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ON A FORCED QUASILINEAR HYPERBOLIC
VOLTERRA EQUATION WITH FADING MEMORY

NORIMICHI HIRANO

ABSTRACT. In this paper we prove the global existence
of a solution to a boundary initial value problem for a forced
quasilinear hyperbolic Volterra equation under the assump-
tion that the forcing term remains small and can be decom-
posed into a time-periodic part and a part that decays to zero
as t → ∞. We also show that the solution converges to a time-
periodic function as t → ∞; the latter is a periodic solution
of a related history value problem.

1. Introduction. In this paper we consider global existence and
asymptotic behavior of solutions of the problem

(1.1)
ut =

∫ t

0

a(t−τ )σ(ux)x dτ+f(t, x), for x ∈ (0, 1), t > 0,

u(0, x) = u0(x), for x ∈ (0, 1),
u(t, 0) = u(t, 1) = 0, for t ≥ 0.

Here a : (0,∞) → R, σ : R → R is a given smooth function, the data
f : (0,∞) × (0, 1) → R and u0 : (0, 1) → R are sufficiently smooth
functions compatible with the boundary conditions.

The initial boundary value problem (1.1) has been studied by many
authors. In [7] MacCamy established a global existence result for the
problem (1.1) and showed that the problem (1.1) is related to a theory
of heat flow in materials with memory. The existence of global solutions
for (1.1) was also established by Dafermos and Nohel [1] and Staffans
[11]. These global existence results treat the case that the initial datum
u0 is sufficiently small and the forcing term f is sufficiently small and
decays to 0 as t→ ∞.

The purpose of this paper is to study the global existence and
asymptotic behavior of solutions for (1.1) in the case that the forcing
term f remains small but does not necessarily decay to zero as t tends
to ∞. More precisely, we treat the case that f is sufficiently small and
can be written in the form f1 +f2, where f1 is a time periodic function
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and f2 tends to 0 as t→ ∞. We show that problem (1.1) has a global
solution which converges to time a periodic function as t → ∞ (in
fact, to a solution of the history value problem (1.4), (1.5) below). To
study existence and asymptotic behavior of problem (1.1), we discuss
existence of time periodic solutions for a certain integrodifferential
equation which is closely related to the history value problem:

(1.2)
ut =

∫ t

−∞
a(t−τ )σ(ux)x dτ+f(t, x), for x ∈ (0, 1), t ∈ R,

u(t, 0) = u(t, 1) = 0, for t ∈ R,

where f is a time periodic function.

History value problems have been studied by several authors in the
case that f tends to 0 as |t| goes to infinity and the history v of u
satisfies

u(t, x) = v(t, x) for x ∈ (0, 1) and t ≤ 0,

where the function v is sufficiently smooth and satisfies the equation
(1.2) for t < 0 [2].

Our approach in this paper is based on the energy method employed
in [1].

Throughout this paper, we denote by || · ||p the norm of Lp((0, 1))
(1 ≤ p <∞) defined by

||u||pp =
∫ 1

0

|u(x)|p dx (1 ≤ p <∞), ||u||∞ = ess sup
x∈(0,1)

|u(x)|.

We also denote the norm of Lp(0,∞) by the same symbol || · ||p. We
put QT = (0, T ) × (0, 1) and QT = (0, T ) × (0, 1). For each function
u : (0, T ) × (0, 1) → R, Dku represents the vector

Dku =

{(
∂

∂x

)i (
∂

∂t

)j

u

}
, 0 ≤ i+ j ≤ k.

We denote by H1(QT ) the Sobolev space {u ∈ L2(QT ) : ||Du||2 <∞}.
For given T > 0, we set

ET (Dku) = sup
t∈(0,T )

||Dku(t)||2 for each k ≥ 0.
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We call a function u ∈ C2(R× (0, 1)) T -periodic if u satisfies u(t, x) =
u(t + T, x) for all x ∈ (0, 1) and t ∈ R. For each ρ > 0, T > 0 and a
positive integer m, we set

Vm(T, ρ) = {u ∈ C2((0, T ) × (0, 1)) : ET (Dm
u ) ≤ ρ,

u(t, 0) = u(t, 1) = 0 for all t ∈ (0, T ),
Dm−1u(t, x) = Dm−1u(t+ T, x) for all t ∈ (0, T ) and x ∈ (0, 1)}.

Let a(·) ∈ C1(0,∞) be a function satisfying a′(t) ∈ L1(0,∞). We
define a resolvent kernel k(·) associated with a′(·) by the equation

(1.3) k(t) +
∫ t

0

a′(t− s)k(s) ds = −a′(t), 0 ≤ t <∞.

Our approach is based on an existence result for periodic solutions of
the following integrodifferential equation

utt − σ(ux)x + k(0)ut = Φ(t, x) −
∫ t

−∞
k′(t− τ )ut(τ, x) dτ(1.4a)

t ∈ R, x ∈ (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ R,(1.4b)

where Φ is a function periodic with respect to the variable t.

We remark that if limt→∞ k(t) = 0, then the problem (1.2) is
equivalent to (1.4) with

(1.5) Φ = ft(t, x) + k(0)f(t, x) +
∫ t

−∞
k′(t− s)f(s, x) dt.

To state our main result, we impose the following assumptions on the
kernel a(·) ∈ C2(0,∞) and the function σ(·):

(i) a(0) = 1;
(a1) (ii) a, a′, a′′ ∈ L1(0,∞), a is strongly positive definite;

(iii) t3a(t), ta′′(t) ∈ L1(0,∞), a′′′ ∈ L1(0,∞) ∩ L2(0,∞) :
(σm) σ ∈ Cm(R), σ(0) = 0, and σ′(0) > 0,
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where m is a positive integer.

We also impose the following conditions on the initial data u0 and
the function f : (0,∞) × (0, 1) → R:

(u0) U(u0) =
∫ 1

0

(u2
0 + u2

0x + u2
0xx + u2

0xxx) dx <∞.

(f) f = f1 + f2, f1 is a T -periodic function with ET (D4f1) <∞
andf2 is a function satisfying

∫ ∞

0

||D2f2(t)||2 dt <∞.

For each function f satisfying (f), we put

Fm(f) = ET (Dmf1) +
∫ ∞

0

||D2f2(t)||2 dt for each m ≥ 1.

Theorem 1.1. Let (a1) and (σ4) hold. Then there exist T0 and
μ > 0 satisfying the following property: for each u0 and f satisfying
(u0), (f) with T ≤ T0, and U(u0) + F5(f) < μ2, the problem (1.1) has
a solution u ∈ C2((0,∞) × (0, 1)) satisfying

sup
t∈(0,∞)

||D3u(t)|| <∞.

Moreover, there exists a T -periodic function w such that

(1.6) lim
t→∞

∫ t+T

t

||D3(u− w)(s)||2 ds = 0

holds. Here w is the T -periodic solution of (1.4) where Φ is the function
defined by (1.5) with f replaced by the T -periodic function f1.

For smooth solutions, (1.1) is a special case of the initial boundary
value problem

utt = σ(ux)x +
∫ t

0

a′(t− τ )σ(ux)x dτ + f(t, x)(1.7a)

for x ∈ (0, 1) and t > 0
u(0, x) = u0(x), ut(x, 0) = u1(x), for x ∈ (0, 1),(1.7b)

u(t, 0) = u(t, 1) = 0, for t ≥ 0.(1.7c)
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Here a : (0,∞) → R, σ : R → R is a given smooth function, f :
(0,∞)×(0, 1) → R and u0, u1 : (0, 1) → R are given sufficiently smooth
functions compatible with the boundary conditions; for equivalence
with (1.1) f is replaced by ft and u1(x) = f(0, x).

If a(0) = 1 and a(∞) > 0, the initial boundary value problem
(1.7) models the motion of a one-dimensional viscoelastic bar. In
[1] Dafermos and Nohel use an energy method to establish small
data global existence results for the heat flow problem (1.1) and the
viscoelastic problem (1.7). Similar results were obtained by Staffans
[11]. Our proof of Theorem 1.1 requires the assumption a(∞) = 0, and
we are not able to obtain a similar result for viscoelastic case a(∞) > 0.

Recently, Feireisl [3] used techniques of compensated compactness
to prove the existence of time-periodic weak solutions for a history
value problem related to (1.7) in the viscoelastic case a(∞) > 0 when
the forcing function f is time-periodic. Closely related results for the
Cauchy problem were obtained by Nohel, Dafermos and Tzavaras [10].

To study motions of more general viscoelastic bars, Dafermos and
Nohel [4] obtained small data global existence and decay results for
the initial boundary value problem (1.7) with (1.7a) replaced by

(1.7a)′ utt = σ(ux)x +
∫ t

0

a′(t− τ )ψ(ux)x dτ + f(t, x)

where σ, ψ are given smooth material functions. Similar results for the
Cauchy problem were obtained by Hrusa and Nohel [4]. Unfortunately,
the technique used to prove Theorem 1.1 does not extend to the
viscoelastic problem (1.7) with (1.7a) replaced by (1.7a)′.

2. Preliminaries. Let k(·) be the resolvent kernel of a′(·). For
classical solutions, it is known that the problem (1.1) can be reduced
to the equivalent form

utt +
∂

∂t

∫ t

0

k(t− τ )ut(τ, x) dτ = σ(ux(t, x))x + Φ(t, x),(2.1a)

t ∈ (0,∞), x ∈ (0, 1),
u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, 1),(2.1b)

u(t, 0) = u(t, 1) = 0, t ∈ (0,∞).(2.1c)
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In fact, we see by differentiating (1.1) with respect to t and using the
resolvent equation (1.3) that problem (1.1) is equivalent to (2.1) with

(2.2) Φ(t, x) = ft(t, x) + k(0)f(t, x) +
∫ t

0

k′(t− s)f(s, x) dt

and

(2.3) u1(x) = f(0, x) for x ∈ (0, 1).

We also note that the equation (2.1a) can be rewritten as

(2.4)
utt − σ(ux)x + k(0)ut = Φ(t, x) −

∫ t

0

k′(t− τ )ut(τ, x) dτ

t ∈ (0,∞), x ∈ (0, 1).

We begin with a lemma which summarizes the properties of the
resolvent k(·) of a′(·).

Lemma 2.1 [7]. Suppose that assumptions (a1) are satisfied. Then
the resolvent kernel k(·) of a′(·) satisfies the following properties :

(k1)

(i) k(t), k′(t) are bounded in (0,∞);
(ii) k(t) = k∞ +K(t), k(0), k∞ > 0,K(t),K ′(t) ∈ L1(0,∞);
(iii) there exists α > 0 such that for each v ∈ L2(0, t),∫ t

0

v(s)
{
∂

∂s

∫ s

0

k(s− τ )v(τ ) dτ
}
ds ≥ α

∫ t

0

v2 dt;

(iv) tk′(t) ∈ L1(0,∞), k′′ ∈ L2(0,∞).

Assertions (ii) and (iv) are obtained by arguments given in Lemmas
2.3 and 2.4 of [4]. In fact, by taking the Laplace transform in (1.5), we
have

k̂(s) =
1

sâ(0)
+ K̂(s), K̂(s) =

â(0) − â(s)
sâ(s)â(0)

− 1
a(0)

.

Here we put k∞ = 1/â(0). Since t3a(·) ∈ L1(0,∞), we can see
by applying Proposition 4.3 of [6] with ρ = 1 + |t| that K̂(t) is
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locally analytic. Then, since K̂(∞) = 0, it follows by Lemma 2.3
of [6] that tK(t) ∈ L1(0,∞). By a similar argument, it follows that
K(t) ∈ L1(0,∞). On the other hand, we have by differentiating (1.3)
and multiplying by t that

tk′(t) + ta′(t)k∞ +
∫ t

0

(t− s)a′′(t− s)K(s) ds

+
∫ t

0

a′′(t− s)(sK(s)) ds = −ta′′(t).

Then noting that k′(t) = K ′(t) and ta′′(t) ∈ L1(0,∞), we see that
tk′(t) ∈ L1(0,∞). It also follows from (1.3) that K ′(t) ∈ L1(0,∞)
[4,7]. From (1.3) and the assumption that a′′′ ∈ L1(0,∞) ∩ L2(0,∞),
(i) and the second part of (iv) follow. For the proof of (iii), we refer
the reader to [7, Lemma 3.1].

3. Existence of periodic solutions for the problem (1.4). In
this section we give an existence result for the problem (1.4).

Theorem 3.1. Let m be a positive integer with m ≥ 2. Suppose that
(σm) holds, and that the kernel k(·) satisfies k′ ∈ L1(0,∞). Then, for
given ρ > 0, there exist T0 > 0 and ρ̃ > 0 such that for each T -periodic
function Φ with T < T0 and ET (DmΦ) ≤ ρ̃, the problem (1.4) has a
T -periodic solution u with ET (Dm+1u) < ρ.

The following existence result due to Matumura [9] is crucial for our
argument.

Theorem A. Let α > 0. Then, for given ρ > 0, there exists
ρ̃ > 0 such that for each T -periodic function h with ET (Dmh) < ρ̃,
the problem

(3.1)
utt − σ(ux)x + αut = h, for t ∈ R and x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, for t ∈ R,

possesses a unique T -periodic solution u satisfying

ET (Dm+1u) ≤ ρ.
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Throughout the rest of this section, we fix a positive integer m ≥ 2.
We also fix positive numbers ρ0, ρ1 such that for each T -periodic
function h with ET (Dmh) ≤ ρ1, there is a unique T -periodic solution
u of (3.1) satisfying ET (Dm+1u) ≤ ρ0. For each T > 0, we define
the mapping L : Vm(T, ρ1) → Vm+1(T, ρ0) by u = Lh where u is the
T -periodic solution of the problem (3.1) with α = k(0). We fix a T -
periodic function Φ with ET (DmΦ) < ∞ and define the mapping K
by
(3.2)

Ku = −
∫ ∞

0

k′(s)ut(t− s, x) ds+ Φ(t, x) for each u ∈ Vm+1(T, ρ0).

Then we have

Lemma 3.2. (1) L is a continuous mapping from Vm(T, ρ1) into
Vm+1(T, ρ0).

(2) K is a continuous mapping from Vm+1(T, ρ0) into H1(QT ). Here
Vm+1(T, ρ0) and Vm(T, ρ1) are endowed with the relative topology of the
Sobolev space H2(QT ).

Proof. (1). We first note that, from the definition of the set Vm(T, ρ1),
we may identify each element of Vm(T, ρ1) with a T -periodic function.
Let {hn} be a sequence in Vm(T, ρ1) such that hn → h strongly
in H1(QT ). Then, since Vm+1(T, ρ0) is compact in H1(QT ), there
exists a subsequence {Lhi} of {Lhn} such that Lhi converges to a
point u ∈ Vm+1(T, ρ0). Here we put ui = Lhi for each i. Since
{ui} ⊂ Vm+1(T, ρ0), we may assume that uitt and uixx converge weakly
to utt and uxx in L2(QT ). Then it is easy to see that u is the solution
of the problem (3.1). Since the solution of the problem (3.1) is unique,
we have that any convergent subsequence of {Lhn} converges to u and
that u = Lh. Thus, we have shown that L is a continuous mapping
from a compact convex subset Vm(T, ρ1) of H1(QT ) into Vm+1(T, ρ0).
(2). The assertion of (2) can be proved by a parallel argument as in
the proof of (1).

Proof of Theorem 3.1. From the above argument, we deduce that if

(3.3) K(Vm+1(T, ρ0)) ⊂ (Vm(T, ρ1)),
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then the product LK of mapping L and K is well defined and LK
is a continuous mapping from Vm+1(T, ρ0)) into itself. Then since
Vm+1(T, ρ0)) is a compact convex subset of H1(QT ), there exists a
fixed point of LK. It is obvious that the fixed point of LK is a solution
of the problem (1.4). We now show that there exists T0 > 0 such that
for each T -periodic function Φ with T < T0 and ET (Dm+1Φ) < ρ0/4,
(3.3) holds.

We define a step function k̃ by

k̃ =
∞∑

n=1

k′(nT )χnT ,

where χnT (x) = 1 for x ∈ ((n − 1)T, nT ) and χnT (x) = 0 otherwise.
From the definition of T -periodic functions, we see that

∫ (n+1)T

nT

ut(s, x) ds = 0 for each n ≥ 1 and x ∈ (0, 1).

Then we find

g(t) =
∫ ∞

0

k′(s)ut(t− s, x) ds =
∫ ∞

0

(k′(s) − k̃(s))ut(t− s, x) ds.

If T → 0, then it follows that
∫ ∞
0

|k′ − k̃| ds → 0. This implies that
there exists T0 > 0 such that for each T < T0,

ET (Dmg) ≤ ρ1

2
for each u ∈ Vm+1(T, ρ0).

Let Φ satisfy ET (DmΦ) < ρ1/2. Then it follows that Ku ∈ Vm(T, ρ1)
for all u ∈ Vm+1(T, ρ0). This completes the proof.

4. Proof of Theorem 1.1. In the following the symbols
C,C0, C1, . . . stand for constants which depend only on σ and k.
Throughout this section, we assume that (σ4) holds. Also, we assume
for simplicity that

1 < σ′(0) < 2, |σ′′(0)|, |σ′′′(0)|, |σ′′′′(t)| < 2.
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We also assume temporarily that

(σ∗) 1 ≤ σ′(t) < 2, |σ′′(t)|, |σ′′′(t)|, |σ′′′′(t)| < 2

for all t ∈ R. There is no restriction in imposing the assumption (σ∗)
because we will show the existence of a solution u of (1.1) such that
sup{|ux(t, x)| : t ≥ 0, t ∈ (0, 1)} is so small that

|σ(i)(u(t, x))| < 2 for all (t, x) ∈ (0,∞) × (0, 1), i = 1, 2, 3, 4.

For each function f satisfying (f), f1 and f2 denote the corresponding
functions defined in (f). We first show that if v is a solution of (1.1) on
(0, T ′) with T ′ > T and if v is sufficiently close to a periodic solution
w of (1.4) on (0, T ), then v remains close to w on (0, T ′).

Lemma 4.1. Let (a1) hold. Let T > 0, and let f be a function
satisfying (f), and let w be a T -periodic solution of (1.4) where Φ is
given by (1.5) with f replaced by f1. Let v0 be a function on (0, 1).
Suppose that the problem (1.1) has a solution v on (0, T ′) (T ′ > T ) with
v(0, x) = v0(x) on (0, 1). Then there exist positive constants ρ0 < 1
and C0 such that, if

(∗)
0 < ρ ≤ ρ0,

ET (D4w) < ρ, ET (D3v) < ρ, F3(f) < ρ2 and
ET ′(D3v) < ρ0,

then

ET ′(D2v) < C0ρ, and(4.1) ∫ T ′

0

||D2(v − w)(t)||2 dτ ≤ C0ρ
2.(4.2)

Proof. Let f, w and v satisfy the hypotheses of Lemma 4.1. Let
ρ, ρ0 > 0 with ρ ≤ ρ0 < 0. We suppose that ρ, ρ0 satisfy (∗). We put
u = v−w. We first see from the boundary conditions (1.4b) and (2.1c)
that

(4.3)

sup{u2(t, x), u2
t (t, x), u

2
x(t, x) : t ∈ (0, T ′), x ∈ (0, 1)} ≤ 4ρ2

0,∫ 1

0

u2
t (t, x) dx ≤

∫ 1

0

u2
tx(t, x) dx and

∫ 1

0

u2(t, x) dx ≤
∫ 1

0

u2
x(t, x) dx ≤

∫ 1

0

u2
xx(t, x) dx



HYPERBOLIC VOLTERRA EQUATION 537

for t ∈ (0, T ′). Since v and w are solutions of (2.1) and (1.4) with Φ
defined by (2.2) and (1.5), respectively, we have

(4.4) utt − σ′(vx)uxx + k(0)ut = h,

where h = h1 + h2 + h3 + h4 + h5,

h1 = −
∫ t

0

k′(t− s)ut(s, x) ds,

h2 = (σ′(vx) − σ′(wx))wxx,

h3 =
∫ 0

−∞
k′(t− s)wt(s, x) ds,

h4 = −
∫ 0

−∞
k′(t− s)f1(s, x) dt,

h5 = f2t(t, x) + k(0)f2(t, x) +
∫ t

0

k′(t− s)f2(s, x) dt.

It is easy to see that (4.4) is equivalent to the equation

(4.5) utt − σ′(vx)uxx +
∂

∂t

∫ t

0

k(t− s)ut(s) ds = h0,

where h0 = h2 + h3 + h4 + h5.

Define

(4.6) F2(u; s) =
∫ 1

0

{u2
tt + (1 + σ′(vx))u2

tx + σ′(vx)u2
xx}(s, x) dx.

We will show that if ρ0 is sufficiently small, then

(4.7) F2(u; s) + C

∫ s

0

F2(u; τ ) dτ ≤ F2(u; 0) + C1ρ
2, 0 ≤ s ≤ T ′,

holds for some C,C1 > 0. We first differentiate (4.4) with respect to t.
Then we have

(4.8) uttt − σ′(vx)uxxt − σ′′(vx)vtxuxx + k(0)utt = ht.
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Multiplying (4.8) by utt(t, x) and integrating over (0, s)×(0, 1), we find
(4.9)

1
2

∫ 1

0

{u2
tt + σ′(vx)u2

tx}(s, x) dx+ k(0)
∫ s

0

∫ 1

0

u2
tt dx dt

=
1
2

∫ 1

0

{u2
tt + σ′(vx)u2

tx}(0, x) dx+
∫ s

0

∫ 1

0

1
2
σ′′(vx)vtxu

2
tx dx dt

+
∫ s

0

∫ 1

0

(σ′′(vx)vtxuttuxx − σ′′(vx)vxxuttutx + htutt) dx dt

We next differentiate (4.4) with respect to x and multiply by utx(t, x).
Then we find

(4.10)

1
2

∫ 1

0

(u2
tx + σ′(vx)u2

xx}(s, x) dx+ k(0)
∫ s

0

∫ 1

0

u2
tx dx dt

=
1
2

∫ 1

0

{u2
tx + σ′(vx)u2

xx}(0, x) dx

+
∫ s

0

∫ 1

0

(
1
2
σ′′(vx)vtxu

2
xx + hxutx

)
dx dt.

Then, from (4.9) and (4.10), we have
(4.11)

F2(u; s) + 2k(0)
∫ s

0

∫ 1

0

(u2
tt + u2

tx) dx dt

≤ F2(u; 0) +
∫ s

0

∫ 1

0

(σ′′(vx)vtxu
2
tx + 2σ′′(vx)vtxuttuxx

− 2σ′′(vx)vxxuttutx) dx dt+
∫ s

0

∫ 1

0

σ′′(vx)vtxu
2
xx dx dt

+ 2
∫ s

0

∫ 1

0

(htutt + hxutx) dx dt.

Since ET ′(D3u) < 2ρ0, we can see from (4.11) that

(4.12) F2(u; s) + 2k(0)
∫ s

0

∫ 1

0

(u2
tt + u2

tx) dx dt

≤ F2(u; 0) + C2

(
ρ0

∫ s

0

F2(u; τ ) dτ +
∫ s

0

∫ 1

0

(htutt + hxutx

)
dx dt.
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Here we observe from (iii) of (k1) that
(4.13)

k(0)
∫ s

0

∫ 1

0

u2
tt dx dt−

∫ s

0

∫ 1

0

h1tutt dx dt

=
∫ 1

0

{∫ s

0

utt(τ )
(
∂

∂τ

∫ τ

0

k(τ−t)utt(t, x) dt+k′(τ )ut(0)
)
dτ

}
dx

≥ α

∫ s

0

∫ 1

0

u2
tt dx dt−

1
2

(
ε

∫ s

0

∫ 1

0

u2
tt dx dt+

1
ε
||k′||22ρ2

)
,

where ε is a positive number satisfying ε < α. Similarly, we have

(4.14)

k(0)
∫ s

0

∫ 1

0

u2
tx dx dt−

∫ s

0

∫ 1

0

h1xutx dx dt

=
∫ 1

0

{∫ s

0

utx(τ )
∂

∂t

∫ τ

0

k(τ − t)utx(t, x) dt
}
dx

≥ α

∫ s

0

∫ 1

0

u2
tx dx dt.

Combining (4.13) and (4.14) with (4.12), we find that
(4.15)

F2(u; s) + C3

∫ s

0

∫ 1

0

(u2
tt + u2

tx) dx dt

≤ F2(u; 0) + C4

(
ρ0

∫ s

0

F2(u; τ ) dτ+
∫ s

0

∫ 1

0

(h2
0t+h

2
0t) dx dt+ρ

2

)
.

Hence, we multiply (4.4) by uxx. Then, by (4.3), we find that

(4.16)

∫ s

0

∫ 1

0

u2
xx(t, x) dx dt ≤ C5

∫ s

0

∫ 1

0

(u2
tt + u2

t + h2
0) dx dt

≤ C5

∫ 2

0

∫ 1

0

(u2
tt + u2

tx + h2
0) dx dt.

From (4.16) and (4.15), it follows that

(4.17)
F2(u; s) + C6(1 − ρ0)

∫ s

0

F2(u; τ ) dτ

≤ F2(u; 0) + C7

( ∫ s

0

∫ 1

0

(h2
0 + h2

0t + h2
0t) dx dt+ ρ2

)
.
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We next show that

(4.18)
∫ s

0

∫ 1

0

(h2
0 + h2

0t + h2
0x) dx dt ≤ C8

(
ρ0

∫ s

0

F2(u; τ ) dτ + ρ2

)
.

We first observe that

(4.19)

∫ s

0

∫ 1

0

((σ′(vx) − σ′(wx))wxx)2 dx dt

≤ 4ρ0

∫ s

0

∫ 1

0

|vx − wx|2 dx dt

≤ 4ρ0

∫ s

0

∫ 1

0

|vxx − wxx|2 dx dt ≤ 4ρ0

∫ s

0

F2(u; τ ) dτ.

Noting that

(4.20)

((σ′(vx) − σ′(wx))wxx)t

= ((σ′′(vx)vtx − σ′′(wx)wtx)wxx + (σ′(vx) − σ′(wx))wtxx)
= ((σ′′(vx) − σ′′(wx))vtx + (σ′′(wx)(vtx − wtx))wxx

+ (σ′(vx) − σ′(wx))wtxx),

we find from the assumption that
(4.21)∫ s

0

∫ 1

0

{((σ′(vx) − σ′(wx))wxx)t}2 dx dt

≤ C9ρ0

{∫ s

0

∫ 1

0

|vx − wx|2 dx dt+
∫ s

0

∫ 1

0

|vtx − wtx|2 dx dt
}

≤ 2C9ρ0

∫ s

0

F2(u; τ ) dτ.

Similarly, we obtain
∫ s

0

∫ 1

0

{((σ′(vx) − σ′(wx))wxx)x}2 dx dt ≤ 2C9ρ0

∫ s

0

F2(u; τ ) dτ.

Thus, we find that

(4.22)
∫ s

0

∫ 1

0

(h2
2 + h2

2t + h2
2x) dx dt ≤ C10ρ0

∫ s

0

F2(u; τ ) dτ.
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We next show that

(4.23)
∫ s

0

∫ 1

0

(h2
3 + h2

3t + h2
3x) dx dt ≤ C11ρ0

∫ s

0

F2(u; τ ) dτ.

Since ET (D4w) ≤ ρ, we have

∫ s

0

∫ 1

0

{( ∫ 0

−∞
k′(t− τ )wt(τ, x) dτ

)
x

}2

dx dt

≤ 4ρ2

∫ s

0

( ∫ 0

−∞
|k′(t− s)| ds

)2

dt.

Since k′(t), tk′(t) ∈ L1(0,∞), we obtain that

(4.24)
∫ s

0

∫ 1

0

{( ∫ 0

−∞
k′(t− τ )wt(τ, x) dτ

)
x

}2

dx dt ≤ C12ρ
2.

After similar calculations, we obtain (4.23). It is also easy to see from
the assumption F3(f) < ρ2 that

(4.25)
∫ s

0

∫ 1

0

(h2
4 + h2

4t + h2
4x) dx dt ≤ C13ρ

2.

In fact, we can see, for example,

(4.26)
∫ s

0

∫ 1

0

( ∫ 0

−∞
k′(t− s)f1(s, x) dt

)2

dx dt

≤ 2ρ2

∫ s

0

( ∫ ∞

t

|k(τ )| dτ
)2

dt ≤ C14ρ
2.

From the assumption, we have∫ s

0

∫ 1

0

(h2
5 + h2

5t + h2
5x) dx dt ≤ C14F2(f)2 ≤ C14ρ

2.

Then, combining (4.22), (4.23) and (4.25) with the inequality above, we
obtain the inequality (4.17). Then (4.7) follows from (4.17) by choosing
ρ0 sufficiently small. Then, noting that

F2(u; 0) ≤ (ET (D2v) + ET (D2w))2 ≤ 4ρ2,
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we obtain

||D2v(t)||2 ≤ 4||D2(v − w)(t)||2 ≤ 8F2(u; t) ≤ C0ρ
2, 0 ≤ t ≤ T ′

and ∫ T ′

0

||D2(v − w)(t)||2 dτ ≤ C0ρ
2.

Lemma 4.2. Let (a1) hold. Let f, w and v be as in Lemma 4.1.
Then there exist positive constants ρ2 < ρ0 and C1 such that, if

(∗∗)
0 < ρ ≤ ρ2,

ET (D4w) < ρ, ET (D3v) < ρ, F5(f) < ρ and
ET ′(D3v) < ρ2,

then

ET ′(D3v) < C1ρ(4.27) ∫ T ′

0

||D3(v − w)(t)||2 dτ ≤ C1ρ
2.(4.28)

Proof. Let f, v and w satisfy the assumption and u be as in Lemma
4.1. Let ρ, ρ2 > 0 which satisfy (∗∗). We first take the second derivative
of (4.4) with respect to t and multiply by uttt(t, x). Then, by integrating
over (0, s) × (0, 1), we have

(4.29)

1
2

∫ 1

0

{u2
ttt + σ′(vx)u2

ttx}(s, x) dx+ k(0)
∫ s

0

∫ 1

0

u2
ttt dx dt

=
1
2

∫ 1

0

{u2
ttt + σ′(vx)u2

ttx}(0, x) dx

+
∫ s

0

∫ 1

0

(
1
2
σ′′(vx)vtxu

2
ttx − σ′′(vx)vxxutttuttx

+ 2σ′′(vx)vtxutttutxx + σ′′(vx)vttxuxxuttt

+ σ′′′(vx)v2
txuxxuttt + httuttt

)
dx dt.
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We next take the second derivative of (4.4) with respect to x and t and
multiply by uttx(t, x). Then, we have

(4.30)

1
2

∫ 1

0

{u2
ttx + σ′(vx)u2

txx}(s, x) dx+ k(0)
∫ s

0

∫ 1

0

u2
ttx dx dt

=
1
2

∫ 1

0

{u2
ttx + σ′(vx)u2

txx}(0, x) dx

+
∫ s

0

∫ 1

0

(
1
2
σ′′(vx)vtxu

2
txx + σ′′(vx)vtxuttxuxxx

+ σ′′(vx)vtxxuxxuttx + σ′′′(vx)vtxvxxuxxuttx

+ htxuttx

)
dx dt.

Similarly, by taking the derivative of (4.4) with respect to x and
multiplying the equation by utxxx(t, x), we have

(4.31)

1
2

∫ 1

0

{u2
txx + σ′(vx)u2

xxx}(s, x) dx+ k(0)
∫ s

0

∫ 1

0

u2
txx dx dt

=
1
2

∫ 1

0

{u2
txx + σ′(vx)u2

xxx}(s, x) dx

+
∫ s

0

∫ 1

0

(
− 1

2
σ′′(vx)vtxu

2
xxx + σ′′′(vx)v2

xxuxxutxx

+ σ′′(vx)vxxutxxuxxx + σ′′(vx)vxxxuxxutxx

+ hxxutxx

)
dx dt.

Define

(4.32)
F3(u; s) =

∫ 1

0

{u2
ttt + (1 + σ′(vx))u2

ttx

+ (1 + σ′(vx))u2
txx + σ′(vx)u2

xxx}(s, x) dx.
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Then, from (4.29), (4.30) and (4.31), we obtain
(4.33)

F3(u; s) + 2k(0)
∫ s

0

∫ 1

0

(u2
ttt + u2

ttx + u2
txx) dx dt

≤ F3(u; 0) + C2

(
ρ2

∫ s

0

F3(u; τ ) dτ + ρ2

+
∫ s

0

∫ 1

0

(httuttt + htxuttx + hxxutxx) dx dt
)
.

In order to assist the reader to see how the estimate (4.33) follows from
(4.29) (4.31), we give a sample calculation:
(4.34)∫ s

0

∫ 1

0

|σ′′(vx)vttxuxxuttt| dx dt

≤ 2
∫ s

0

{
( sup
x∈(0,1)

|uxx(t, x)|)
∫ 1

0

|vttx| |uttt| dx
}
dt

≤ 2
∫ s

0

{
(sup

x
|uxx(t, x)|)

{∫ 1

0

|vttx|2 dx ·
∫ 1

0

|uttt|2 dx
} 1

2
}
dt

≤
(

sup
t

∫ 1

0

v2
ttx(t, x) dx

) 1
2

∫ s

0

∫ 1

0

(u2
ttt + sup

y∈(0,1)

u2
xx(t, y)) dx dt.

Here we note that

( sup
y∈(0,1)

|uxx(t, y)|2) ≤
∫ 1

0

(u2
xxx(t, y) + u2

xx(t, y)) dy + u2
xx(t, x)

for each t ∈ (0,∞) and x ∈ (0, 1). From Lemma 4.1, we have∫ T ′

0

∫ 1

0
u2

xx(t, x) dx ≤ C0ρ
2. Then it follows that

∫ s

0

∫ 1

0

( sup
y∈(0,1)

|uxx(t, y)|2) dx dt ≤ ρ2

( ∫ s

0

F3(u; τ )
)
dτ + C0ρ

2 + ρ2.

Thus, we obtain

(4.35)
∫ s

0

∫ 1

0

|σ′′(vx)vttxuxxuttt| dx dt ≤ C2

(
ρ2

∫ s

0

F3(u; τ )
)
dτ + ρ.
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We next observe from equation (4.4) that∫ s

0

∫ 1

0

u2
xxx dx dt ≤ 4

∫ s

0

∫ 1

0

(u2
ttx+h2

x) dx dt+C3(ρ2+1)
∫ s

0

F2(u; τ ) dτ.

Then, from (4.33) and the inequality above, we find

(4.36) F3(u; s) + C4(1 − ρ2)
∫ s

0

F3(u; τ ) dτ

≤ F3(u; 0) + C5

(
ρ2 +

∫ s

0

∫ 1

0

(h2
x + h2

tt + h2
tx + h2

xx) dx dt
)
.

After a long calculation, we deduce

(4.37)
∫ s

0

∫ 1

0

(h2
x+h2

tt+h
2
tx+h2

xx) dx dt ≤ C6

(
ρ2

∫ s

0

F3(u; τ ) dτ+ρ2

)
.

We give a calculation to show the roles of assumptions (∗∗) and (σ∗)
to deduce (4.35). From the definition of h and (4.20), we find that htt

contains the terms

(σ′′′(vx) − σ′′′(wx))vtxwtxwxx, (σ′(vx) − σ′(wx))wttxx.

We can see from (σ∗),∫ s

0

∫ 1

0

|(σ′′′(vx) − σ′′′(wx))vtxwtxwxx|2 dx dt

≤ 4
∫ s

0

∫ 1

0

|vx − wx|2|vtxwtxwxx|2 dx dt

≤ C7ρ
6
2

∫ s

0

∫ 1

0

u2 dx dt ≤ C7ρ2

∫ s

0

F3(u; τ ) dτ.

We also see from ET (D5w) < ρ and Lemma 4.1 that∫ s

0

∫ 1

0

|(σ′(vx) − σ′(wx))wttxx|2 dx dt

≤ 4
∫ s

0

∫ 1

0

|vx − wx|2|wttxx|2 dx dt

≤ 4 sup
(t,x)∈Rx(0,1)

|wttxx(t, x)|2
∫ s

0

∫ 1

0

u2
x dx dt

≤ 8ρ2

∫ s

0

F2(u; τ ) dτ ≤ C7ρ2ρ
2.
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We also note that the condition k′′ ∈ L2(0,∞)∩L1(0,∞) is needed for
the estimate (4.37). From (4.36) and (4.37), we find that if we choose
ρ2 sufficiently small, there are constants C8, C9 > 0 satisfying

(4.38) F3(u; s) + C8

∫ s

0

F3(u; τ ) dτ ≤ F3(u; 0) + C9ρ
2

for all s ∈ (0, T ′). Then, since F3(u; 0) ≤ 2ρ2, the assertion of Lemma
4.2 follows.

Remark 4.1. It follows from Lemma 4.2 that the periodic solution w
of (1.4) is unique. In fact, if w and v are periodic solutions of (1.4),
then by Lemma 4.2, v − w converges to 0. Since v, w are periodic, it
implies that v = w.

To prove Theorem 1.1, we need the following existence theorem which
is a direct consequence of Theorem 2 of [11] (see also [ 6]).

Theorem B. Let (a1) hold. Then, for given T,M > 0, there is
a constant μM > 0 with the following property. For each u0 and
f satisfying (u0), (f), and U(u0) + F3(f) < μ2

M , the initial value
problem (1.1) has a unique solution u ∈ C2((0, T ) × (0, 1)) satisfying
ET (D3u) < M .

Proof of Theorem 1.1. We first consider the problem

vtt − σ(vx)x + k(0)vt +
∫ t

0

k′(t− s)vt(s, x) ds

(4.39a)

= Φ(t+ nT ) −
∫ nT

0

k′(t+ nT−s)ut(s, x) ds on (0, T )×(0, 1),

v(0, x) = u(nT, x), vt(0, x) = ut(nT, x) for x ∈ (0, 1),

(4.39b)

v(t, 0) = v(t, 1) = 0 for t ∈ (0, T ),

(4.39c)

where u is the solution of (1.1) on (0, nT ) and Φ is the function defined
by (2.2).
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It follows that if we define ũ : (0, (n+ 1)T ) × (0, 1) → R by

ũ(t, x) =
{
u(t, x) for (t, x) ∈ (0, nT ) × (0, 1)
v(t− nT, x) for (t, x) ∈ (nT, (n+ 1)T ) × (0, 1),

then ũ is a solution of (1.1) on (0, (n+ 1)T ). Here, we put
(4.40)

Φn(t, x) = Φ(t+ nT ) −
∫ nT

0

k(t+ nT − s)ut(s, x) ds for each n ≥ 1.

Then we see that
(4.41)
ET (D2Φn) ≤ ET (D2Φ) + C2EnT (D3u) ≤ C3(F3(f) + EnT (D3(u)).

From (4.39b) and (4.41), we have by using Theorem B that for given
ρ > 0, there exists a positive number ε < ρ such that if

(4.42) F3(f) < ε2, EnT (D3u) < ε,

then u can be extended to the interval (0, (n+ 1)T ) satisfying

(4.43) E(n+1)T (D3u) < ρ.

On the other hand, we have by using Lemma 4.2 that if ρ is sufficiently
small, and the T -periodic solution w of (1.4) with f replaced by f1
satisfies

(4.44) ET (D5w) < ε,

we obtain that
E(n+1)T (D3u) < ε.

Thus, the cycle is closed. That is, u can be extended to (0,∞) by
repeating the argument above in case that (4.44) is satisfied. It follows
from Theorem 3.1 that if T and ET (D5f1) (≤ F (f)) are sufficiently
small, then there exists a periodic solution w satisfying (4.44). Thus, we
have show the existence of global solution for (1.1). From the argument
above, the inequality (4.28) holds for any T ′ > 0. Then we have that
the inequality (1.6) is satisfied.
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