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MULTI-STEP METHODS FOR FIRST KIND
SINGULAR VOLTERRA INTEGRAL EQUATIONS

C.J. GLADWIN AND L.E. GAREY

ABSTRACT. Multi-step methods are described for first
kind singular Volterra integral equations. Methods of order
three are constructed and illustrated with a numerical exam-
ple.

1. Introduction. Consider the linear Volterra integral equation
with weakly singular kernel of the form

(1.1)
by(x) +

∫ x

0

(x − t)−αK(x, t)y(t) dt = f(x),

0 ≤ t ≤ x ≤ a, 0 ≤ α < 1

where K and f are given functions and y is the unknown function to
be found. The constant b equals 1 or 0 corresponding to a second or
first kind equation, respectively. Conditions on K and f which provide
for a unique solution y(x) ∈ C[0, a] may be found in Pogorzelski [17],
for example.

The methods considered in Section two are applicable to all equations
of the form (1.1). This is a nontrivial problem for the case b = 0 where
it has been well known for almost 20 years that a root condition must
be imposed on the weights of the quadrature rule method along with
the usual consistency conditions, for α = 0 even. Methods for the case
b = 1 may also be found in Brunner [2], Garey [6, 7], DeHoog and
Weiss [11], and Linz [12]. Single step methods for the case b = 0 may
be found in Brunner [1], Linz [13], and Weiss and Anderssen [19].

Cameron and McKee [3] have considered multi-step methods for the
case b = 0. However, their root condition is more intractable than
the one given here since they require knowledge about the roots of a
power series. Lubich [14] has recently constructed methods which are
based on having a multi-step method (ρ, σ) of order p with both the

The research of the second author was supported by NSERC of Canada under
grant A8196.

Copyright c©1991 Rocky Mountain Mathematics Consortium

515



516 C.J. GLADWIN AND L.E. GAREY

polynomials ρ and σ satisfying a simple von Neumann condition. It is
well known that such methods exist for p ≤ 6 (backward differentiation
or Adams-Bashforth). His methods are silent for p > 6 despite his
unproven statement in [14, p. 100].

The methods discussed in this paper may be treated as a general-
ization of those of Weiss [18] or Gladwin [8]. Furthermore, the root
condition given here can still be used to construct methods of higher
order as in Gladwin [9] and [10] for α = 0.

We close this section with an existence theorem for (1.1) in the case
b = 0.

Theorem 1. In equation (1.1), with b = 0, assume

(i) K, Kx ∈ C[S2], S2 = {(x, t) | 0 ≤ t ≤ x ≤ a},
(ii) K(x, x) �= 0 on S1 = {x | 0 ≤ x ≤ a},
(iii) F (x) =

∫ x

0
f(t)(x − t)α−1 dt,

(iv) 0 < α < 1.

Then, a necessary and sufficient condition for (1.1) with b = 0 to have a
unique continuous solution, y(x), is that f(0) = 0 and F (x) ∈ C1(S1).

Proof. See Pogorzelski [17, p. 16]. The theorem uses the Dirichlet
transformation to remove the singularity in (1.1) and hence reduces it
to a nonsingular equation. Thus, with sufficient smoothness on K(x, t)
and f(x), and f j(0) = 0, j = 0, 1, . . . , r (where r is the degree of
smoothness, one can have a sufficiently smooth solution y(x).

2. Multi-step methods. Let IN = {xn = nh, n = 0(1)N, h >
0, Nh = a} denote a partition of [0, a] and write equation (1.1) with
b = 0 as

(2.1)
∫ xp

0

(xn − t)−αK(xn, t)y(t) dt

+
n∑

j=p+1

∫ xj

xj−1

(xn−t)−αK(xn, t)y(t) dt = f(xn)

where p is a given nonnegative integer. Using appropriate quadrature
rules for the integrals in equation (2.1), a class of p + 1 step methods



MULTI-STEP METHODS 517

are obtained which may be used to generate approximations yn to
y(xn), n = p(1)N . For multi-step methods, (p > 0), starting values
yn n = 0(1)p − 1 must be generated initially by some independent
method such as a single step method [1, 19]. Note that

y(0) = y0 = lim
x→0

(1 − α)f(x)xα−1/K(0, 0)

which gives y(0) = 0. These latter methods could be used to generate
the entire solution, but they typically increase the number of evalua-
tions of the kernel, K, by a factor of order r2 where r is the order of
the method.

An appropriate set of quadrature rules can be obtained as follows:

i) for each n, replace K(xn, t)y(t) on [0, xp] by a polynomial in πp

which interpolates K(xn, t)y(t) at the points t = xi, i = 0(1)p

ii) similarly, replace K(xn, t)y(t) on each interval [xj−1, xj ], j =
p+1(1)N , by a polynomial in πqj

(qj ≤ p+1) which interpolates at the
points t = xj−i, i = 0(1)qj . This leads to a method of the form

(2.2)
p∑

i=0

γn,i(α)K(xn, xi)yi

+
n∑

j=p+1

qj∑
i=0

β(n−j)i(α)K(xn, xj−i)yj−i = hα−1f(xn),

n = p(1)N

where the required starting values may be determined by a single step
method. The coefficients γn,i(α) and β(n−j)i(α) may be determined for
a given α by the “method of undetermined coefficients.” The resulting
systems of linear equations are summarized in the following lemmas.
In these lemmas it is assumed that g is a sufficiently smooth function.

Lemma 1. Let

(2.3) En,p(g) =
∫ xp

0

(xn − t)−αg(t) dt − h1−α

p∑
i=0

γn,i(α)g(xi)

Then
En,p(g) = Cn,ph

p+2−αg(p+1)(ξ), ξ ∈ (0, xp)
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if and only if
p∑

i=0

γn,i(α)(n − i)� = [n�+1−α − (n − p)�+1−α]/(	 + 1 − α)

	 = 0(1)p, n = p(1)N, (Cn,p, constant).

Proof. The details may be found in Gladwin [8]. The result is easily
obtained by replacing g(t) by (xn−t)�, 	 = 0(1)p in equation (2.3).

Lemma 2. Let

(2.4) En,j(g) =
∫ xj

xj−1

(xn − t)−αg(t) dt − h1−α

qj∑
i=0

β(n−j)i(α)g(xj−i)

Then En,j(g) = Dn,jh
qj+2−αg(qj+1)(ηj), ηj ∈ (xj−1, xj) if and only if

qj∑
i=0

β(n−j)i(α)(n − j + i)�

= [(n − j + 1)�+1−α − (n − j)�+1−α]/(	 + 1 − α)

	 = 0(1)qj , j = p + 1(1)n, (Dn,j , constant).

Proof. As in lemma one, the result follows easily by replacing g(t) by
(xn − t)�, 	 = 0(1)qj in equation (2.4). The details may be found in
Gladwin [8].

3. Convergence results. For ease of notation, the argument (α)
shall be omitted for γni and β(n−j)i from now on. The polynomials

(3.1a) σj(z) =
qj∑

i=0

βj,iz
qj−ij = 0(1)n − (p + 1)

are called the characteristic polynomials of the method (2.2). In the
following we shall also need the reciprocal polynomials

(3.1b) σ∗
j (z) = zqj σ(z−1) =

qj∑
i=0

βj,iz
i.
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The method (2.2) with K(x, t) ≡ 1 together with the starting values
may be viewed as a system of N + 1 linear equations

ANYN = BN

where AN is a partitioned matrix of order N + 1

AN =
[

Dγ O
Γ WN

]

with Dγ : dij = δij , Kronecker delta, i = 0(1)p − 1, j = 0(1)p

dpj = γp,j , j = 0(1)p

O : rectangular zero matrix,

Γ : rectangular matrix depending on γn,j , n > p,

YN : (y0, . . . , yN )T ,

BN : (y0, . . . , yp−1, h
α−1f(xp), . . . , hα−1f(xn))T

The (N − p)× (N − p) matrix WN , which depends only on the β(n−j)i,
is an m(= 1) block isoclinal lower triangular matrix. See, also, McKee
[15] where a general discussion of properties concerning the existence
of uniform bounds for the inverses of such matrices may be found.

For ease of notation, let WN = (wij), i, j = 0(1)N − p − 1.

Lemma 3. Assume

1) γn,i and β(n−j)i are as determined in lemmas 1 and 2 with
qj = p + 1 for all j

2) σ0(z) is a simple von Neumann polynomial, i.e., all the roots lie
within |z| ≤ 1 with only simple roots on the boundary

3) 0 ≤ α < 1.

Then ||Γ||∞ < ∞, ||WN ||∞ < ∞ and ||W−1
N ||∞ < ∞.

Proof. The first part follows by a simple but tedious inversion of the
Vandermonde matrix in lemma 2 and observing assumption 3. As in
McKee [15], the generating function of W is

g(W, z) =
∞∑

i=0

wi,0z
i.
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At this point we consider the explicit dependence of the W on βn−j,i

alluded to above. In equation (2.2) with K(x, t) ≡ 1 and qj = p + 1 for
all j, we need to consider
(3.2)

n∑
j=p+1

p+1∑
i=0

βn−j,iyj−i =
n∑

j=p+1

j∑
i=j−p−1

βn−j,j−iyi

=
p∑

i=0

i+p+1∑
j=p+1

βn−j,j−iyi

+
n−p−1∑
i=p+1

i+p+1∑
j=1

βn−j,j−iyi +
n∑

i=n−p

n∑
j=i

βn−j,j−iyi

where the last sum is the result of interchanging the order of summa-
tion. The elements of W are now quite apparent from equation (3.2)
by taking i = n(−1)p + 1 in the second line. Thus, we have

g(W, z) =
∞∑

i=0

wi,0z
i = β0,0 + (β1,0 + β0,1)z + · · · + (βp,0 + · · · + β0,p)zp

+ (βp+1,0 + · · · + β0,p+1)zp+1 + · · ·
noting that all subsequent terms are the sum of p+2 β’s. Rearranging,
we finally obtain

g(W, z) =
∞∑

i=0

σ∗
i (z)zi

in view of equation (3.1b). Also, the generating function for W−1 is

(3.3) g(W−1, z) = {g(W, z)}−1 =
{

σ∗
0(z)

[ ∞∑
i=0

σ∗
i (z)

σ∗
0(z)

zi

]}−1

.

Since σ∗
0(z) has no zeros in |z| < 1 and only simple zeros on |z| =

1 (since σ0(z) is a simple von Neumann polynomial), g(W−1, z) is
absolutely convergent in |z| < 1 and hence g(W, z) is likewise. The
uniform bounds on WN and W−1

N then follow [15, theorem 4.3].

Remark . When choosing the p + 2 coefficients of σ0(z) (j = n in
lemma 2), one must relax the degree, qn = r − 1 ≤ p + 1, in order
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to make σ0(z) a simple von Neumann polynomial. In general, for a
given α, one can choose the p + 2− r free parameters so that σ0(z) has
as many equal real roots as possible; see also an algorithm to achieve
this in Gladwin [9, 10]. In section 5 a family of methods for r = 3
and p = 2 and for all α ∈ [0, 1) has been constructed but this quickly
becomes prohibitive for large r and p.

The next theorem summarizes the conditions for convergence of the
discretization error, en = yn − y(xn), as well as shows the minor
modifications involved for a general kernel K ∈ C∞(S2).

Theorem 2. For the method defined by (2.2) we assume

(i) K and f satisfy the conditions of Theorem 1 and K is sufficiently
smooth on S2

In addition, f (j)(0) = 0, j = 0, 1, . . . , r (where r is the degree of
smoothness),

(ii) the starting errors en : n = 0(1)p − 1 are of order r,

(iii) γn,i and β(n−j)i are determined as in lemmas one and two with
qj = p + 1, p + 1 ≤ j ≤ n − 1 and γpp �= 0

(iv) β0,i are determined as in lemma two with qn = r−1 ≤ p+1 and
the polynomial σ0(z) is simple Von Neumann and β0,0 �= 0. Then there
exists a positive finite constant C such that |en| ≤ Chr for n = 0(1)N .

Proof. By using backward differencing on the error equation, corre-
sponding to equation (2.2) and observing Taylor’s formula for K(x, t)
(see Gladwin [8] for details) we may write

(3.4)
p+1∑
i=0

β0,ien−i = K−1
nn

(
h

n−1∑
i=0

Ãn,iei + hα−1(En − En−1)
)

where i) Knn = K(xn, xn) �= 0 for all n (this condition is needed for a
unique continuous solution of equation (1.1))

ii) {Ãn,i} depends linearly on {γn,i} and {β(n−j)i}, p+1 ≤ j ≤ n−1,
and K(xn, xj−i), and

iii) En = En,p +
∑n

j=p+1 En,j

We note En−En−1 = O(hr+1−α) in view of the first part of assumption
four, and by virtue of the root condition in the second part, the left
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hand side of equation (3.4) can be rewritten to depend only on en and
{ej}, j = 0(1)p− 1, the starting errors, which are O(hr). The theorem
follows with the application of a standard recursive inequality.

Remark . It should be noted that the factor h before the summation in
(3.4) arises from the differencing of the kernel K(xn, xi) and subsequent
Taylor’s series application only.

From now on, we shall refer to σ0(z) as σ(z) for ease of notation.

Remark . For the case p = 1 and r = 3 it is to be noted that

σ(z) =
( 1
2 (5 − α)z2 + (4 − α)(1 − α)z − 1

2 (1 − α))
(1 − α)(2 − α)(3 − α)

and is simple von Neumann for 0.44 = (5−√
17)/2 < α < 1 (see Coppel

[4]).

4. Numerical results. In this section Table 1 displays some
numerical results which have been obtained using an equation of the
form

yn =
hα−1f(xn) − ∑p

i=0 γn,iK(xn, xi)yi −
∑n−1

i=0 wn,iK(xn, xi)yi

wnnK(xn, xn)

where n = 2(1)N , p = 1, r = 3, and y0 = y(0). An approximation for
y1 is obtained by solving

γ10K(x1, x0)y0 + γ11K(x1, x1)y1 = hα−1f(x1)

where γ10 and γ11 are determined using the system (4.1) with n = 1.
For the main part of the method, the weights are determined using

p∑
i=0

γni(n − i)k =
nk+1−α − (n − p)k+1−α

k + 1 − α
, k = 0(1)p(4.1)

p+1∑
i=0

βn−(p+1),i(n−(p+1)+i)k =
[n−(p+1)+1]k+1−α−[n−(p+1)]k+1−α

k + 1 − α
,

(4.2)

k = 0(1)p + 1
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and

(4.3) wn,i = βn−(p+1),p+1−i + (1 − δi)wn−1,i−1

where δ0 = 1 and δi = 0, i > 0. The example was solved using
this method with α = .5. The program was written in Fortran using
double precision and run on the University’s IBM 3091 computer. In
particular, note that y(0) = limx→0(1 − α)f(x)xα−1/K(0, 0) = 0 for
the example below.

Example.

∫ x

0

exty(t) dt

(x − t)α
=

ex5!x6−α

(6 − α)(5 − α) · · · (1 − α)
, 0 ≤ x ≤ 5, α = .5

(Exact solution: y(x) = x4.)

TABLE 1

h = .05 h = .10
xn |yn − y(xn)| |yn − y(xn)|
1 2.82 × 10−4 2.10 × 10−3

2 5.87 × 10−4 4.52 × 10−3

3 8.94 × 10−4 6.95 × 10−3

4 1.20 × 10−3 9.40 × 10−3

5 1.51 × 10−3 1.19 × 10−2

5. Conclusions. We note that the example is the Abel equation for
the case α = 1/2. This arises in various physical applications, Piessens
and Verbaeten [16], for example.

To construct other convergent methods of order r = 3 for all α ∈
[0, 1), one can take p = 2 in Theorem two. This makes the coefficients
of σ(z) depend on a single parameter, β0,0 say. Again using stability
conditions as in Coppel [4], we can make σ(z) simple von Neumann for

β0,0 ∈ (L(α), U(α)), α ∈ [0, 1)
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where

L(α) =
1
8

{
(4 − α)(1 + α)

(1 − α)(2 − α)(3 − α)
− 4 − α

(1 − α)(2 − α)
+

1
1 − α

}

and

U(α) = L(α) +
1
8

(4 − α)2(1 + α)
(1 − α)(2 − α)2(3 − α)

.
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