥ 0, g′i(bi) ≥ 0, g′′i (bi) > 0 and big
′
i(bi) −

gi(bi) ≥ 0 if bi ≥ 0, and all these inequalities are strict for bi > 0;
gi(0) = 0, g′i(0) = 0, gi(bi) → ∞ and g′i(bi) → ∞ as bi → ∞.

Therefore, hi is continuously differentiable and increasing.

The general term involving integration is of the form∫ t

−∞
(t− s)kije−αij(t−s)uj(s) ds

=
kij∑
l=0

(
l

kij

)(∫ 0

−∞
(−s)kij−leαijsuj(s) ds

)
tle−αijt

+
∫ t

0

(t− s)kijeαij(s−t)uj(s) ds.

Therefore, it is natural to select Cr,α,k as the state space, where
r = (r1, . . . , rn), rj = max1≤i≤n τij , 1 ≤ j ≤ n, α = (αij) and
k = (kij).

In Section 2-E we proved that Cr,α,k satisfies Axioms 1 14 and
β ≤ −min1≤i,j≤n αij < 0. Moreover, it is easy to verify that Axioms
15 and 16 are satisfied with λ0 = −min1≤i,j≤n αij .

For any x, y, z ∈ Rn, define

(4.2) fi

( ∨
1≤j≤n

xj ,
∨

1≤j≤n
yj ,

∨
1≤j≤n

zj

)

= −hi(xi) + gi

(
Li
∑n
j=1Kj(ηijyj + δijzj)∑n

j=1Kj(ηijyj + δijzj) − ln p

)
.
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Then (4.1) can be rewritten as

(4.3) u̇i(t) = fi

( ∨
1≤j≤n

uj(t),
∨

1≤j≤n
uj(t− τij),

∨
1≤j≤n

∫ t

−∞
(t− s)kijeαij(s−t)uj(s) ds

)
.

Because of the increasing property of the function s/(s− ln p) for s ≥ 0,
we can easily verify assumptions (H1 H4). Therefore, we obtain

Proposition 4.1. Equation (4.1) defines an eventually strongly
monotone semiflow on Cr,α,k.

The following results show that solution with nonnegative initial
condition remains nonnegative and bounded and system (4.1) is point
dissipative.

Proposition 4.2. If ϕ ∈ Cr,α,k with ϕ ≥ 0, then u(t; 0, ϕ) ≥Rn 0

and T (t)ϕ
�
=ut(ϕ) ≥ 0 for all t ≥ 0. Moreover, system (4.1) is point

dissipative.

Proof. Noting that u(t; 0, 0) ≡ 0 for all t ≥ 0, by Theorem 2.6, we
obtain

u(t; 0, ϕ) ≥Rn u(t; 0, 0) = 0 and T (t)ϕ ≥ 0

provides u(t; 0, ϕ) exists. On the other hand, s/(s− ln p) ≤ 1 for s ≥ 0
implies that

(4.4) u̇i(t) ≤ −hi(ui(t)) + gi(Li)

from which it follows that ui(t) ≤ max{ui(0),Mi} provided ui(t) exists,
whereMi = h−1

i (gi(Li)). By the continuation property in Theorem 2.1,
we conclude that u(t; 0, ϕ) exists for all t ≥ 0. This prove the first part.

By (4.4) it is easy to verify that for any solution of (4.1) with ϕ ≥ 0,
limt→∞ supui(t) < Mi + 1. Therefore

lim
t→∞ sup max

−ri≤θ≤0
ui(t+ θ) < Mi + 1
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and

lim
t→∞ sup

∫ 0

−∞
ui(t+ s)(−s)kijeαijs ds ≤ (Mi + 1)Lij ,

where

Lij =
∫ 0

−∞
(−s)kijeαijs ds.

Let

B = {ϕ ∈ Cr,α,h; |ϕ| ≤ (Mi + 1)(Lij + 1), 1 ≤ i, j ≤ n}.

Then B is a bounded set in Cr,α,k, and for any ϕ ∈ Cr,α,k, T (t)ϕ ∈ B
for sufficiently large t. This proves the point dissipativeness of system
(4.1).

By Theorem 2.4, there exists a global attractor. To describe the
structure of the attractor, we consider the existence of equilibria.
Evidently, an equilibrium point x̂, x ∈ Rn, with 0 ≤Rn x is a solution
of

(4.5) hi(xi) = gi

(
Li
∑n

j=1Kjxj∑n
j=1Kjxj − ln p

)
, 1 ≤ i ≤ n

from which we obtain

(4.6) xi = h−1
i ◦ gi(Liq(x)), 1 ≤ i ≤ n,

where

(4.7) q(x) =

∑n
j=1Kjxj∑n

j=1Kjxj − ln p
.

From (4.6) it follows that

(4.8) xi = pi(x1)
�
=h−1

i

(
gi

(
Li
L1
g−1
1 (h1(x1))

))
, 1 ≤ i ≤ n.

Hence, x is an equilibrium if and only if x1 solves the following equation

(4.9) h1(x1) = g1

(
L1

∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)
.
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We assume that

(4.10) 0 is a regular value of h1(x1) − g1

(
L1

∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)
.

It follows that there exists at least one equilibrium (0, . . . , 0) and that
the number of equilibria is finite. In fact, we have the following.

Proposition 5.3. Under the assumption (4.10), at equilibrium x we
have

(4.11) v(x)
n∑
j=1

LjKjg
′
j(Ljq(x))

h′j(xj)
�= 1,

where

(4.12) v(x) =
− ln p(∑n

j=1Kjxj − ln p
)2 .

The number of equilibria is odd, and the equilibria are totally ordered

x1 �Rn x2 �Rn · · · �Rn x2m+1, x1 = (0, . . . , 0).

Moreover, at x1, x3, . . . , x2m+1, we have

(4.13) v(x)
n∑
j=1

LjKjg
′
j(Ljq(x))

h′j(xj)
< 1,

and at x2, . . . , x2m, we have

(4.14) v(x)
n∑
j=1

LjKjg
′
j(Ljq(x))

h′j(xj)
> 1.

Proof. We consider the derivative of

g1

(
L1

∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)
.
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Differentiating (4.8) with respect to x1, we obtain

(4.15)
h′j(xj)p

′
j(x1) = g′j

(
Lj
L1
g−1
1 (h1(x))

)
· Lj
L1

(g−1
1 · h1(x1))′

= g′j(Ljq(x)) ·
Lj
L1

· h′1(x1)
g′1(L1q(x))

, 1 ≤ j ≤ n.

Therefore
(4.16)
d

dx1
g1

(
L1

∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)

= g′1(L1q(x)) · L1 ·
− ln p

∑n
j=1Kjp

′
j(x1)(∑n

j=1Kjpj(x1) − ln p
)2

= g′1(L1q(x)) · L1

· − ln p(∑n
j=1Kjxj − ln p

)2

n∑
j=1

Kj ·
h′1(x1)Ljg′j(Ljq(x))
h′j(xj)L1g′1(L1q(x))

=
− ln p(∑n

j=1Kjxj − ln p
)2

n∑
j=1

KjLjg
′
j(Ljq(x))

h′j(xj)
h′1(x1)

= v(x)
n∑
j=1

Kj · Ljg′j(Ljq(x))
h′j(xj)

h′1(x).

Hence (4.10) implies the inequality (4.11). Note that h′i(0) = βi and
g′i(0) = 0. Therefore, at x1 = 0 we have

d

dx
g1

(
L1

∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)
< h′1(x1).

This implies that

h1(x1) > g1

(
Lj
∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)

for x1 > 0 and close to 0. On the other hand,

lim
x1→∞ g1

(
L1

∑n
j=1Kjpj(x1)∑n

j=1Kjpj(x1) − ln p

)
= g1(L1)
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and limx1→∞ h1(x1) = ∞. Therefore, by the well-known intermediate
value theorem of continuous functions, the number of equilibria is
odd, and (4.13) and (4.14) are satisfied under the assumption (4.10).
The total ordering property of equilibria is implied by the increasing
property of pj(x1) as a function of x1, 1 ≤ j ≤ n. This completes the
proof.

In the case of a unique equilibrium, by Corollary 3.1 we obtain

Theorem 4.1. If (4.9) has only one nonnegative solution 0, then for
any ϕ ∈ Cr,α,k, limt→∞ T (t)ϕ = 0.

The case of multi-equilibria is more complicated but cannot be
chaotic. For example, by Theorem 3.7, we have

Theorem 4.2. System (4.1) has no attracting periodic orbits.

To give more information about global dynamics, we consider the
stability of each equilibrium point. It is easy to calculate that at
equilibrium x̂, the linear variational equation is

(4.17) u̇i(t) = −h′i(xi)ui(t)

+Liv(x)g′i(Liq(x))
n∑
j=1

Kj

[
ηijuj(t−τij)+δij

∫ t

−∞
(t−s)kije−αij(t−s)uj(s) ds

]
.

One can verify that (3.2) holds with λ0 = −min1≤i,j≤n αij . Therefore,
by Theorem 3.2, the stability of x̂ is determined by the stability of the
corresponding ordinary differential equation

(4.18) u̇i(t) = −h′i(xi)ui(t) + Liv(x)g′i(Liq(x))
n∑
j=1

Kjuj(t).

Therefore, for any l, 1 ≤ l ≤ n, we consider
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By Theorems 3.2, 3.3 and 3.5, we obtain

Theorem 4.3. x̂1, x̂3, . . . , x̂2m+1 is (locally) asymptotically stable,
x̂2, x̂4, . . . , x̂2m is unstable, there exists a monotone increasing orbit
connecting x̂1 to x̂2 and a monotone decreasing orbit connecting x̂3 to
x̂2, and the identical assertion holds for the other equilibria x̂3, x̂4, . . . .
Moreover, if x̂2k−1 ≤ ϕ < x̂2k, k = 1, . . . ,m, then limt→∞ T (t)ϕ =
x̂2k−1, if x̂2k < ϕ ≤ x̂2k+1, k = 1, . . . ,m, then limt→∞ T (t)ϕ = x̂2k+1

and if x̂2m+1 ≤ ϕ, then limt→∞ T (t)ϕ = x̂2m+1.

By Theorem 3.4, we obtain

Theorem 4.4. The global attractor is contained in the closed interval
[[0, x̂2m+1]].

Finally, by Theorem 3.6, we have

Theorem 4.5. The union of the basins of attraction of x̂1, x̂3, . . . ,
x̂2m+1 is open and dense.
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