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ABSTRACT. This paper treats the existence and approxi-
mation of solutions of nonlinear integral equations defined on
the half line [0,∞). Integral equations on [0,∞) are approx-
imated by finite-section approximations, which reduce to in-
tegral equations on bounded intervals [0, β]. In the case when
solutions are unique, the solutions xβ to the finite-section ap-
proximations converge uniformly on compact sets to the so-
lution x of the integral equation on [0,∞), under natural hy-
potheses on its kernel. When solutions are not unique, the
solution sets of the finite-section approximations converge in
an appropriate sense to the solution set of the given integral
equation. Integral equations of the type treated here include
certain nonlinear Wiener-Hopf equations and integral equa-
tions of Hammerstein type. There are implications pertaining
to global existence questions for nonlinear initial and bound-
ary value problems for ordinary differential equations, in par-
ticular for a semi-conductor problem.

1. Introduction. We shall consider nonlinear integral equations on
the half line R+ = [0,∞) of the form

(1.1) x(s) −
∫ ∞

0

k(s, t, x(t)) dt = y(s),

and more general nonlinear operator equations. By hypothesis, x and
y are bounded, continuous functions on R+. Assumptions on k will be
imposed later.

Finite-section approximations for (1.1) are given by

(1.2) xβ(s) −
∫ β

0

k(s, t, xβ(t)) dt = y(s),

for β ≥ 0. Since (1.2) determines xβ(s) for s > β in terms of
xβ(t) for t ∈ [0, β], (1.2) reduces to an integral equation on [0, β].
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Various discretization and linearization procedures, such as numerical
integration and Newton’s method, are available for the approximate
solution of (1.2). This leads to double or even triple approximation
schemes for the approximate solution of (1.1).

The setting for the analysis is the Banach space X+ of bounded,
continuous, real or complex functions x on R+ with ||x|| = sup |x(t)|.
The integral equations (1.1) and (1.2) will be special cases of more
general operator equations on X+:

(1.3) (I − K)x = y, (I − Kβ)xβ = y.

The main concern of this paper is the convergence of solutions xβ to
solutions x in (1.3) and, more particularly, in (1.1) and (1.2). Conver-
gence in the norm of X+ is uniform convergence on R+. However, it
is not generally true that solutions xβ in (1.2) converge uniformly on
R+ to solutions x in (1.1). The most that can be expected in general is
uniform convergence on finite intervals. Strict convergence, described
in Section 2, embodies this feature. Strict convergence was introduced
in a locally compact topological space [6]. It was first applied to in-
tegral equations in [5]. A current application of strict convergence to
integral equations is the paper [7] by Eggermont in this journal.

We shall identify basic continuity, compactness, and convergence
properties of the operators K and Kβ that imply the strict convergence
of solutions of (I −Kβ)xβ = y to solutions of (I −K)x = y. There are
also implications concerning the existence and uniqueness of solutions.
Hypotheses on k in (1.1) and (1.2) will enable us to apply the general
results to integral equations. The convergence results obtained below
(see Section 4) are of the following type. The existence of solutions xβ

to (I −K)xβ = y for all β in R+ (or just for β in an unbounded subset
of R+) implies the existence of a solution x to (I−K)x = y. Moreover,
the solution x is the strict limit of xβ with β in a subset of R+. When
I−K is one-to-one, xβ converges strictly to x with β in R+. In the case
of nonuniqueness, we compare the solution sets of (I − K)xβ = y and
(I − K)x = y and obtain strict convergence of the set of approximate
solutions to the solution set of (I − K)x = y.

The operator-theoretic structure we use is adapted from [1] by
Anselone and Ansorge, which is concerned with nonlinear operator ap-
proximation theory principally in a Banach space setting with norm
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convergence. The applications to the integral equations (1.1) and (1.2)
are motivated by [2, 3, 4], which deal with linear integral equations on
the half line.

2. Strict convergence. Let {xβ} = {xβ : β ∈ R+} be an ordered
family of functions in X+ with the natural order induced by R+. We are
particularly interested in the behavior of xβ as β → ∞. The following
definitions made for {xβ} carry over directly to {xβ : β ∈ R′} for any
unbounded subset R′ ⊂ R+.

Strict convergence is defined by:

xβ
s→ x as β → ∞

if {xβ} is bounded and xβ → x uniformly on finite intervals.

Let ||x||α = max |x(t)| for t ∈ [0, α]. Then xβ
s→ x if

||xβ|| is bounded uniformly
for β ∈ R+and ||xβ − x||α → 0 as β → ∞ ∀α ∈ R+.

If xβ
s→ x, then x is unique and ||x|| ≤ sup ||xβ||.

Convergence in the norm of X+ implies strict convergence but not
conversely. For example, let

x(t) = 1, xβ(t) = e−t/β for β > 0.

Then xβ
s→ x but ||xβ − x|| = 1 for all β.

A strict cluster point of {xβ} is a function x ∈ X+ such that xβ
s→ x

with β ∈ R′ for some R′ ⊂ R+. The set of all strict cluster points
of {xβ} is denoted by {xβ}∗. We say that {xβ} is s-compact if
{xβ : β ∈ R′} has a strict cluster point for any R′ ⊂ R+. This is
analogous to the criterion for a sequence that every subsequence has a
convergent subsequence. It is elementary that {xβ} s-compact implies
{xβ} is bounded.

The following result is similar to a standard metric space proposition
and it is proved in much the same way. Here [x] denotes a singleton
set.
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Lemma 2.1. xβ
s→ x ⇔ {xβ} s-compact, {xβ}∗ = [x].

Proof. The forward implication is immediate. For the converse, we
shall prove that

{xβ} s-compact, xβ

s


→ x ⇒ {xβ}∗ 
= [x].

Since xβ

s


→ x, there exist α ∈ R+, ε > 0, and R′ ⊂ R+ such that
||xβ − x||α > ε ∀β ∈ R′.

Since {xβ} is s-compact, {xβ : β ∈ R′} has a strict cluster point
y ∈ X+. Then y ∈ {xβ}∗ and

||y − x||α ≥ ε, y 
= x, {xβ}∗ 
= [x].

There is an analogue of the Arzélà-Ascoli theorem for strict conver-
gence:

Lemma 2.2. {xβ} bounded, equicontinuous ⇒ {xβ} s-compact.

This is proved by applying the classical Arzélà-Ascoli theorem to suc-
cessive intervals [0, n], n = 1, 2, 3, . . . , and using a diagonal argument.
See [2, 5].

A useful consequence of Lemmas 2.1 and 2.2 is

Lemma 2.3. {xβ} bounded equicontinuous, xβ(t) → x(t) for all
t ∈ R+ ⇒ xβ

s→ x.

Definitions and results for strict convergence xβ
s→ x carry over to sets

E, Eβ ⊂ X+. In the comparison of (I −K)x = y and (I −Kβ)xβ = y,
E and Eβ will be sets of solutions in the absence of uniqueness. Strict
set convergence is defined by:

Eβ
s→ E as β → ∞ if

(1)
⋃

β∈R+ Eβ is bounded,

(2) for all α ∈ R+ and for all ε > 0 there exists β(α, ε) such that
PαEβ lies in the ε-neighborhood of PαE for β ≥ β(α, ε),
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where Pα : X+ → C[0, α] is the restriction map. Strict set limits are
not unique, for larger sets are also limits.

A strict cluster point of {Eβ} is an element x ∈ X+ such that xβ
s→ x

for some xβ ∈ Eβ with β ∈ R′, and some R′ ⊂ R+. The set of strict
cluster points of {Eβ} is denoted by {Eβ}∗. We say that {Eβ} is s-
compact if {Eβ : β ∈ R′} has a strict cluster point for any R′ ⊂ R+, in
which case {Eβ}∗ 
= ∅.

Lemma 2.4. {Eβ} s-compact, {Eβ}∗ ⊂ E ⇒ Eβ
s→ E 
= ∅.

The proof is almost the same as for the converse in Lemma 2.1.

3. Nonlinear operators on X+. Let K, Kβ : X+ → X+ for
β ∈ R′. The operator K is s-continuous if

xβ
s→ x ⇒ Kxβ

s→ Kx,

and K is s-compact if

{xβ} bounded ⇒ {Kxβ} s-compact.

Similarly, {Kβ} is asymptotically s-compact if

{xβ} bounded ⇒ {Kβxβ} s-compact.

Strict convergence Kβ
s→ K is defined by

Kβx
s→ Kx ∀x ∈ X+.

A stronger property, continuous strict convergence Kβ
cs→ K, is defined

by
xβ

s→ x ⇒ Kβxβ
s→ Kx.

Now, let K and Kβ , β ∈ R+, be the integral operators on X+ defined
by

Kx(s) =
∫ ∞

0

k(s, t, x(t)) dt,(3.1)

Kβx(s) =
∫ β

0

k(s, t, x(t)) dt,(3.2)
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where the kernel k(s, t, u) satisfies the following hypotheses.

H1. k(s, t, u) is continuous in u.

H2. k(s, t, u) is measurable in t.

H3. Φb = sups∈R+

∫ ∞
0

sup|u|≤b |k(s, t, u)| dt < ∞ for each b > 0.

H4. Γb(s′, s) =
∫ ∞
0

sup|u|≤b |k(s′, t, u) − k(s, t, u)| dt → 0 as s′ → s

for each s ∈ R+.

We will show shortly that the integral operators K and Kβ in (3.1)
and (3.2) have the strict continuity, compactness, and convergence
properties described in the previous paragraph. First, we consider some
examples.

Hammerstein integral operators provide important special cases of
the general nonlinear integral operators above. In the Hammerstein
case k(s, t, u) = l(s, t)f(t, u) with l(s, t) = l(t, s), so that

Kx(s) =
∫ ∞

0

l(s, t)f(t, x(t)) dt,

Kβx(s) =
∫ β

0

l(s, t)f(t, x(t)) dt.

The symmetry condition l(s, t) = l(t, s) is not required in what follows.
It is readily verified that the kernel k(s, t, u) = l(s, t)f(t, u) satisfies
H1 H4 when the following conditions hold:

A. l(s, t) is measurable in t.

B. sups∈R+

∫ ∞
0

|l(s, t)| dt < ∞.

C.
∫ ∞
0

|l(s′, t) − l(s, t)| dt → 0 as s′ → s for all s ∈ R+.

D. f(t, u) is measurable in t for each u, continuous in u for each t,
and bounded for t ∈ R+ uniformly for u in any bounded set.

Specializing further, if g ∈ L1(R), then the translation kernel l(s, t) =
g(s−t) satisfies A C. Consequently, the kernel k(s, t, u) = g(s−t)f(t, u)
will satisfy H1 H4 provided f satisfies D. The special choice g(z) =
e−a|z| with a > 0 yields the Picard kernel for l(s, t). Further choices
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for l(s, t) which satisfy A C include

l(s, t) =
1

s2 + t2 + 1
,

l(s, t) =
sin(s + t)
s2 + t2 + 1

,

l(s, t) = e−t s

s + t + 1
.

Functions which satisfy D include f(t, u) = u2 and f(t, u) = ecu, with c
any constant. Thus, our results apply to integral operators of the form

Kx(s) =
∫ ∞

0

l(s, t)x(t)2 dt,

Kx(s) =
∫ ∞

0

l(s, t)ecx(t) dt,

where l(s, t) satisfies A, B and C.

Let K and Kβ be given by (3.1) and (3.2). Assume k(s, t, u) satisfies
H1 H4. The following lemmas establish key relations among K and
the Kβ .

Lemma 3.1. (a) K : X+ → X+.

(b) {Kx : ||x|| ≤ b} is bounded, equicontinuous for all b > 0.

(c) K is s-compact.

Proof. From H3 and H4,

|Kx(s)| ≤ Φb for ||x|| ≤ b,

|Kx(s′) − Kx(s)| ≤ Γb(s′, s) for ||x|| ≤ b,

which imply (a) and (b). Then Lemma 2.2 yields (c).

Virtually the same reasoning proves

Lemma 3.2. (a) Kβ : X+ → X+ for all β ∈ R+.

(b) {Kβx : ||x|| ≤ b, β ∈ R+} is bounded, equicontinuous for all
b > 0.



8 P.M. ANSELONE AND J.W. LEE

(c) {Kβ : β ∈ R+} is asymptotically s-compact.

Lemma 3.3. Kβ
s→ K. Thus,

Kβx
s→ Kx as β → ∞ ∀x ∈ X+.

Moreover, for any γ ∈ R+ and any b > 0,

||Kβx − Kx||γ → 0 as β → ∞, uniformly for ||x|| ≤ b.

Proof. For any x ∈ X+,

Kx(s) − Kβx(s) =
∫ ∞

β

k(s, t, x(t)) dt,

|Kx(s) − Kβx(s)| ≤
∫ ∞

β

sup
|u|≤b

|k(s, t, u)| dt for ||x|| ≤ b.

In view of H3,

Kβx(s) → Kx(s) as β → ∞, uniformly for ||x|| ≤ b.

By Lemma 3.2, {Kβx : ||x|| ≤ b, β ∈ R+} is bounded and equicontinu-
ous. By Lemma 2.3, the conclusions of the lemma follow.

Lemma 3.4. Kβ is s-continuous for each β ∈ R+. Thus,

xα
s→ x ⇒ Kβxα

s→ Kβx as α → ∞.

Proof. Assume xα
s→ x. Then ||xα|| ≤ b for some b < ∞ and all α.

For each s ∈ R+,

Kβxα(s) − Kβx(s) =
∫ β

0

[k(s, t, xα(t)) − k(s, t, x(t))] dt.

By H1 and H2, the integrand is measurable in t and pointwise conver-
gent to 0 as α → ∞. It is also bounded by

2 sup
|u|≤b

|k(s, t, u)|.
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Now H3 and the Lebesgue dominated convergence theorem yield

Kβxα(s) → Kβx(s) as α → ∞ for each s ∈ R+.

Lemma 3.2 implies that {Kβxα : α ∈ R+} is bounded and equicon-
tinuous. By Lemma 2.3, Kβxα

s→ Kβx as α → ∞, so that Kβ is
s-continuous.

Lemma 3.5. K is s-continuous. Thus,

xα
s→ x ⇒ Kxα

s→ Kx as α → ∞.

Proof. This can be proved by the same argument used for Lemma 3.4.
The following proof is based on different ideas. Similar reasoning will
be used to establish Lemma 3.6. Assume xα

s→ x. For any α, β ∈ R+,

Kxα − Kx = (Kxα − Kβxα) + (Kβxα − Kβx) + (Kβx − Kx).

Fix γ ∈ R+ and ε > 0. By Lemma 3.3, there exists β such that

||Kβx − Kx||γ < ε, ||Kβxα − Kxα||γ < ε for α ∈ R+.

Now β is fixed. By Lemma 3.4, there exists α0 ∈ R+ such that

||Kβxα − Kβx||γ < ε for α ≥ α0.

It follows that

||Kxα − Kx||γ < 3ε for α ≥ α0,

so that Kxα
s→ Kx as α → ∞ and K is s-continuous.

Lemma 3.6. Kβ
cs→ K. Thus,

xβ
s→ x ⇒ Kβxβ

s→ Kx.

Proof. Assume xβ
s→ x. For any α, β ∈ R+,

Kβxβ − Kx = (Kβxβ − Kxβ) + (Kxβ − Kαxβ)
+ (Kαxβ − Kαx) + (Kαx − Kx).
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Fix γ ∈ R+ and ε > 0. By Lemma 3.3, there exists α ∈ R+ such that

||Kαx − Kx||γ < ε,

||Kβxβ − Kxβ||γ < ε for β ≥ α,

||Kxβ − Kαxβ||γ < ε for β ∈ R+.

Now α is fixed. By Lemma 3.4, there exits β0 ≥ α such that

||Kαxβ − Kαx||γ < ε for β ≥ β0.

It follows that

||Kβxβ − Kx||γ < 4ε for β ≥ β0.

Therefore, Kβxβ
s→ Kx and Kβ

cs→ K.

The principal results of the preceding lemmas are summarized as
follows.

Theorem 3.7. Let K and Kβ, β ∈ R+ be the nonlinear integral
operators in (3.1) and (3.2), where the kernel k(s, t, u) satisfies H1 H4.
Then

(a) K is s-compact.

(b) {Kβ} is asymptotically s-compact.

(c) Kβ
cs→ K.

4. Convergence of approximate solutions. Let K, Kβ : X+ →
X+ for β ∈ R+. We shall compare solutions of equations

(I − K)x = y, (I − Kβ)xβ = y,

where {Kβ} is asymptotically s-compact and Kβ
cs→ K. Special cases

are the integral operators K and Kβ in (3.1) and (3.2) with the
hypotheses H1 H4 on k(s, t, u).

Theorem 4.1. Assume {Kβ} asymptotically s-compact and Kβ
cs→

K. Fix y ∈ X+. Assume there exists xβ ∈ X+ for β ∈ R′ such that

(I − Kβ)xβ = y and {xβ : β ∈ R′} is bounded.
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Then there exist R′′ ⊂ R′ and x ∈ X+ such that

xβ
s→ x with β ∈ R′′, (I − K)x = y.

If x is the unique solution of (I − K)x = y, then

xβ
s→ x with β ∈ R′.

Proof. Since {Kβ} is asymptotically s-compact and xβ = Kβxβ + y,
{xβ} is s-compact. So there exist x ∈ X+ and R′′ ⊂ R′ such that

xβ
s→ x with β ∈ R′′.

Now Kβ
cs→ K implies that Kβxβ

s→ Kx with β ∈ R′′. Hence,

y = xβ − Kβxβ
s→ x − Kx with β ∈ R′′, (I − K)x = y.

Finally, if x is the unique solution of (I − K)x = y, then Lemma 2.1
gives

xβ
s→ x with β ∈ R′.

The next theorem extends Theorem 4.1 to sets of solutions of (I −
K)x = y and (I − Kβ)xβ = y in the absence of uniqueness. The proof
involves the same arguments.

Theorem 4.2. Assume {Kβ} asymptotically s-compact and Kβ
cs→

K. Fix y ∈ X+. Let

E = {x ∈ X+ : (I − K)x = y, ||x|| ≤ b},
Eβ = {xβ ∈ X+ : (I − Kβ)xβ = y, ||xβ || ≤ b}.

Assume Eβ 
= ∅ for β ∈ R′. Then E 
= ∅. Moreover,

{Eβ} is s-compact, {Eβ}∗ ⊂ E, and Eβ
s→ E.

Proof. Let xβ ∈ Eβ for β ∈ R′′. Then xβ = Kβxβ + y. Since {Kβ}
is asymptotically s-compact, {xβ} is s-compact. Therefore, {Eβ} is
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s-compact. Let x ∈ {Eβ}∗. Then there exist R′′ ⊂ R′ and xβ ∈ Eβ for
β ∈ R′′ such that xβ

s→ x with β ∈ R′′. Hence,

y = xβ − Kβxβ → x − Kx with β ∈ R′′, (I − K)x = y.

Thus, x ∈ E and {Eβ}∗ ⊂ E. Finally, Lemma 2.4 gives Eβ
s→ E 
= ∅.

5. A semiconductor example. Integral equations of the type
treated above arise in a variety of physical applications and are closely
related to the global solvability of initial and/or boundary value prob-
lems for ordinary differential equations. For example, the analysis of
semiconductor devices leads to a problem in which Poisson’s equation
must be solved in two adjacent domains, one of which is unbounded,
subject to suitable continuity and jump relations along the common
boundary. When specialized to one spatial dimension [8], a typical
problem can be reduced to

z′′(t) = g(t, z(t)), 0 ≤ t < ∞,(5.1)
z′(0) − αz(0) = r, α > 0, r ∈ R,(5.2)

∃ lim
t→∞ z(t),(5.3)

where, on physical grounds, the functions g(t, z) used in practical mod-
els satisfies regularity conditions more restrictive than D of Section
3. Here, z(t) is an electrical potential and the principal mathematical
questions concern the existence of a solution and its numerical evalu-
ation. In realistic, physical models, g(t, z) is such that a priori any
bounded solution z(t) to (5.1) and (5.2) automatically has a limit at
infinity. Thus, we are led to the problem

z′′(t) = g(t, z), 0 ≤ t < ∞,

z′(0) − αz(0) = r, α > 0, r ∈ R,

z(t) bounded on R+.

The change of dependent variable z(t) = x(t)+ae−t with a = −r/(1+α)
reduces this problem to the more convenient form

(5.4)

⎧⎪⎨
⎪⎩

− x′′(t) + x(t) = f(t, x(t)) + h(t), 0 ≤ t < ∞,

x′(0) − αx(0) = 0,

x ∈ X+,

⎫⎪⎬
⎪⎭
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where h(t) = ae−t and f(t, u) = u− g(t, ae−t +u) satisfies D because g
does. An elementary calculation confirms that the linear differential
operator defined by Lx = −x′′ + x and the boundary conditions
x′(0) − αx(0) = 0, x ∈ X+ has the Green’s function

l(s, t) =
{ 1

2 [et−s + γe−t−s], 0 ≤ t ≤ s < ∞,
1
2 [es−t + γe−s−t], 0 ≤ s ≤ t < ∞,

where γ = (1− α)/(1 + α). Thus, the boundary value problem (5.4) is
equivalent to the Hammerstein integral equation

(5.5) x(s) −
∫ ∞

0

l(s, t)f(t, x(t)) dt = y(s),

where y(s) =
∫ ∞
0

l(s, t)h(t) dt. It is routine to check that l(s, t) satisfies
A, B, and C of Section 3. Consequently, the results in Sections 3 and
4 apply to (5.5) and its finite section approximations

(5.6) xβ(s) −
∫ β

0

l(s, t)f(t, xβ(t)) dt = y(s).

Existence results for Hammerstein equations on bounded domains [9,
10] yield solutions xβ(s) to (5.6). Then Theorems 4.1 and 4.2 imply
that (5.5) has a solution x(t) and, in the case of uniqueness, the strict
convergence of xβ to x. We shall not formulate more precise results
here. It is clear, however, that the results in Sections 3 and 4 have
fruitful applications to the global existence of solutions of nonlinear
differential equations, in areas other than semiconductor devices.
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