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ON IMPLICITLY LINEAR
AND ITERATED COLLOCATION METHODS

FOR HAMMERSTEIN INTEGRAL EQUATIONS

HERMANN BRUNNER

ABSTRACT. Recently, Kumar and Sloan introduced and
analyzed a new collocation-type method (which in the follow-
ing will be referred to as implicitly linear collocation) for the
numerical solution of Hammerstein integral equations. In the
present paper we discuss the connection between implicitly
linear collocation and iterated spline collocation. The results
are then extended to a class of nonlinear Volterra-Fredholm
integral equations.

1. The implicitly linear collocation method. Spline collocation
methods and their iterated and discretized variants for linear Fredholm
integral equations of the second kind have been studied extensively
during the last 15 years (compare, for example, the survey paper [4,
pp. 569 578, 584 588]). More recently, much of this analysis has been
extended to nonlinear Fredholm equations, either to general Urysohn
equations or to Hammerstein equations (see [1] for a comprehensive
description of the state of the art; compare also [2]). In the case of
nonlinear Fredholm integral equations of Hammerstein type,

(1.1) y(t) = g(t) +
∫ T

0

k(t, s)G(s, y(s)) ds, t ∈ I := [0, T ].

Kumar and Sloan [12] (see also [10, 11, 8]) suggested a new collocation-
type method (which, for reasons that will be given in a moment, we will
refer to as implicitly linear collocation). Setting z(t) := G(t, y(t)), the
above Hammerstein integral equation (1.1) can be written in “implicitly
linear” form,

(1.2a) z(t) = G

(
t, g(t) +

∫ T

0

k(t, s)z(s) ds

)
, t ∈ I;
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476 H. BRUNNER

once z(t) is known, the solution of (1.1) is determined by

(1.2b) y(t) = g(t) +
∫ T

0

k(t, s)z(s) ds, t ∈ I.

As indicated in [12, p. 588], it follows from a result in [ 9, p. 143]
that, under appropriate conditions on g, k, and G (see Section 3),
there is a one-to-one correspondence between the solutions of (1.1)
and (1.2a). Thus, if (1.1) has a unique solution y ∈ C(I) (which we
will assume in the following), then (1.2a) possesses a unique solution
z ∈ C(I), and they are related by (1.2b). The equations (1.2a,b)
are the basis for Kuman and Sloan’s “collocation-type method.” Let
ΠN : 0 = t0 < t1 < · · · < tN = T (where tn = t

(N)
n ) be a partition of I,

with hn := tn+1 − tn, and let S
(−1)
q (ΠN ) denote the space of piecewise

continuous polynomial spline functions of degree q ≥ 0 and with knots
given by the interior mesh points t1, . . . , tN−1. The solution z(t) of
(1.2a) will be approximated by an element w ∈ S

(−1)
m−1(ΠN ) such that

(1.3a)
w(tn,j) = G

(
tn,j , g(tn,j) +

∫ T

0

k(tn,j , s)w(s) ds

)
,

j = 1, . . . , m; n = 0, . . . , N − 1,

where the collocation points {tn,j} are given by

tn,j := tn + cjhn, with 0 ≤ c1 < · · · < cm ≤ 1.

This approximation w determines an approximation to the exact solu-
tion of (1.1),

(1.3b) v(t) := g(t) +
∫ T

0

k(t, s)w(s) ds, t ∈ I.

Let
Wn,j := w(tn,j)

and write

w(tn + τhn) =
n∑

l=1

Ll(τ )Wn,l, n = 0, . . . , N − 1,
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where τ ∈ [0, 1] if n = 0, and τ ∈ (0, 1] if n > 0; Ll(τ ) is the l-
th Lagrange fundamental polynomial with respect to the collocation
parameters {cj}. The implicitly linear collocation method (1.3a,b) can
then be written in the form

(1.4a)
Wn,j = G

(
tn,j , g(tn,j) +

N−1∑
i=0

hi

m∑
l=1

a
(n,j)
i,l Wi,l

)

j = 1, . . . , m; n = 0, . . . , N − 1,

and

(1.4b) v(t) = g(t) +
N−1∑
i=0

hi

m∑
l=1

ai,l(t)Wi,l, t ∈ I,

where we have set

(1.5a) ai,l(t) :=
∫ 1

0

k(t, ti + τhi)Ll(τ ) dτ,

and

(1.5b) a
(n,j)
i,l := ai,l(tn,j).

For many Hammerstein integral equations arising in applications, the
weights (1.5) can be calculated analytically, e.g., when k(t, s) is Green’s
function associated with a nonlinear two-point boundary-value prob-
lem, or when k(t, s) = |t − s|−α, with 0 < α < 1 (weakly singular
Hammerstein equation).

It is the aim of this note to exhibit the connection between the
implicitly linear collocation method (1.4) and the “classical” iterated
collocation method (2.2). This method and two of its discretizations
will be described in Section 2 (see also, e.g., [1, 2, 4]). It will
then be shown in Section 3 that the approximations generated by
the implicitly linear collocation method and one of the discretized
iterated collocation methods (where discretization is based on product
integration), respectively, are identical. Finally, in Section 4, we
extend this analysis to a class of nonlinear Volterra-Fredholm integral
equations arising in the modelling of the spreading of an epidemic.
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2. Spline collocation and iterated collocation. The (exact) col-
location solution u ∈ S

(−1)
m−1(ΠN ) for (1.1) is defined by the collocation

equation

(2.1a)
u(tn,j) = g(tn,j) +

∫ T

0

k(tn,j , s)G(s, u(s)) ds

j = 1, . . . , m; n = 0, . . . , N − 1,

and the corresponding iterated collocation solution uit is

(2.1b) uit(t) := g(t) +
∫ T

0

k(t, s)G(s, u(s)) ds, t ∈ I.

In analogy to the previous section, we set Un,j := u(tn,j), and

u(tn + τhn) =
m∑

l=1

Ll(τ )Un,l.

Hence, (2.1a) and (2.1b) can be expressed in the form

Un,j =g(tn,j)+
N−1∑
i=0

hi ·
∫ 1

0

k(tn,j , ti+τhi)G
(
ti+τhi,

m∑
l=1

Ll(τ )Ui,l

)
dτ

(2.2a)

j = 1, . . . , m; n = 0, . . . , N − 1,

uit(t) = g(t)+
N−1∑
i=0

hi ·
∫ 1

0

k(t, ti + τhi)G
(

ti + τhi,
m∑

l=1

Ll(τ )Ui,l

)
dτ,

(2.2b)

t ∈ I.

In contrast to the implicitly linear collocation method (1.4), the inte-
grals occurring in (2.2a), (2.2b) cannot in general be found analytically;
a further discretization step involving suitable quadrature approxima-
tions will be needed to obtain a computationally feasible form of the
above collocation method. Here we consider two of these discretiza-
tions.

(a) If the kernel function k(t, s) is smooth and “nicely behaved,”
then it is suggestive to approximate the integrals in (2.2) by m-point
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interpolatory quadrature formulas whose abscissas coincide with the
collocation points ti,l = ti + clhi (l = 1, . . . , m):

∫ 1

0

k(t, ti + τhi)G(ti + τhi, u(ti + τhi)) dτ →
m∑

l=1

wlk(t, ti,l)G(ti,l, Ui,l),

with wl :=
∫ 1

0
Ll(τ ) dτ . The resulting discretized iterated collocation

method is then given by

Ũn,j = g(tn,j) +
N−1∑
i=0

hi

m∑
l=1

wlk(tn,j , ti,l)G(ti,l, Ũi,l)

(2.3a)

j = 1, . . . , m n = 0, . . . , N − 1,

ũit(t) = g(t) +
N−1∑
i=0

hi

m∑
l=1

wlk(t, ti,l)G(ti,l, Ũi,l), t ∈ I.

(2.3b)

(b) If k(t, s) is nonsmooth or otherwise “badly behaved” (e.g., weakly
singular or highly oscillatory), then it will be necessary or advantageous
to base the discretization of the exact collocation method (2.2) on
product integration where the integrals are now approximated by

∫ 1

0

k(t, ti + τhi)G(ti + τhi, u(ti + τhi)) dτ →
m∑

l=1

ai,l(t)G(ti,l, Ui,l).

Here the abscissas of the product quadrature formula are again given
by the collocation points, and the weights {ai,l(t)} are those introduced
in (1.5a). In this case the discretized version of (2.2) reads

Ûn,j = g(tn,j) +
N−1∑
i=0

hi

m∑
l=1

a
(n,j)
i,l G(ti,l, Ûi,l)

(2.4a)

j = 1, . . . , m; n = 0, . . . , N − 1,

ûit(t) = g(t) +
N−1∑
i=0

hi

m∑
l=1

ai,l(t)G(ti,l, Ûi,l), t ∈ I.

(2.4b)
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We note in passing that if the integral equation (1.1) is linear, i.e.,
if we have G(s, y) = y, then the implicitly linear collocation method
(1.4) is identical with the exact iterated collocation method (2.2) and
with its discretized version (2.4) (but not with the discretized iterated
collocation method (2.3)). We shall see in the next section that (1.4)
and (2.4) yield also identical approximations to the solution of the
nonlinear equation (1.1) (Theorem 3.1); in addition, it will be shown
that the discretization (2.3) is identical with a discretization of the
implicitly linear collocation method (1.4) introduced in [11].

3. Main results. We assume that the given functions g, k, and G
in (1.1) are subject to the following basic hypotheses:

(i) g ∈ C(I);

(ii) supt∈I

∫ T

0
|k(t, s)| ds < ∞; and

lim
t→t′

∫ T

0

|k(t, s) − k(t′, s)| ds = 0 for all t′ ∈ I;

(iii) g ∈ C(I × R), and ∂G/∂y ∈ C(I × R).

Moreover, it will be assumed that both (1.1) and (1.2a) have unique
(more precisely, geometrically isolated [12]) solutions and that the same
is true for the corresponding collocation methods (2.2) and (1.4), and
their discretizations, provided that the mesh diameter h := max{hn :
0 ≤ n ≤ N − 1} > 0 is sufficiently small. (Compare [2, 10 12] for
details on the required technical conditions.)

Theorem 3.1. The approximations v(t) and ûit(t) defined, respec-
tively, by the implicitly linear collocation method (1.4) and the dis-
cretized iterative collocation method (2.4) (where the underlying quadra-
ture formulas are of product type, with abscissas given by the collocation
points) are identical, i.e.,

(3.1) v(t) = ûit(t) for all t ∈ I.
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Proof. Set Yn,j := G(tn,j , Ûn,j). Then the discretized collocation
method (2.4a,b) assumes the form

Yn,j = G

(
tn,j , g(tn,j) +

N−1∑
i=0

hi

m∑
l=1

a
(n,j)
i,l Yi,l

)

j = 1, . . . , m; n = 0, . . . , N − 1,

ûit(t) = g(t) +
N−1∑
i=0

hi

m∑
l=1

ai,l(t)Yi,l, t ∈ I.

We observe that this nonlinear algebraic system for the {Yn,j} is
identical with the nonlinear system (1.4a) for the quantities {Wn,j}.
Using the assumptions introduced at the beginning of this section,
these nonlinear systems have unique solutions for all sufficiently small
h > 0, and, hence, we obtain Yn,j = Wn,j for j = 1, . . . , m and
n = 0, . . . , N − 1. This implies, by (2.4b) and (1.4b), that

ûit(t) = g(t) +
N−1∑
i=0

hi

m∑
l=1

ai,l(t)Wi,l = v(t), t ∈ I,

as asserted.

If the product weights {ai,l(t)} defined in (1.5) cannot be calculated
analytically but are approximated by m-point interpolatory quadra-
ture, with the collocation points {ti,l} as abscissas, i.e.,

ai,l(t) =
∫ 1

0

k(t, ti + τhi)Ll(τ ) dτ → wlk(t, ti,l)

(here, unbounded kernel functions k(t, s), in particular, weakly sin-
gular k(t, s), are of course excluded), then there results the following
discretized version of the implicitly linear collocation method (1.4):

W̃n,j = G

(
tn,j , g(tn,j) +

N−1∑
i=0

hi

m∑
l=1

wlk(tn,j , ti,l)W̃i,l

)(3.2a)

j = 1, . . . , m; n = 0, . . . , N − 1,

ṽ(t) := g(t) +
N−1∑
i=0

hi

m∑
l=1

wlk(t, ti,l)W̃i,l, t ∈ I.

(3.2b)
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The quadrature weights equal those in (2.3). This discretized implicitly
linear collocation method was analyzed in [11].

The result of Theorem 3.2 below is readily verified by employing
arguments essentially identical with those in the proof of Theorem 3.1.

Theorem 3.2. Let k in (1.1) be continuous on I × I. Then, for
all sufficiently small h > 0, the approxiations ṽ(t) and ũit(t) defined,
respectively, by the discretized implicitly linear collocation method (3.2)
and the discretized iterative collocation method (2.3) are identical, i.e.,
we have

ṽ(t) = ũit(t) for all t ∈ I.

Note, incidentally, that the discretized collocation method (2.3a,b)
represents a NYSTRÖM method for the Hammerstein integral equation
(1.1). If the function G = G(s, y) in (1.1) is nonlinear in y, then the
approximation uit(t) obtained by the exact iterated collocation method
(2.2) is not identical with the approximation v(t) generated by the
implicitly linear collocation method (1.4). But, as will be shown in
Theorem 3.3, the result of Theorem 3.1 can be used to prove that these
approximations possess the same order of (super-)convergence. For
sufficiently smooth kernel functions k(t, s), an analogous result holds for
the approximations ṽ(t) and uit(t) (cf. Theorem 3.2). The result that
the iterated spline collocation solution for (general) nonlinear Fredholm
integral equations is superconvergent on I for certain choices of the
collocation parameters {cj} is of course not new; it was established
by Atkinson and Potra [2] using the theory of projection methods
for nonlinear operator equations in Banach spaces. Superconvergence
results for v(t) and ṽ(t) were derived in [10 and 11].

Theorem 3.3. The exact iterated collocation solution uit(t) defined
by (2.2) exhibits the same order of (super-)convergence as the approx-
imation v(t) obtained by the implicitly linear collocation method (1.4).
This result holds both for smooth and weakly singular kernel functions
k(t, s) in (1.1).

Proof. We know from Theorem 3.1 that v(t) = ûit(t) for all t ∈ I.
Thus, the error corresponding to the exact iterated collocation solution
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uit(t) can be written as

eit(t) := y(t) − uit(t) = (y(t) − v(t)) + (ûit(t) − uit(t)).

Since the (super-)convergence properties of v(t) are well understood
(see [12, 10]), we have to show that the perturbation ε(t) := ûit(t) −
uit(t) has (at least) the same order of (super-)convergence as y(t)−v(t).

It follows from (2.4b) and (2.3b) that

ε(t) =
N−1∑
i=0

hi

{ m∑
l=1

ai,l(t)G(ti,l, Ûi,l)

−
∫ 1

0

k(t, ti + τhi)G(ti + τhi, u(ti + τhi)) dτ

}

=
N−1∑
i=0

hi

{ m∑
l=1

ai,l(t)(G(ti,l, Ûi,l) − G(ti,l, Ui,l)) + Ei(t)
}

,

t ∈ I,

where the Ei(t) denote the quadrature errors associated with the m-
point product quadrature formulas underlying the discretization (2.4).
Recalling assumption (iii) for G stated at the beginning of this section,
we may write

(3.3)
ε(t) =

N−1∑
i=0

hi

m∑
l=1

ai,l(t)Gy(ti,l, θi,l)(Ûi,l − Ui,l) +
N−1∑
i=0

hiEi(t),

t ∈ I,

where θi,l lies between Ûi,l and Ui,l. If we apply the same argument to
the collocation equations (2.4a) and (2.2a), we find that the perturba-
tion terms Ûi,l −Ui,l occurring in (3.3) are given by the solution of the
linear system

Ûn,j − Un,j =
N−1∑
i=0

hi

m∑
l=1

a
(n,j)
i,l Gy(ti,l, θi,l)(Ûi,l − Ui,l)

(3.4)

+
N−1∑
i=0

hiEi(tn,j)

j = 1, . . . , m; n = 0, . . . , N − 1.
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The quadrature weights in (3.3) and (3.4) are defined in (1.5a,b).
Setting Ui := (Ui,1, . . . , Ui,m)T ∈ Rm, it follows from (3.3) that

|ε(t)| ≤ AG1 ·
N−1∑
i=0

hi

m∑
l=1

|Ûi,l − Ui,l| + Q ·
N−1∑
i=0

hi

= AG1 ·
N−1∑
i=0

hi||Ûi − Ui||1 + QT, t ∈ I,

where
Q := sup{|Ei(t)| : t ∈ I; 0 ≤ i ≤ N − 1},

with constants A and G1 having obvious meanings. Moreover, the
linear system (3.4) possesses a unique solution {Ûn,j − Un,j : 1 ≤ j ≤
m; 0 ≤ n ≤ N − 1} whenever h > 0 is sufficiently small, and this
solution satisfies

||Ûn − Un||1 = O(Q)

for 0 ≤ n ≤ N − 1. Hence,

||ε||∞ = O(Q).

Since the underlying quadrature formulas are of (interpolatory) prod-
uct type, with abscissas coinciding with the collocatoin points, the order
q in Q = O(hq) depends, on the one hand, on the choice of the col-
location parameters {cj} and, on the other hand, on the smoothness
of the integrands φi(τ ) := G(ti + τhi, u(ti + τhi)), with τ ∈ [0, 1] (cf.
the discretization step leading to (2.4)); by our assumption on G, these
functions φi are smooth.

The above observation holds also for the order of convergence of the
implicitly linear collocation approximation v(t), as well as for ûit and
uit (see [12, 10, and 2]; recall that in the case where G(s, y) = y we
have v(t) = uit(t) on I!), provided that the kernel function k(t, s) is
sufficiently smooth on I × I. It is readily seen that this implies that
the order of the perturbation ε(t) matches that of y(t)− v(t) for t ∈ I.

If, however, the kernel function k(t, s) is less smooth than g and G,
then we have a corresponding reduction of the degree of smoothness of
the exact solution y of (1.1); this is particularly pronounced if k(t, s)
is weakly singular, e.g., k(t, s) = |t − s|−α, with 0 < α < 1 (compare
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[2] for a comprehensive analysis; see also [4, pp. 584 587] for a survey
regarding the linear counterpart of (1.1)). This loss of smoothness in
y translates into a reduction of the order of convergence of v(t) [10].
Since the functions φi(t) introduced above do not depend on the exact
solution y, we obtain again the result that the order of ε(t) at least
matches the order of the error associated with the implicitly linear
collocation approximation v(t). This completes the proof of Theorem
3.3.

4. Nonlinear Volterra-Fredholm integral equations. Spline
collocation and iterated collocation methods for nonlinear Volterra in-
tegral equations were studied in [3, 7, and 5]; the application of implic-
itly linear collocation methods to Volterra equations of Hammerstein
type will be considered elsewhere. Here, we shall briefly show that the
results of the previous section can be extended to a class of nonlinear
Volterra-Fredholm integral equations arising in mathematical popula-
tion dynamics (see [6] and its list of references),

(4.1) y(t, x) = g(t, x) +
∫ t

0

∫
Ω

k(t, τ, x, ξ)G(y(τ, ξ)) dξ dτ, (t, x) ∈ D,

where D := [0, T ]×Ω, with Ω denoting a closed subset of Rn. For ease
of notation, we will assume that n = 1 and Ω = [a, b].

Setting z(t, x) := G(y(t, x)), we obtain the “implicitly linear” form
of (4.1):

(4.2a) z(t, x) = G(g(t, x) +
∫ t

0

∫ b

a

k(t, τ, x, ξ)z(τ, ξ) dξ dτ ),

and we have

(4.2b) y(t, x) = g(t, x) +
∫ t

0

∫ b

a

k(t, τ, x, ξ)z(τ, ξ) dξ dτ, (t, x) ∈ D.

The underlying approximating space will be the (tensor product) spline
space

Sq,p := S
(−1)
q−1 (Π(t)

N ) ⊗ S
(−1)
p−1 (Π(x)

M ) p ≥ 1, q ≥ 1,

where

Π(x)
M : a = x0 < x1 < · · · < xM = b xm = x(M)

m , and

Π(t)
N : 0 = t0 < t1 < · · · < tN = T tn = t(N)

n ,
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and we set h
(x)
m := xm+1 − xm, h

(t)
n := tn+1 − tn.

Thus, in analogy to (1.3a,b), the implicitly linear collocation method
for the Volterra-Fredholm integral equation (4.1) is defined by

(4.3a) w(t, x) = G(g(t, x) +
∫ t

0

∫ b

a

k(t, τ, x, ξ)w(τ, ξ) dξ dτ ),

where

x = xm,i := xm + cih
(x)
m , 0 ≤ c1 < · · · < cp ≤ 1 (0 ≤ m ≤ M − 1),

t = tn,j := tn + djh
(t)
n , 0 ≤ d1 < · · · < dq ≤ 1 (0 ≤ n ≤ N − 1);

and

(4.3b) v(t, x) := g(t, x) +
∫ t

0

∫ b

a

k(t, τ, x, ξ)w(τ, ξ) dξ dτ, (t, x) ∈ D.

Here, w ∈ Sq,p has the local representation
(4.4)

w(tn+τh(t)
n , xm+ξh(x)

m ) =
q∑

ν=1

p∑
μ=1

Lν(τ )Lμ(ξ)W (n,m)
ν,μ τ, ξ ∈ (0, 1].

where W
(n,m)
ν,μ := w(tn,ν , xm,μ), and with Lν(τ ) and Lμ(ξ) denoting

the Lagrange fundamental polynomials with respect to the two sets of
collocation parameters, {ci} and {dj}.

The direct (exact) collocation solution u ∈ Sq,p and its iterate uit are
given by (see also [6])

(4.5a) u(t, x) = g(t, x) +
∫ t

0

∫ b

a

k(t, τ, x, ξ)G(u(τ, ξ)) dξ dτ,

where x = xm,i (i = 1, . . . , p; m = 0, . . . , M − 1) and t = tn,j

(j = 1, . . . , q; n = 0, . . . , N − 1);
(4.5b)

uit(t, x) := g(t, x) +
∫ t

0

∫ b

a

k(t, τ, x, ξ)G(u(τ, ξ)) dξ dτ, (t, x) ∈ D.

Since u is in the same space as w, it is given locally by

(4.6) u(tn + τh(t)
n , xm + ξh(x)

m ) =
q∑

ν=1

p∑
μ=1

Lν(τ )Lμ(ξ)U (n,m)
ν,μ .
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It is now readily verified, by a trivial extension of the arguments em-
ployed in the proof of Theorem 3.1 and by observing the representations
(4.4) and (4.6), that the approximation v(t, x) defined by the implicitly
linear collocation method (4.3a,b) is identical with the iterated collo-
cation solution ûit(t, x) generated by the discretized version of (4.5a,b)
where the integrals have been approximated by product quadrature for-
mulas using the collocation points as abscissas (recall (2.4a,b)). Thus,
the local and global superconvergence results for ûit(t, x) derived in [6]
yield (identical) superconvergence results for v(t, x). A typical result
is given in Theorem 4.1; the proof and the derivation of other, similar
results are left to the reader.

Theorem 4.1. Let g, k, and G in (4.1) be smooth functions, such
that the Volterra-Fredholm integral equation (4.1) has a unique solution
y ∈ C2p(D). Assume that v(t, x) has been otained by the implicitly
linear collocation method (4.3a,b) with p = q (i.e., the underlying
approximating space is Sp,p = S

(−1)
p−1 (Π(t)

N ) ⊗ S
(−1)
p−1 (Π(x)

M ), with p ≥ 1).
If the two sets of collocation parameters, {ci} and {dj}, are equal and
given by the zeros of the shifted Legendre polynomial Pp(2s − 1), then

max{|y(tn, x) − v(tn, x)| : 1 ≤ n ≤ N, x ∈ [a, b]} = O(h2p),

where h := max{h(t)
n , h

(x)
m } denotes the diameter of the underlying mesh

Π(t)
N × Π(x)

M .
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