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ON NONCOMPACT HAMMERSTEIN
INTEGRAL EQUATIONS AND A

NONLINEAR BOUNDARY VALUE PROBLEM
FOR THE HEAT EQUATION

P.P.B. EGGERMONT

ABSTRACT. We discuss the solvability of noncompact
Hammerstein integral equations, related to Volterra as well
as Wiener-Hopf equations. Usually the solvability is well
understood only in L2 setting, e.g., if the integral operator
is positive definite and the nonlinearity is monotone. We are
interested in obtaining the L∞ theory from the L2 theory.
This can be done by means of a result related to Hadamard’s
theorem, which allows us to consider the solvability of the
linearizations of the Hammerstein equation; by means of
a theorem in [5] concerning the spectra of convolution-like
operators on Lebesgue spaces; and by means of a compactness
argument involving the strict topology on L∞. We apply this
theory to the study of the solvability of the heat equation
on a half space with (mildly) nonlinear heat radiation on the
boundary.

1. Introduction. In this paper we study the solvability of noncom-
pact Hammerstein integral equations, prototypical of which are nonlin-
ear convolution equations on Lebesgue spaces. Usually, equations like
these are well understood in L2 setting, and it is desirable to obtain an
L∞ theory without additional conditions. Typically, a satisfactory L∞

theory is helpful when we want to establish uniform error estimates of
numerical methods for these equations, most notoriously for solutions
obtained by Galerkin methods, but sometimes the intrinsic interest is
in the L∞ theory to begin with, such as problems related to the heat
equation. We consider only mild nonlinearities, i.e., nonlinearities with
a reasonable Lipschitz constant. This allows us to linearize the Ham-
merstein equation and leads to problems about the spectra of integral
operators on Lebesgue spaces. An indispensable technical device turns
out to be the strict topology on L∞, see [8] and, particularly, [2, 3, 4].
For an application of some of these matters in a related context, see [1].
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We illustrate the above approach on an integral equation formulation
for the heat equation on a half plane with nonlinear dissipation on the
boundary.

To make matters more precise, we consider the Hammerstein equation
on Ω ⊂ RM ,

(1.1) u+ KN (u) = v.

Here

(1.2) Ku(x) =
∫

Ω

k(x, y)u(y) dy, x ∈ Ω,

with the integral kernel k measurable, and there exists a function
b ∈ L1(RM ) such that

(1.3) |k(x, y)| ≤ b(x− y), a.e. x, y ∈ Ω,

and

(1.4) sup
x∈Ω

∫
Ω

|k(x+ h, y) − k(x, y)| dy → 0, |h| → 0.

These two conditions cover the case k(x, y) = b(x − y)a(y), where
a ∈ L∞(Ω). The conditions (1.3) (1.4) are of course well known, see
[4, 17]. The nonlinearity N (u) is of Nemytskii type,

(1.5) N (u)(x) = N(x, u(x)), a.e. x ∈ Ω,

where N is a Carathéodory function, with N(x, 0) = 0, for all x ∈ Ω,
and

(1.6)
∣∣∣∣∂N(x, z)

∂z

∣∣∣∣ ≤ D, a.e. x ∈ Ω, z ∈ R.

To describe a typical situation in which the L2 theory is well under-
stood, we assume that K and N are monotone in the following sense.

∫
Ω

u(x)Ku(x) dx ≥ 0, for all u ∈ L2(Ω),(1.7)

0 < d ≤ ∂N(x, z)
∂z

≤ D <∞, a.e. x ∈ Ω, z ∈ R.(1.8)
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Note that the absolute sizes of d and D are not important; the only
relevant quantity is the condition number D/d of the nonlinearity.
Under these conditions (1.7) (1.8) it is well known that equation (1.1)
has a unique solution u ∈ L2 for every v ∈ L2 and that u depends
Lipschitz continuously on v, [16]. In addition, it follows that the
linearized equations

(1.9) ϕ+ KN ′(u)ϕ = ψ

are uniformly solvable on L2, in the sense that

(1.10) sup
u∈L2

||[I + KN ′(u)]−1||2 <∞.

Here N ′(u) is the operator of multiplication by (∂/∂u)N(x, u(x)),

(1.11) [N ′(u)ϕ](x) =
∂

∂u
N(x, u(x))ϕ(x), a.e. x ∈ Ω.

The key observation is now that if (1.10) were to hold on Lp, i.e.,

(1.12) sup
u∈Lp

||[I + KN ′(u)]−1||p <∞,

then Hadamard’s theorem would give us the Lp theory for equation
(1.1), modulo the technical condition that KN needs to be “C1.” One
main theme of this paper is to prove that (1.10) implies (1.12), see
Section 3. The other theme is that (1.12) is all that is needed to get
the L∞ theory, see Section 2. When the extra generality 1 ≤ p ≤ ∞
seems to be more trouble that it is worth, we will restrict attention to
p = ∞. In Section 4 we apply this theory to solve a boundary value
problem for the heat equation in a half plane with nonlinear radiation
on the boundary.

We finish this section by establishing some notations and conventions.
When considering nonlinear operators, equations, etc., the Banach
spaces in question are spaces of real functions. When we talk about the
spectra of linear operators, then we replace the Banach spaces by their
complexifications. So, for Ω ⊂ RM , we let Lp(Ω) denote the Banach
spaces of real measurable functions on Ω with |u|p integrable on Ω for
1 ≤ p < ∞ and essentially bounded for p = ∞. We denote the norm
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on Lp(Ω) by || · ||p,Ω or simply by || · ||p when the set Ω is clear from
the context. We let

L∞
0 (Ω) = {u ∈ L∞(Ω) : ess sup

|x|>n

|u(x)| → 0, as n→ ∞}.

Let X be a Banach space over the complex numbers. For a bounded
linear operator L : X → X we define the spectrum σ(L, X) as

σ(L, X) = {λ ∈ C : L − λI : X → X has no bounded inverse}.

We will use this for our integral operators K which are defined on all
real Lp spaces (1 ≤ p ≤ ∞), and so also on all complex Lp.

2. Hadamard’s theorem, and how to bypass it. We begin by
quoting the version of Hadamard’s theorem that seems to be the most
appropriate for our purposes. For a reference, see [6].

Let X be a Banach space, with norm || · ||X . The map F : X → X is
Fréchet differentiable if for every u ∈ X there exists a bounded linear
operator F ′(u) : X → X such that

||F (u+ h) − F (u) − F ′(u)h||X
||h||X

→ 0, as ||h||X → 0.

If this map F ′(u) is continuous in u ∈ X, then we say that F ∈ C1(X).

2.1 Hadamard’s theorem. Let X be a Banach space, and F ∈
C1(X). If

sup
u∈X

||[F ′(u)]−1||X <∞,

then F : X → X is onto, and F has a Lipschitz continuous inverse.

The condition F ∈ C1(X) is quite strong, but fortunately the
nonlinear map F (u) = u + KN (u) has some additional properties we
may put to good use. To be precise,

(2.2) the nonlinearity N satisfies the mean value property

N (u) −N (v) = N ′(w)(u− v), for all u, v ∈ X,
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and so does KN . Here w is some element of X = Lp(Ω) between u and
v. (Recall that we take Lp to be real here.)

(2.3) the nonlinear map F (u) = u + KN (u) : Y → Y is onto for a
Banach space Y , with Y ∩X dense in X. (At least for Y = L2(Ω), and
X = Lp(Ω), with 1 ≤ p <∞, and for X = L∞

0 (Ω).)

We thus get the following theorem.

2.4 Theorem. Let X and Y be Banach spaces, with Y ∩X dense in
X. Assume that F maps X ∩ Y into itself, and that this map extends
to a continuous map from X into X, as well as from Y into Y in the
respective topologies. Assume that F (0) = 0 both in X and Y , and that

(2.5) F satisfies the mean value property on X as well as Y ,

(2.6) F : Y → Y is onto,

(2.7) F : X → X is Lipschitz continuous and Gateaux differentiable,
and likewise for F : Y → Y . Moreover, for all u ∈ Y , the Gateaux
derivative F ′(u) : Y → Y extends to a bounded linear operator from X
to X, and

||[F ′(u)]−1||X ≤ C, for all u ∈ X ∪ Y.

Then F : X → X is onto and has a Lipschitz continuous inverse.

Proof. Let w ∈ X, and consider the equation F (u) = w. Since
X ∩ Y is dense in X, choose {wn}n ⊂ X ∩ Y such that w1 = 0 and
||w − wn||X → 0 as n → ∞. By (2.6), the equation F (un) = wn has
a solution un ∈ Y . Then we have F (un) − F (um) = wn − wm, and by
the mean value property (2.5), for each n,m there exists a unm ∈ Y
such that F (un) − F (um) = F ′(unm)(un − um), so that

(2.8) F ′(unm)(un − um) = wn − wm.

This equation holds in Y , but we may also think of it as an equation
in X. Now (2.7) lets us conclude from (2.8) that

(2.9) ||un − um||X ≤ C||wn − wm||X .

Now observe that w1 = 0 corresponds to u1 = 0. Then (2.9) implies
that un ∈ X for all n. Moreover, since {wn}n is a Cauchy sequence
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in X, it follows that {un}n is Cauchy as well. Thus, {un}n converges
to some u ∈ X, and then F (u) = limF (un) = limwn = w. Thus,
F : X → X is onto. The Lipschitz continuity of the inverse of F
follows likewise.

We may apply this theorem to our situation, with F (u) = u+KN (u),
and X = Lp(Ω) for 1 ≤ p <∞, and X = L∞

0 (Ω), and Y = L2(Ω).

2.10 Theorem. Let X be one of Lp(Ω), 1 ≤ p < ∞, or L∞
0 (Ω).

Assume that F (u) = u + KN (u) maps X into X, is onto on L2(Ω),
and assume that

(2.11) sup
u∈X

||[I + KN ′(u)]−1||X <∞.

Then F : X → X is onto, with a Lipschitz continuous inverse.

Finally, we must work a little bit to get from L∞
0 (Ω) to the whole

space L∞(Ω). The crucial notion is that of the strict topology on RM ,
see [2, 4, 8].

Let {un} ⊂ L∞(Ω) and u ∈ L∞(Ω). We say that un converges to u
in the strict topology on L∞(Ω) if for each compact subset S of Ω we
have

(2.12) ess sup
x∈S

|un(x) − u(x)| → 0, as n→ ∞.

A crucial property is that we have an analogue of the Arzelà-Ascoli
theorem.

2.13 Arzelà-Ascoli Theorem [4]. If {un}n is a bounded, equi-
uniformly-continuous sequence in L∞(Ω), then {un}n has a subse-
quence which converges to some element of L∞(Ω) in the strict topology.

With these notions in hand, we can extend Theorem 2.10 to L∞.

2.14 Theorem. Under the same conditions as Theorem 2.10, the
map F (u) = u + KN (u) maps L∞(Ω) onto itself and has a Lipschitz
continuous inverse.



NONCOMPACT HAMMERSTEIN INTEGRAL EQUATIONS 53

Proof. Let v ∈ L∞(Ω). For n ∈ N, define vn ∈ L∞
0 (Ω) by truncation.

vn(x) =
{
v(x), |x| ≤ n,
0, otherwise.

Observe that vn → v in the strict topology on L∞(Ω). By Theorem
2.10 the equation F (un) = vn has a solution un ∈ L∞

0 (Ω), and

||un||∞ ≤ C||vn||∞ ≤ C||v||∞.

It follows that {N (un)}n is a bounded sequence in L∞(Ω), and so

|KN (un)(x) −KN (un)(y)| ≤ ||N (un)||∞
∫

Ω

|k(x, z) − k(y, z)| dz,

from which it follows by (1.4) that {KN (un)}n is equi-uniformly-
continuous on Ω. It then follows from the Arzel̀-Ascoli theorem that
{KN (un)}n has a subsequence which converges to some w ∈ L∞(Ω) in
the strict topology. Moreover, w itself is uniformly continuous on Ω.
From the equation

un + KN (un) = vn

it then follows without loss of generality that un → v − w (strictly).
Finally, since KN is continuous in the strict topology [1, 2], it follows
that for u = v − w we have

u+ KN (u) = v.

This shows that F (u) = u+KN (u) as a map from L∞(Ω) into itself is
onto. The Lipschitz continuity of the inverse follows from assumption
(2.11) in Theorem 2.10.

For later reference, we quote a slightly different version of the Arzelà-
Ascoli theorem. A sliding Arzelà-Ascoli technique already appears in
[2] and in improved form in [3].

2.15 Sliding Arzelà-Ascoli Theorem [2, 3]. Let Ω = RM
+ (=

(R+)M ) and let {xn}n ⊂ Ω, with |xn| → ∞. Define the translations-
extensions Tn : L2(Ω) → L2(RM ) for u ∈ L2(Ω) by

Tnu(x) =
{
u(x+ xn), x+ xn ∈ Ω,
0, otherwise,
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If {un}n is a bounded, equi-uniformly-continuous sequence in L∞(Ω),
then {Tnun}n has a subsequence which converges to some element u of
L∞(RM ) in the strict topology. Moreover, u is uniformly continuous
on RM .

Proof. We only consider the case where every component of xn tends
to ∞ as n → ∞. (If some component xn(i) remains bounded, then
for our purposes we should redefine the xn by setting xn(i) equal to 0
and make the appropriate changes in the proof.) Then the maximal
supports (to give them a name) of Tnun, given by −xn + Ω, are
strictly nested, and their union covers RM . The only catch in the
proof is that the Tnun are not continuous on RM , but {Tnun}n>N

is equi-uniformly-continuous on ΩN
def= −xN + Ω. So, for each ball

Bm
def= {x ∈ RM : |x| ≤ m}, there exists an ΩN containing it, and so

we can extract a subsequence of {Tnun}n>N which converges uniformly
on Bm to some element of L∞(Bm). A diagonal argument then shows
that there exists a subsequence of {Tnun}n which converges to some
element u ∈ L∞(RM ), uniformly on every compact subset of RM . It
also follows that u is uniformly continuous on RM .

3. Uniform invertibility of integral operators. The previous
section tells us that all we need to get a satisfactory L∞ theory for the
equation u+ KN (u) = v is to establish the theorem which says that

sup
u∈L2(Ω)

||[I + KN ′(u)]−1||2,Ω <∞

implies that

sup
u∈L∞(Ω)

||[I + KN ′(u)]−1||∞,Ω <∞.

In [11] this is proved (for M = 1), in the following form. (See also [10],
where an extra condition on b was needed.)

3.1 Theorem. Let b ∈ L1(RM ) and e ∈ C(RM ), with e(0) = 0.
Consider a set K of integral operators with integral kernels k(x, y)
satisfying

|k(x, y)| ≤ b(x− y), a.e. x, y ∈ Ω,
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and ∫
Ω

|k(x, z) − k(y, z)| dz ≤ e(x− y), for all x, y ∈ Ω.

If −1 /∈ σ(K, L2(Ω)) for each K ∈ K and

sup
K∈K

||[I + K]−1||2,Ω <∞,

then −1 /∈ σ(K, L∞(Ω)) for each K ∈ K and

sup
K∈K

||[I + K]−1||∞,Ω <∞.

The proof for M > 1 goes through with minor changes. Here we
give the more natural proof, in that we first establish the theorem for
a single operator and then use compactness arguments to get results
which hold uniformly on K. Unfortunately, the first step seems to
require stronger conditions.

From now on, we assume throughout that Ω = RM
+ . The results

below apply also to the case Ω = RM−N
+ × RN .

3.2 Theorem. Let e ∈ C(RM ), with e(0) = 0, and let � be
measurable and nonnegative on Ω × Ω, and for some α > 0,

(3.3) ess sup
x∈Ω

∫
|x−y|>n

{|l(x, y)| + |l(y, x)|}(1 + |x− y|)α dy

is bounded for n = 0 and tends to 0 as n → ∞. Consider a set L of
integral operators with (integral) kernels k(x, y) satisfying

(3.4)
∫

Ω

|k(x, z) − k(y, z)| dz ≤ e(x− y), for a.e. x, y ∈ Ω

as well as

(3.5) |k(x, y)| ≤ l(x, y), for a.e. x, y ∈ Ω.

If −1 /∈ σ(K, L2(Ω)) for each K ∈ L and

(3.6) sup
K∈L

||[I + K]−1||2,Ω <∞,
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then −1 /∈ σ(K, L∞(Ω)) for each K ∈ L and

(3.7) sup
K∈L

||[I + K]−1||∞,Ω <∞.

From a practical point of view, the difference between the condition
(3.3) and the condition “|l(x, y)| ≤ b(x − y) for some b ∈ L1(RM )” is
hardly going to make a difference.

A first natural step in the proof of the above theorem is to consider
the case where L is a singleton. Then it is just a question about spectra
of integral operators on Lp spaces. The following result follows from
[5, Theorem 4.8(2)].

3.8 Theorem [5]. For every K ∈ L,

σ(K, L∞(Ω)) ⊂ σ(K, L2(Ω)).

It is here that the condition (3.3) is needed, since this is a requirement
of [5].

In order to prove Theorem 3.2, we need the following construction.
This construction is implicit for Wiener-Hopf equations, for which the
solvability is quite naturally associated with certain equations on the
whole real line, [17], and essentially appears in [2]. Let L be as in
Theorem 3.2, and let T L (translates of operators in L) be defined as
follows. An operator L is an element of T L if and only if there exist

(3.9) a sequence {Kn}n ⊂ L,

(3.10) a sequence of translations/extensions Tn : L2(Ω) → L2(RM )
defined for suitable {xn}n ⊂ Ω as

Tnu(x) =
{
u(x+ xn), x+ xn ∈ Ω,
0, otherwise,

for all u ∈ L2(Ω), whose adjoints T ∗
n : L2(RM ) → L2(Ω) are given by

T ∗
n v(x) = v(x− xn), x ∈ Ω,
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such that

(3.11) {TnKnT ∗
n }n converges strictly to L, i.e., for all v ∈ L∞(RM ),

TnKnT ∗
n v → Lv, in the strict topology on L∞(RM ).

We need the following theorem, which enunciates a very useful notion
of compactness.

3.12 Theorem. Let {Kn}n ⊂ L, and let {Tn}n be a sequence of
translations-extensions, as in (3.10). Then the sequence {TnKnT ∗

n }n

has a subsequence which converges to an operator L ∈ T L in the sense
of (3.11).

We first prove a weaker version of the above theorem.

3.13 Lemma. The sequence {TnKnT ∗
n }n has a subsequence which

converges to an integral operator L on L∞
0 (RM ) in the sense that there

exists an infinite subset N1 of N such that for every u ∈ L∞
0 (RM ),

TnKnT ∗
n u→ Lu,

as n → ∞, n ∈ N1, in the strict topology on L∞(RM ). Moreover, the
integral kernel of L satisfies the integrability conditions (3.3) (3.5).

Proof. Let Ln = TnKnT ∗
n . Let {uk}k ⊂ L∞

0 (RM ) be dense in
L∞

0 (RM ), and set wk = uk/||uk||L∞(RM ). Then {Lnwk}n is equi-
uniformly-continuous on RM , hence by the Sliding Arzelà-Ascoli The-
orem 2.15 we may extract a subsequence {Lnwk}n∈Nk

which con-
verges in the strict topology on L∞(RM ) to some vk ∈ L∞(RM ), and
N1 ⊃ N2 ⊃ . . .Nk ⊃ Nk+1 ⊃ . . . . A diagonalization process yields
an infinite subset N∞ ⊂ N such that {Lnwk}n∈N∞ converges strictly
for every k. Without loss of generality, we assume that N∞ = N. It
follows that {Lnw}n converges strictly for every w ∈ L∞

0 (RM ). Denote
the limit by Lw. Then, obviously, L : L∞

0 (RM ) → L∞(RM ) is a linear
operator. Moreover, since Lw is the uniform limit of {Lnw}n (on every
compact set), it follows that L is bounded.

Next we show that L is an integral operator, whose integral kernel
satisfies (3.3) (3.5). From the Sliding Arzelà-Ascoli Theorem 2.15 we
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have that Lw is (uniformly) continuous. Thus, for each x ∈ RM , we
have that Lw(x) is a bounded linear functional on L∞

0 (RM ). Therefore,
we may represent this functional as

Lw(x) =
∫
RM

w(y) dλx(y), x ∈ RM ,

where λx is a Radon measure on RM , see, e.g., [9]. Since the integral
kernels kn(x, y) of the operators Ln satisfy

|kn(x, y)| ≤ l(x+ xn, y + yn), x, y ∈ RM ,

(with l(x, y) ≡ 0 for (x, y) /∈ Ω × Ω), we thus get that λx is absolutely
continuous with respect to Lebesgue measure. So dλx(y) = λ(x, y) dy,
with λ(x, ·) ∈ L1(RM ) for all x ∈ RM , and we may write

Lw(x) =
∫
RM

λ(x, y)w(y) dy, x ∈ RM .

The final conclusion that

ess supx∈Ω

∫
|x−y|>n

{|λ(x, y)| + |λ(y, x)|}(1 + |x− y|)α dy

is bounded for n = 0 and tends to 0 as n → ∞, now follows easily.

The following corollary requires no proof now.

3.14 Corollary. If L ∈ T L, then L is an integral operator whose
integral kernel satisfies (3.3) (3.5).

3.15 Proof of theorem 3.12. The sequence {Ln}n
def= {TnKnT ∗

n }n

has a subsequence which converges to some integral operator L in the
sense of Lemma 3.13, and the integral kernel of L satisfies (3.3) (3.5).
For convenience, we assume that the whole sequence converges. We
must now strengthen the convergence to the sense of (3.11).

We denote the integral kernels of Ln and L by kn(x, y) and k(x, y),
respectively. Let u ∈ L∞(RM ). Let A ⊂ RM be compact, and let
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ε > 0. Since all kn(x, y) are dominated by l(x, y), and both l(x, y)
and k(x, y) satisfy (3.3) (3.5), we may choose m ∈ N such that for all
n ∈ N,

(3.16) ess supx∈A

∣∣∣∣
∫
|y|>m

kn(x, y)u(y) dy
∣∣∣∣ < ε,

and likewise for k. Now define vm by truncation:

vm(x) =
{
u(x), |x| ≤ m,
0, otherwise.

Then vm ∈ L∞
0 (RM ) and so by Lemma 3.13,

ess supx∈A|Lnvm − Lvm| < ε,

for all n large enough. Combined with (3.16), it follows that

ess supx∈A|Lnu− Lu| < ε,

and the theorem is proved.

Before we can prove Theorem 3.2, we need a connection between
the strict convergence of (3.11) with convergence in L2 and associated
spectral properties of the classes L and T L.

3.17 Lemma. If {TnKnT ∗
n }n converges to L ∈ T L in the sense of

(3.11), then the convergence is in effect strong convergence on L2(RM ).

Proof. Let Ln
def= TnKnT ∗

n . By (3.3) (3.5), we have that for
w ∈ L∞

0 (RM ),

(3.18) ||Lnw||x|>m||∞ → 0, m→ ∞,

uniformly in n, and by Corollary 3.14, also

(3.19) ||Lw||x|>m||∞ → 0, m→ ∞.
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Since Lnw converges to Lw, uniformly on compacta, then

(3.20) ||Lnw − Lw||∞,RM → 0, n→ ∞,

still for all w ∈ L∞
0 (RM ). Since (3.18) (3.19) also hold for the L2-norm,

it is then an easy exercise to show that (3.20) implies that

||Lnv − Lv||2,RM → 0, n→ ∞,

for each v ∈ L2(RM ).

3.21 Lemma. If −1 /∈ σ(K, L2(Ω)) for all K ∈ L, and

sup
K∈L

||[I + K]−1||2,Ω <∞,

then there exists a constant c > 0 such that for every L ∈ T L, and for
every u ∈ L2(RM ),

||u+ Lu||2,RM ≥ c||u||2,RM .

Proof. Let L ∈ T L, and let Ln = TnKnT ∗
n converge to L on

L2(RM ) in the sense of (3.11). By Lemma 3.20, we may assume that
the convergence is in effect strong on L2(RM ). Since the equation
u + Lnu = v on RM is equivalent to w + Knw = T ∗

n v on Ω, it follows
that ||[I +Ln]−1||2,RM ≤ c||[I +Kn]−1||2,Ω, and we have for a suitable
constant C,

sup
n

||[I + Ln]−1||2,RM ≤ C.

The lemma now follows from, e.g., [14, Chapter 3, Lemma 1.1].

Finally, we need a simple fact about the (uniform) continuity in the
strict topology of operators in L. See [1,3]. We omit the proof.

3.22 Lemma. Suppose {un}n is a bounded sequence in L∞(RM ),
which converges to some u ∈ L∞(RM ) in the strict topology. If
{Kn}n ⊂ L, with L as in Theorem 3.2, then Ln(un − u) → 0 in the
strict topology on L∞(RM ). Here Ln = TnKnT ∗

n .
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We are now ready to prove Theorem 3.2.

3.23 Proof of Theorem 3.2. We suppose that −1 /∈ σ(K, L2(Ω))
for all K ∈ L, but that (3.7) does not hold. We then prove that (3.6)
does not hold either.

By [5, Theorem 3.8] we know that −1 /∈ σ(K, L∞(Ω)); thus, if
(3.7) does not hold then by the uniform boundedness principle there
must exist a sequence {Kn}n ⊂ L, and a v ∈ L∞(Ω) such that
||[I + Kn]−1v||∞,Ω → ∞. It follows that there exists {un}n ⊂ L∞(Ω),
with ||un||∞,Ω = 1, and

(3.24) ||un + Knun||∞,Ω → 0.

Now {Knun}n is equi-uniformly-continuous on Ω, by assumption (3.4),
and then without loss of generality, so is {un}n. Let {xn}n ⊂ Ω be such
that |un(xn)| > 1 − n−1. Let Tn be the translation-extension operator
defined in (3.10). Then from (3.24)

(3.25) ||Tnun + TnKnT ∗
n Tnun||∞,RM → 0.

By applying the Sliding Arzelà-Ascoli Theorem 2.15 we see that
{Tnun}n contains a subsequence which converges to some u ∈ L∞(RM )
in the strict topology and u is uniformly continuous. For nota-
tional convenience, assume that the whole sequence converges. Since
|u(0)| = limn |un(xn)| = 1, it follows that u �= 0. Now, by Lemma 3.22
and (3.25) we get that {u + TnKnT ∗

n u}n converges to 0 in the strict
topology on L∞(RM ). By Theorem 3.12, the sequence {TnKnT ∗

n }n

contains a subsequence which converges strictly on L∞(RM ) to some
L ∈ T L, so that u + Lu = 0, with u �= 0. Then −1 ∈ σ(L, L∞(RM )),
and so by [5, Theorem 3.8] also −1 ∈ σ(L, L2(RM )). By Lemma 3.21,
it follows that (3.6) does not hold.

4. A nonlinear boundary value problem for the heat equa-
tion. In this section we consider an application of the theory developed
in the previous sections. We consider the heat equation in a half plane,
with nonlinear heat exchange on the boundary. The one-dimensonal
case has been treated exhaustively [18], with different methods under
weaker assumptions on the nonlinearity. A different treatment of the
two-dimensional problem is given in [13].
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Let Π = {(x, y) : −∞ < x <∞, 0 < y < ∞} with boundary ∂Π (the
x=axis, and consider the temperature distribution u(x, y; t) in the half
plane at time t. We assume that u satisfies the initial boundary value
problem

(4.1)
ut − Δu = 0, in Π × R+,

u(x, y; 0) = f(x, y), on Π,
uy(x, 0; t) = g(x, t, u(x, 0; t)), on ∂Π × R+.

We assume that f is bounded on Π. The nonlinear heat exchange may
vary over time and may also vary with the position on the boundary.
If it is independent of the position on the boundary, then it reduces
to a problem with one spatial dimension. We assume that g is a
Carathéodory function, g(x, t, 0) ≡ 0 for all x, t and satisfies

(4.2) 0 < d ≤ ∂g

∂u
≤ D <∞, for all (x, t, u) ∈ ∂Π × R+ × R.

In the sequel we will show that the initial boundary value problem (4.1)
has a unique solution u ∈ L∞(Π × R+) for every f ∈ L∞(Π × R+),
and that u, restricted to ∂Π, depends Lipschitz continuous on f in the
L∞-topology, i.e., there exists a constant C such that if ui corresponds
to fi, then

(4.3) ||u1

∣∣∣
∂Π

− u2

∣∣∣
∂Π

||∞,∂Π×R+ ≤ C ||f1 − f2||∞,Π×R+ .

Similar estimates with respect to g, e.g., the dependence of u with
respect to u0 in case g(x, t, u) = γ(x, t, u−u0(x, t)) will not be pursued
but are equally important.

It is, of course, well known that to solve problem (4.1) it suffices to
find u(x, 0; t) for all x, t, see [13]. Using Green’s formula, and assuming
that |u(x, y; t)| and |∇u(x, y; t)| are bounded as |x|+ |y| → ∞ (for fixed
t), it can be shown that ϕ(x, t) = u(x, 0; t) satisfies the integral equation

(4.4)
1
2
ϕ+ KG(ϕ) = ψ,

where

(4.5) G(ϕ)(x, t) = g(x, t, ϕ(x, t)), (x, t) ∈ ∂Π × R+,
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and K is given by

(4.6) Ku(x, t) =
∫ t

0

∫ ∞

−∞
k(x− ξ, t− τ )u(ξ, τ) dξ dτ,

for (x, t) ∈ ∂Π×R+, with k(x, t) = K((x, 0); t), where K is the causal
Green’s function for the heat equation in the plane

(4.7) K(x; t) =
exp(−|x|2/4t)

4πt
, (x, t) ∈ Π × R+,

and

(4.8) ψ(x, t) =
∫ ∫

Π

K((x− ξ; η); t)f(ξ, η) dξ dη,

for (x, t) ∈ ∂Π×R+. Then the solution of the boundary value problem
is (tentatively) given by Green’s formula for x ∈ Π, t > 0

(4.9) u(x; t) =
∫

Π

K(x− y; t)f(y) dy

+
∫ t

0

∫ ∞

−∞
[K(x−(ξ, 0); t−τ )g(ξ, τ, ϕ)−ϕKn(x−(ξ, 0); t−τ )] dξ dτ,

where Kn denotes the normal derivative of K(x − y; t) with respect
to y. Assuming that ϕ is bounded on Π × R+, it is a well-known
exercise to show that |u(x; t)| and |∇u(x; t)| are bounded by const

√
t,

uniformly in x, and then that (4.9) gives the solution of the boundary
problem (4.1). Finally, from the Phragmèn-Lindelöf principle [19], it
follows that for all x ∈ Π, t > 0,

(4.10) |u(x; t)| ≤ max{||f ||∞,Π, ||ϕ||∞,∂Π×R+},

and thus u is bounded on Π × R+.

From the above, in order to solve (4.1), it suffices to show that the
integral equation (4.4) has a bounded solution ϕ. We want to apply
the theory from Sections 2 3, but the equation (4.4) is not yet in the
required form, since k /∈ L1(∂Π × R+). The situation is even worse
than this, since K is not even a bounded operator on L2(∂Π × R+).
However, just as for the one-dimensional case, we may transform it



64 P.P.B. EGGERMONT

into an equation which has the required form, see [10]. First note that
the integral operator (4.6) is densely defined and is monotone on its
domain:

〈u,Ku〉 def=
∫ ∞

0

∫ ∞

−∞
u(x, t)[Ku](x, t) dx dt > 0,

for all u ∈ domain (K), u �= 0. As a matter of fact, by the Plancherel
formula,

(4.11) 〈u,Ku〉 =
∫
R2
k̂(ω, σ)|û(ω, σ)|2 dω dσ,

with û(ω, σ) the Fourier transform of u, and likewise for k̂. A simple
calculation shows that

k̂(ω, σ)def=
∫ ∞

0

∫ ∞

−∞
k(x, t)e−2πixω−2πitσ dx dt

= [4π(iσ + 8πω2)]−1/2,

with the principal value of the square root, so that the real part of
k̂ is positive. Then the right-hand side of (4.11) must be positive as
well (the imaginary part vanishes). It follows, [7], that I + λK has a
bounded inverse on L2(∂Π × R+) for all λ > 0,

(4.12) ||[I + λK]−1||2,∂Π×R+ ≤ 1,

and from λ(I + λK)−1K = I − (I + λK)−1, we also get

(4.13) ||λ[I + λK]−1K||2,∂Π×R+ ≤ 1.

We now rewrite (4.4) with λ = (d+D)/2 as (1/2)ϕ+λKϕ+λKGλ(ϕ) =
ψ, where Gλ(ϕ) = (G(ϕ) − λϕ)/λ, and so

(4.14) ϕ+ LλGλ(ϕ) = Ψ,

where Lλ = 2λ(I + 2λK)−1K, and Ψ = 2(I + 2λK)−1ψ. One easily
verifies that Gλ is a strong contraction, with contraction constant
(D − d)/(D + d). It follows that LλGλ is a strong contraction. By
the Banach contraction principle, whenever Ψ is in L2(∂Π × R+), we
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have that equation (4.14), and so also (4.4), has a unique solution ϕ,
which depends Lipschitz continuous on Ψ in the L2(∂Π×R+)-topology.
More importantly, the same reasoning gives us the crucial property

(4.15) ||[I + LλG′
λ(ϕ)]−1||2,∂Π×R+ ≤ const, for all measurable ϕ

with const = (d + D)/2d. We now assume that Lλ is an integral
operator with integral kernel l(x− ξ, t− τ ), and l ∈ L1(∂Π×R+), and
that

(4.16)
∫ ∞

0

∫ ∞

−∞
|l(x, t)|(1 + |x| + t)1/4 dx dt <∞.

Then we are all set up for the application of Theorem 3.2 and Theorems
2.10 2.14. Note that we have from (4.7) (4.8),

(4.17) ||ψ||∞,∂Π×R+ ≤ ||f ||∞,Π,

and so, if l ∈ L1(∂Π × R+),

(4.18) ||Ψ||∞,∂Π×R+ ≤ ||l||1,∂Π×R+ ||f ||∞,Π.

4.19 Theorem. Let g satisfy (4.2). Then the integral equation (4.4)
has a unique solution ϕ ∈ L∞(∂Π × R+) for every f ∈ L∞(Π), and ϕ
depends Lipschitz continuously on f in the L∞-topology.

Finally, the unique solvability of the initial boundary value problem
(4.1) for bounded f now follows, and the solution is bounded, and

(4.20) ||u
∣∣∣
∂Π×R+

||∞ ≤ C||f ||∞,Π.

The Lipschitz continuity (4.3) follows likewise.

We finish by proving (4.16). Observing that

∫ t

σ

∫ ∞

−∞
k(x− ξ, t− τ )k(ξ − η, τ − σ) dξ dτ

=
1
2

√
π(t− σ)k(x− η, t− σ),
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we note that the integral kernel kn(x− ξ, t− τ ) of Kn satisfies

(4.21) kn(x, t) = κn(t) exp(−x2/4t)

for some function κn. From the Neumann series for (I + 2λK)−1, we
then conclude that the kernel l(x− ξ, t− τ ) of the operator Lλ satisfies

(4.22) l(x, t) = m(t) exp(−x2/4t),

for some function m. Then, from the equation Lλ + 2λKLλ = K, we
get that m(t) satisfies the integral equation

(4.23) m(t) +
λ√
t

∫ t

0

√
τm(τ )√
π(t− τ )

dτ =
1

4πt
, t > 0.

It follows that μ(t) =
√
tm(t) satisfies the equation

(4.24) μ(t) +
λ√
π

∫ t

0

μ(τ )√
t− τ

dτ =
1

4π
√
t
, t > 0.

As shown in [15], this shows that μ is locally integrable on R+, and
that

(4.25) μ(t) = − 1
4λ

√
π

d

dt
E 1

2
(−λt 1

2 ), t > 0,

where E 1
2

is the Mittag-Leffler function, see [12]. From the known
asymptotic properties of E 1

2
, it follows that μ(t) = O(t−3/2) for t→ ∞,

and so we get that

(4.26) m(t) = O(t−2), t→ ∞.

It is now an easy exercise to show that the above estimate combined
with (4.22) implies that (4.16) holds.
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