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ABOUT THE EQUATION k ∗ u2 = u

JEAN-BERNARD BAILLON AND MICHEL THÉRA

ABSTRACT. The aim of this note is to solve the general
equation k ∗ u2 = u for k subject to the conditions k(−x) =

k(x), k ≥ 0, k ∈ L3/2(R) ∩ L3(R) and under the constraints
u ≥ 0, u(±∞) = 0.

1. Statement of the problem. We consider the following
convolution problem in L3(R):

Find u ∈ L3(R), u ≥ 0, such that e−|x| ∗ u2 = u and satisfies the
initial conditions u(±∞) = 0.

Throughout this note, f ∗ g stands for the standard convolution
product,

(f ∗ g)(s) =
∫
R

f(t)g(s− t) dt.

If we take the derivative of the equation e−|x| ∗ u2 = u in the general
sense, using the fact that (e−|x|)′′ = e−|x| − 2δ, where δ is the Dirac
measure, we obtain

u′′ = (e−|x| − 2δ) ∗ u2 = e−|x| ∗ u2 − 2δ ∗ u2 = u− 2u2.

The ordinary differential equation (O.D.E. for short) u′′ = u − 2u2

admits as the integral u′2 = u2 − (4/3)u3 + C. For C = 0, we can
effectively construct a positive solution u which is also symmetrically
decreasing and such that limx→+∞ u(x) = 0.

Suppose that u ≤ 3/4 and v2 = 1 − (4/3)u. Then we obtain
(dv/dx)2 = (1− v2)2/4, and using the equation dx/dv = 2/(1− v2) we
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get x = 2 arctanh v. Hence u = (3/4)(1 − tanh2(x/2)) is a nontrivial
solution which solves the given problem.

Now, instead of k(x) = e−|x|, consider k(x) = e−|x| ∗ e−2|x|. Then
the above calculation gives rise to an explicit fourth order O.D.E., but
it is not clear whether this equation has a nontrivial solution. Even
more, if we take k(x) = e−x2

, we lose the fact that we can transform
the equation k ∗ u2 = u into an equivalent O.D.E., even if we know an
explicit solution.

Let k ≥ 0, k(−x) = k(x), k ∈ L3/2(R) ∩ L3(R). We consider the
following problem:

(Q) Find a nontrivial u ∈ L3(R) such that k ∗ u2 = u, u ≥
0, u(±∞) = 0.

The motivation of this note is the following: we use problem (Q) as
a model for a more general Hammerstein equation,

u(t) =
∫
g(t, s)h(s, u(s)) ds,

in order to exhibit the techniques we utilize to solve it. We refer the
reader to [1] for details.

The idea is to transform this problem into a maximization problem:

(P) M := Max
{∫

R

k ∗ u2 · u2;
∫
R

u3 ≤ 1
}

where
∫
R
g stands for

∫
R
g(t) dt.

The solution of this problem solves the Euler equation k∗u2 = λu. We
don’t know if such a function exists. If we take a maximizing sequence
{un} for (P), then the limit may be 0 because (P) is invariant under
translations. So we break up the problem into two parts.

(1) Find an approximate problem and an approximate nontrivial
solution of this problem.

(2) Prove the limit of this approximate solution to be a nontrivial
solution.
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By doing this, we lose the fact that the nontrivial solution maximizes
(P).

2. The approximate problem. We consider in L3([−n, n]) the
approximate maximization problem (Pn):

(Pn) Sup
{∫ +∞

−∞
k ∗ u2 · u2 : |u|3 = 1, u ≥ 0, support u ⊂ [−n, n]

}
,

For this problem, we get the compactness property,

Lemma 1. The operator T : L3/2([−n, n]) → L3(R) defined by
setting

Tv(x) :=
∫ +∞

−∞
k(x− t)v(t) dt

is compact.

Proof. We know that k ∈ L3/2(R) is the limit in norm L3/2 of a
sequence {kn} of C∞ functions of compact supports. Set Tnv := kn ∗v.
For ||v||3/2 = 1, we have

||Tv − Tnv||3 = ||(kn − k) ∗ v||3 ≤ ||kn − k|| 3
2
· ||v|| 3

2
= ||kn − k|| 3

2
,

and, therefore, Tn tends to T in the operator norm. Hence, it suffices
to show that Tn is compact.

Suppose k is C∞ with compact support. Then k ∗ v has its support
included in some interval [−a, a], a > 0. Let us now approach k in the
L∞-norm by a sequence of trigonometric polynomials with period 2a:

k(t) = lim
n→+∞

m=n∑
m=−n

cme
imπt

a if t ∈ [−a, a], k(t) := 0 otherwise.
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This yields,

k ∗ v(t) = lim
n→∞

m=n∑
m=−n

cm

(∫ n

−n

e−
isπ
a v(s) ds

)
e

imπt
a if t ∈ [−a, a]

and k ∗ v(t) = 0 otherwise.

Then Tn clearly has a finite rank and, therefore, is a compact
operator. It forces T to be compact also, as desired.

Lemma 2. Problem (Pn) is well defined.

Proof. By virtue of Hölder’s inequality we have

∣∣∣∣
∫ +∞

−∞
k ∗ u2 · u2

∣∣∣∣ ≤ |k ∗ u2|3 · |u2| 3
2
.

Since |k ∗u2|3 ≤ |k|3/2 · |u2|3/2, we get that
∫ +∞
−∞ k ∗u2 ·u2 ≤ |k|3/2|u|43.

If |u|3 = 1 this yields
∫ +∞
−∞ k∗u2 ·u2 ≤ |k|3/2, and the proof is complete.

Lemma 3. The supremum is a maximum.

Proof. Let {um} be a sequence such that
∫ +∞
−∞ k ∗ u2

mu
2
m tends to

Mn := Sup
{∫ +∞

−∞
k∗u2 ·u2 : |u|3 = 1, u ≥ 0 and support u ⊂ [−n, n]

}
.

Since |um|3 = 1, on relabeling if necessary we may suppose that {um}
tends weakly to u (we shall use the symbol⇀ for the weak convergence)
in L3([−n, n]). In particular, there exists some v such that u2

m⇀v in
L3/2([−n, n]). Since T is compact from L3/2([−n, n]) to L3(R), we may
also suppose that k ∗ u2

m → k ∗ v in L3(R). Using the duality between
L3/2(R) and L3(R), we get

∫ +∞

−∞
k ∗ u2

m · u2
m →Mn =

∫ +∞

−∞
k ∗ v · v.
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Since the norm is weakly lower semicontinuous, we have

|v| 3
2
≤ lim

k→+∞
|u2

m| 3
2

= lim
k→+∞

|um|23 = 1,

and since

Mn =
∫ ∞

−∞
k ∗ v · v ≤Mn · |v|3/2, with Mn 
= 0,

we necessarily have |v|3/2 = 1. It follows that u2
m → v in L3/2(R)

and |u2
m|3/2 → |v|. Using the Kadec-Klee property [4] of the norm

in L3/2(R), we derive that |u2
m − v|3/2 tends to 0 and, therefore,

that u2
m(x) → v(x) (a.e.). Since |um − u|3 → 0, we necessarily have

u2(x) = v(x) (a.e.). Therefore, Mn =
∫ ∞
−∞ k ∗ u2 · u2 with |u|3 = 1,

u ≥ 0 and support u ⊂ [−n, n], so that the supremum is attained, as
claimed.

Lemma 4. Let un ∈ L3(R) be such that Mn =
∫ ∞
−∞ k∗u2

n ·u2
n. Then

one has
un > 0 (a.e.) on [−n, n].

Proof. Indeed, let us set A := u−1
n (0) ∩ [−n, n]. Let us show that

A has zero measure. In order to do so, set vε := un + ε1A, where 1A

stands for the characteristic function of A. Then v2
ε = u2

n + ε21A, and
therefore, ψ(ε) given by

ψ(ε) :=
∫ +∞

−∞
k ∗ v2

ε · v2
ε ×

(∫ +∞

−∞
|vε|3

)− 4
3

satisfies ψ(ε) ≥Mn + 2ε2
∫

A

k ∗ u2
n.

Hence, we get ψ(ε) > ψ(0), and thus a contradiction.

Lemma 5. Every solution un of (Pn) satisfies the equation

k ∗ u2
n = Mnun (a.e.) on [−n, n].
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Proof. Indeed, since un solves the maximization problem (Pn), the
inequality

∫ +∞

−∞
k ∗ (un + λϕ)2 · (un + λϕ)2 ≤Mn

(∫ +∞

−∞
|un + λϕ|3

) 4
3

is satisfied for each λ and ϕ ∈ L3([−n, n]). From the preceding
inequality we also have

∫ +∞

−∞
k∗(un+λϕ)2·(un+λϕ)2−

∫ +∞

−∞
k∗u2

n·u2
n ≤Mn[|un+λϕ|43−|un|43].

Divide this last inequality by λ > 0, and let λ tend to 0. Then after a
calculation we obtain

∫ +∞

−∞
k ∗ u2

n · unϕ ≤Mn

∫ +∞

−∞
u2

n · u nϕ

and therefore

(1)
∫ ∞

−∞
k ∗ u2

n · unϕ = Mn

∫ ∞

−∞
u2

nu nϕ, for each ϕ ∈ L3([−n, n]).

From (1) we get

(2) (k ∗ u2
n −Mnu

2
n)un = 0 (a.e.) on [−n, n].

Lemma 4 combined with (2) then gives

(3) k ∗ u2
n = Mnun (a.e.) on [−n, n]

and the desired result.

3. The main result.

Theorem 6. The equation k ∗ u2 = λu has a nontrivial solution.

Proof. We first show the existence of a solution. Since the sequence
{Mn} is increasing and is bounded from above, it admits a limit
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denoted by M∞. Since |un|3 = 1, on relabeling if necessary we may
always suppose that un⇀u in L3(R) and, moreover, that u2

n⇀v in
L3/2(R). As a result, since k ∈ L3(R) it follows that, for each x,
limn→+∞(k∗u2

n)(x) = (k∗v)(x). Furthermore, since Mn tends to M∞,
by virtue of (3) we have limn→+∞ un(x) = M−1

∞ · (k ∗ v)(x) for each
x ∈ R. Hence, we get M∞u = k ∗ v and un⇀u in L3(R). Therefore,
u2 = v and k ∗ u2 = M∞u.

It remains to show that u is nontrivial. By reductio ad absurdum,
suppose u = 0. We have k ∗ u2

n → 0 everywhere, and in particular,
un(0) → 0. We derive a contradiction by using an argument of Hardy-
Littlewood-Pólya [3]:

If f, g, h are continuous positive functions of compact support, then
∫ +∞

−∞

∫ +∞

−∞
f(x)g(y)h(−x− y) dx dy

≤
∫ +∞

−∞

∫ +∞

−∞
f∗(x)g∗(y)h∗(−x− y) dx dy,

where f∗, g∗, h∗ are the rearrangement of f, g, h in symmetrical decreas-
ing order:

f∗(−x) = f∗(x) and f∗(x) = μ−1(2x)
with μ(y) := meas{x : f(x) ≥ y}.

We observe that f∗ decreases symmetrically on each side of the
origin where it generally has an infinite cusp. By virtue of the Hardy-
Littlewood-Pólya inequality we may always suppose that un is positive
symmetric and decreasing. Hence, |un|∞ = |un(0)| tends to 0. Using
the interpolation

|un|3+ε ≤ |un|
3

3+ε

3 · |un|1−(3/3+ε)
∞ ≤ |un|1−

3
3+ε∞

we get |un|p → 0 for each p > 3. We also remark that

||u2
n ∗ u2

n||3/2 ≤ ||un||43 = 1

and
||u2

n ∗ u2
n||∞ ≤ ||un||23 · ||un||26.
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This forces, u2
n ∗ u2

n tends weakly to zero in L3(R). Since,

Mn =
∫ +∞

−∞
k ∗ u2

n · u2
n =

∫ +∞

−∞
k · u2

n ∗ u2
n

by passing to the limit we get M∞ = 0 and a contradiction.

4. Remarks.

(1) u1 = (1/λ)u satisfies k ∗ u2
1 = u1.

(2) We proved that the problem has a nontrivial symmetric solution.

(3) The same method can be applied to an equation of the form

k ∗ ϕ(u) = u

with, for example, ϕ(t) = ts, 1 < s <∞.

(4) A problem which remains open is to prove the uniqueness of the
nontrivial solution (up to a translation). We can show by a shooting
argument that e−|x| ∗ u−2|x| ∗ u2 = u has a unique nontrivial solution.
So we conjecture the unicity for the general problem.

REFERENCES
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3. G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University
Press, London, (second edition), 1951.

4. R.B. Holmes, Geometric functional analysis and its applications, Springer-
Verlag, New York, 1975.

5. A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta.
Math. 54 (1929), 117 176.
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