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Dedicated to John A. Nohel on his 65th birthday.

1. Introduction. The intent of this article is to study the behavior
of solutions (v(x, t), u(x, t)) of the system of differential equations

vt = σx(1.1)
ut = vx,(1.2)

where

(1.3) σ = τ (u)vn
x ,

with τ (u) a smooth function satisfying

(1.4) τ (u) > 0, τ ′(u) < 0

and n a positive parameter. Equations (1.1) (1.3) give rise to a coupled
system of partial differential equations in one space dimension. They
are supplemented with initial conditions

(1.5) v(x, 0) = v0(x), u(x, 0) = u0(x),

and, as a consequence,

(1.6) σ(x, 0) = σ0(x) := τ (u0(x))vn
0x(x);

also, with boundary conditions that are discussed later.

To gain some perspective on the problem, note that, if n = 0,
(1.1) (1.3) lead to the pair of conservation laws

(1.7)
vt = τ (u)x

ut = vx.
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If τ ′(u) > 0, then (1.7) is hyperbolic; however, under (1.4) the system
(1.7) is elliptic and the initial value problem is ill-posed. Nevertheless,
it admits an interesting class of special solutions

(1.8)
v̄(x, t) = x

ū(x, t) = t+ u0,

where u0 is an arbitrary constant. Equations (1.1) (1.3) with n > 0
can be thought of as a particular regularization of (1.7).

A motivation for studying this problem stems from a program of un-
derstanding the phenomenon of shear band formation at high strain
rates. Shear bands are narrow regions of intensely concentrated shear-
ing deformation that are observed during the plastic deformation of
many materials. The occurrence of shear bands is typically associated
with strain softening type response, past a critical strain, of the mea-
sured average shear stress Σ(t) versus the measured average shear strain
U(t); that is, Σ = τ (U), where τ (·) is increasing up to a certain critical
strain and decreasing thereafter. Various mechanisms and associated
continuum thermomechanics models, often depending on the particu-
lar context, have been proposed for the explanation of shear bands (see
Shawki and Clifton [15] for an excellent survey of the related litera-
ture). An underlying common feature of several models is that they
are regularizations of an ill-posed problem or that some associated lin-
earized problem exhibits growth of high-frequency modes.

The model employed here describes the plastic shearing of an infinite
plate of unit thickness subjected to either prescribed tractions or
prescribed velocities at the boundaries. In this framework, v(x, t)
describes the velocity field in the shearing direction, σ(x, t) stands for
the shear stress and u(x, t) for the plastic shear strain. Equation (1.1)
describes the balance of linear momentum, while (1.2) is a kinematic
compatibility relation (note that elastic effects are neglected); (1.1) and
(1.2) are taken over (x, t) ∈ [0, 1]× {t > 0} and are supplemented with
the boundary conditions

(1.9)S σ(0, t) = 1, σ(1, t) = 1, t > 0,

in case the shearing deformation is caused by prescribed tractions at
the boundaries, or

(1.9)V v(0, t) = 0, v(1, t) = 1, t > 0,
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in the case of prescribed velocities. The constitutive law (1.3) is
appropriate for a material exhibiting strain softening, as manifested
in (1.4), and strain rate sensitivity, the strength of which is measured
by the parameter n. Our objective is to use (1.1) (1.6), (1.9) as a test
problem to analyze the competition between the destabilizing effect of
strain softening versus the stabilizing effect of strain rate dependence.

Technically, the model (1.1) (1.3) belongs to the class of isothermal
viscoelasticity of the rate type (for general information on the math-
ematical theory of viscoelasticity, the reader is referred to Renardy,
Hrusa and Nohel [14]). Metals, in general, exhibit strain hardening in
isothermal deformations. However, an increase in temperature causes
a decrease in the yield stress, so that, in an adiabatic deformation, the
combined effect of strain hardening and thermal softening may even-
tually deliver a net softening. Thus, although (1.1) (1.3) is a model
in the framework of isothermal mechanical theories, thermal effects are
implicitly taken into account through the hypothesis of strain softening.
One of our goals is to reveal similarities in the structure and predictions
of (1.1) (1.3) as compared to related models incorporating thermal ef-
fects that have been studied recently in the mathematical literature [7,
17, 19, 2, 1].

We emphasize that the spirit of this study is not to recover solu-
tions of (1.7) (1.4) as n → 0 limits of solutions of (1.1) (1.4). Rather,
the rationale here is the converse. Because of the inherent instability
induced by strain softening, it has been postulated that higher order
effects, such as strain-rate dependence, play an important role and can-
not be ignored (cf. [11, 21]). Apart from some previous investigations
using (1.3) for n = 1 [18, 2], other types of rate dependent constitutive
relations have been used to analyze shear bands (e.g., Wu and Fre-
und [21]), as well as strain-gradient dependent constitutive laws (e.g.,
Coleman and Hodgdon [5]). There is a very extensive mechanics liter-
ature on the subject and the reader is referred to [21, 11, 20, 15] and
references therein.

From an analysis point of view, equations (1.1) (1.3) give rise to a
coupled system consisting of a parabolic equation in v coupled through
the diffusion coefficient with (1.2) (cf. (3.1)). As the material is being
sheared, under the effect of (1.9), the diffusion coefficient is decreasing.
It is conceivable that, if the decrease is too rapid and/or nonuniform in
the space variable, the diffusion may not be able to stabilize the process.
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To analyze this competition, it is helpful to recast (1.1) (1.3) into an
equivalent formulation of a reaction-diffusion system (cf. (3.4) (3.5)).

In Section 2, we pursue an existence theory of classical solutions for
a coupled system of partial differential equations (cf. (2.1) (2.3)) that
includes (1.1) (1.3). This system also includes certain more general
models in viscoelasticity with internal variables, as well as some models
incorporating thermal effects that are used for the analysis of shear
bands [15, 19]. Motivated by the problems under consideration, the
main objective is to identify a minimal set of a priori estimates sufficient
for continuation of solutions. The existence theory is done in Schauder
spaces, and the main ingredient is an application of the Leray-Schauder
fixed point theorem. The results are summarized in Theorems 2.4 and
2.5. For existence theories of weak solutions in structurally related
systems, the reader is referred to Charalambakis and Murat [3] and
Nohel et al. [12].

In Section 3, we take up the problem (P)S consisting of (1.1) (1.6)
with stress boundary conditions (1.9)S. Using the results of Section
2 together with the special structure of the system, it is shown in
Theorem 3.2 that solutions of (P)S are globally defined if and only if the
integral

∫ ∞
1
τ (ξ)1/n dξ diverges. Moreover, the evolution of solutions of

(P)S is studied under various assumptions for the constitutive function
τ (u). Below, we summarize the outcome of the analysis for the special
case of a power law,

(1.10) σ =
1
um

vn
x ,

with parameters m,n positive. The parameter region is decomposed
into three distinct subregions 0 < m/n < 1/2, 1/2 ≤ m/n ≤ 1 and
m/n > 1, across which the response changes drastically:

(i) In the region 0 < m/n < 1/2, solutions of (P)S are globally
defined and, as t → ∞, the shear stress σ(x, t) is attracted to the
constant state σ ≡ 1 while u(x, t) behaves asymptotically as a function
of time.

(ii) In the region 1/2 ≤ m/n ≤ 1, the constant state σ ≡ 1 loses its
stability, and nonuniformities in the strain persist for all times.

(iii) Finally, in the region m/n > 1, u(x, t) becomes infinite in finite
time.
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For m/n > 1/2, we exhibit initial data for which the corresponding
u(x, t) develops nonuniformities around x = 0 and x = 1 and looks like
two shear bands located at the boundaries. The analysis of Section
3 is effected by means of comparison principles for (3.4) and energy
estimates for (P)S.

For a power law (1.10) the system (1.1) (1.2) is invariant under
a family of scaling transformations. In Section 4 we take up the
problem (P)V consisting of (1.1) (1.2), (1.10) and velocity boundary
conditions (1.9)V and introduce a change of variables motivated by the
scaling property. The resulting system (4.20) (4.22) admits positively
invariant rectangles of arbitrary size. Using this observation, together
with energy estimates for (P)V , it is shown in Theorem 4.1 that,
if m < min{n, 1}, every solution of (P)V converges to the uniform
shearing solution (1.8), as t→ ∞.

2. Existence theory and regularizing effect for a coupled
system. We consider the initial-boundary value problem consisting of
the system of quasilinear partial differential equations

∂tv = ∂xw(2.1)
∂tu = f(x, u, vx)(2.2)

for (x, t) ∈ QT := (0, 1) × (0, T ], T > 0, where

(2.3) w = ϕ(x, u, vx),

with boundary conditions

v(0, t) = v(1, t) = 0, 0 < t ≤ T,(2.4)V

or
w(0, t) = w(1, t) = 0, 0 < t ≤ T,(2.4)S

and initial conditions

(2.5) v(x, 0) = v0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1;

as a consequence of (2.3) and (2.5),

(2.6) w(x, 0) = w0(x) := ϕ(x, u0(x), v0x(x)).
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The functions v(x, t), w(x, t) are real valued, while u(x, t) stands for
an RN -valued function, all defined on QT = [0, 1] × [0, T ]. The
given functions f(x, p, q) : [0, 1] × RN × R → RN and ϕ(x, p, q) :
[0, 1] × RN × R → R are assumed to be smooth with respect to
all their arguments (the hypothesis f and ϕ of class C2 suffices for
all that follows). In addition, for each fixed (x, p), the function
ϕ(x, p, ·) is assumed to be strictly increasing and, thus, invertible. Let
ψ(x, p, r) : [0, 1]×RN ×R → R be the inverse function. Inverting (2.3)
yields

(2.7) vx = ψ(x, u, w).

We seek solutions (v(x, t), u(x, t)) of (2.1) (2.5) defined onQT , T > 0.
Our specific goals are to identify a minimal set of a priori estimates that
guarantee existence and continuation of solutions up to time T > 0 and
to study the regularizing effect that the parabolic equation (2.1), (2.3)
exerts on solutions.

To this end, it is expedient to state an alternative formulation of the
problem. The initial-boundary value problem (2.1) (2.5) is formally
equivalent to the system of reaction-diffusion equations

∂tw = a(x, u, w)∂2
xw + b(x, u, w)(2.8)

∂tu = g(x, u, w)(2.9)

with boundary conditions

wx(0, t) = wx(1, t) = 0, 0 < t ≤ T,(2.10)V

or
w(0, t) = w(1, t) = 0, 0 < t ≤ T,(2.10)S

and initial conditions

(2.11) w(x, 0) = w0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where

(2.12)
a(x, u, w) = ϕq(x, u, ψ(x, u, w))
b(x, u, w) = (ϕp · f)(x, u, ψ(x, u, w))
g(x, u, w) = f(x, u, ψ(x, u, w)).
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Indeed, given any sufficiently smooth solution (v(x, t), u(x, t)) of (2.1)
(2.5), the pair (w(x, t), u(x, t)) satisfies (2.8) (2.11) as follows: Differ-
entiating (2.3) with respect to t and using (2.1), (2.2), (2.7) and (2.12),
leads to (2.8); (2.2) and (2.7) yield (2.9); the rest are clear. Conversely,
if (w(x, t), u(x, t)) is a classical solution of (2.8) (2.12), define a func-
tion v(x, t) on QT such that

(2.13)
vx = ψ(x, u, w)
vt = wx

and v(x, 0) = v0(x), 0 ≤ x ≤ 1. Since ψ(x, p, ·) is the inverse function
of ϕ(x, p, ·), the list of relations

(2.14)
ϕ(x, p, ψ(x, p, r)) = r

ϕq(x, p, ψ(x, p, r))ψr(x, p, r) = 1
ϕp(x, p, ψ(x, p, r)) + ϕq(x, p, ψ(x, p, r))ψp(x, p, r) = 0

holds, and the compatibility of (2.13) amounts to (2.8) via (2.9) and
(2.12). Moreover, (v(x, t), u(x, t)) satisfies (2.1) (2.5).

Our strategy is to first prove an existence theorem for classical
solutions of (2.8) (2.11), in Schauder spaces, using the Leray-Schauder
fixed point theorem [10]. This, in turn, yields an existence theorem
for the equivalent system (2.1) (2.5) provided the initial data are
sufficiently smooth. The smoothness assumptions are then relaxed by
means of density arguments. In the sequel | · | will stand for both the
absolute value and the Euclidean norm in RN . Also, ‖·‖β,β/2(| · |α) will
denote the usual Schauder norms (cf. [8, 9]) in Cβ,β/2(QT )(Cα[0, 1])
or [Cβ,β/2(QT )]N ([Cα[0, 1]]N ). The meaning of these symbols will be
apparent from the context.

The possibility that (2.1) (2.5) (or (2.8) (2.11)) admit globally de-
fined solutions for general nonlinear functions can be ruled out by con-
sidering special cases when the system decouples. To ensure global
solvability, one could place certain growth restrictions on the functions
f and ϕ (or a, b and g). Rather than doing this, we assume that so-
lutions of (2.1) (2.5) or (2.8) (2.11) satisfy certain a priori estimates,
namely,

ASSUMPTION. For fixed T > 0, there are positive constants μ and M ,
depending on norms of the initial data and T , such that any classical
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solution (v(x, t), u(x, t)) of (2.1) (2.5) on QT satisfies

(2.15) |w(x, t)| ≤M, |u(x, t)| ≤M

and

(2.16) ϕp(x, u(x, t)vx(x, t)) ≥ μ > 0,

for (x, t) ∈ QT ; correspondingly, if (w(x, t), u(x, t)) is a classical
solution of (2.8) (2.11) on QT , then (2.15) and

(2.17) a(x, u(x, t), w(x, t)) ≥ μ > 0

hold for (x, t) ∈ QT .

The objective is to reveal (2.15) (2.17) as a “minimal” set of a priori
estimates sufficient for continuation of solutions in some appropriate
function classes. Although uniform parabolicity, embodied in (2.16) or
(2.17), is not, in general, necessary for well-posedness, in light of the
phenomena under consideration and for technical simplicity, solutions
will be continued up to the first time that uniform parabolicity fails.
For the models at hand, (2.15) (2.17) are established in Sections 3 and
4. Finally, it is shown in Lemma 2.3 that, under natural restrictions
on the initial data, (2.15) (2.17) always hold provided T is sufficiently
small.

The first goal is to prove an existence theorem for (2.8) (2.11). For
this, the initial data are taken smooth, i.e.,

(2.18) w0(x) ∈ C2+α[0, 1], u0(x) ∈ [Cα[0, 1]]N ,

for some 0 < α < 1 and compatible with the boundary conditions

(2.19)V w0x(i) = 0, i = 0, 1,

in case (2.10)V applies, or

(2.19)S w0(i) = 0, a(i, u0(i), 0)w0xx(i)+b(i, u0(i), 0) = 0, i = 0, 1,

in case (2.10)S applies. We prove
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THEOREM 2.1. Let (w0(x), u0(x)) satisfy (2.18), (2.19) and assume
that the a priori estimates (2.15) and (2.17) hold for some T > 0,
with M and μ positive constants depending at most on ‖w0‖2+α, ‖u0‖α

and T . There exists a unique solution (w(x, t), u(x, t)) of (2.8) (2.11)
on QT such that w,wt, wx, wxx are in Cα,α/2(QT ) and u, ut are in
[Cα,α/2(QT )]N .

PROOF. The proof of uniqueness is lengthy, but routine, and it is
omitted.

In view of (2.15) and (2.17), the triplet (x, u(x, t), w(x, t)) takes
values in the set E = {(x, u, w) ∈ [0, 1] × RN × R : |u| ≤ M ,
|w| ≤ M , a(x, u, w) ≥ μ}. By modifying, if necessary, the functions
a, b and g outside some open set containing E, it is assumed for the
existence part of the proof that all the functions involved are bounded,
globally Lipschitz, and, wherever appropriate, with globally Lipschitz
derivatives. Moreover,

(2.20) a(x, p, r) ≥ μ

2
> 0

for (x, p, r) ∈ [0, 1] × RN × R. All bounds and Lipschitz constants
depend only on M and μ. For the remainder of the proof, K will stand
for a generic constant that can be estimated solely in terms of M,μ
and T .

We work with the boundary conditions (2.10)S; the boundary condi-
tions (2.10)V are treated similarly. Let B denote the Banach space

(2.21) B = {w(x, t) ∈ Cβ,β/2(QT ) : w(0, t) = w(1, t) = 0, 0 ≤ t ≤ T},

and let C stand for the closed subset of [Cβ,β/2(QT )]N :

(2.22) C = {u(x, t) ∈ [Cβ,β/2(QT )]N : u(x, 0) = u0(x), 0 ≤ x ≤ 1}.

For our purposes, β = min{α, 1/2}. Define the map T : B → C that
carries W (x, t) ∈ B to U(x, t), the solution of the family of initial value
problems

(2.23)
Ut = g(x, U,W (x, t)), 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

U(x, 0) = u0(x), 0 ≤ x ≤ 1.
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Also, for λ ∈ [0, 1], define a second map S : [0, 1] × B × C → B which
takes (λ,W (x, t), U(x, t)) to w(x, t), the solution of the initial-boundary
value problem

wt = aλ(x, U(x, t),W (x, t))wxx

+ λb(x, U(x, t),W (x, t)) + (1 − λ)F (x),

(2.24)
w(0, t) = w(1, t) = 0, 0 ≤ t ≤ T,

w(x, 0) = w0(x), 0 ≤ x ≤ 1,

where aλ(x, p, r) := λa(x, p, r) + (1 − λ)(μ/2) ≥ (μ/2), by (2.20), and
F (x) := −(μ/2)w0xx(x).

Given the maps T and S, construct the composite map P : [0, 1]×B →
B which carries λ ∈ [0, 1], W ∈ B to

(2.25) w = P (λ,W ) := S(λ,W, T (W )).

Observe that if w(x, t) ∈ B is a fixed point of P (1, ·) and u(x, t)
the corresponding solution of (2.23), then (w(x, t), u(x, t)) satisfies
(2.8) (2.11) on QT . Our objective is to demonstrate that the map
P fulfills the hypotheses of the Leray-Schauder fixed point theorem
(for a formulation, see [10], also [6]). To this end, certain properties of
the maps T and S are recorded below.

First, consider the map T : B → C. Since g is bounded and globally
Lipschitz, the standard theory of ordinary differential equations implies
that, given any W (x, t) ∈ B, there is a unique solution U(x, t) of (2.23)
defined on [0, 1] × [0, T ] and such that

(2.26) |U(x, t)| + |Ut(x, t)| ≤ K1.

Moreover, by first integrating (2.23)1 for two distinct points x1, x2 in
[0, 1] over [0, t], 0 < t ≤ T , and then, estimating the difference using
Gronwall’s inequality, we deduce, with the help of (2.26),

(2.27) ‖U‖β,β/2 ≤ K2(|u0|α + ‖W‖β,β/2 + 1).

Next, consider the map S : [0, 1]×B×C → B. The classical Schauder
theory for parabolic equations [8, 9] implies that, given any triplet
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(λ,W,U) ∈ [0, 1]×B×C, there is a unique solution w(x, t) of (2.24) on
QT belonging to C2+β,1+β/2(QT ) and satisfying

(2.28) ‖w‖2+β,β/2 ≤ Λ1(|w0|2+α + ‖W‖β,β/2 + ‖U‖β,β/2 + 1).

The constant Λ1 can be estimated solely in terms of ‖W‖β,β/2,
‖U‖β,β/2, μ,M and T .

Finally, consider the map P : [0, 1] × B → B. P is well defined by
(2.25). Also:

(i) For any fixed λ ∈ [0, 1], P (λ, ·) : B → B is compact and
continuous. Since the injection C2+β,1+β/2(QT ) → Cβ,β/2(QT ) is
compact, (2.27) and (2.28) imply that P (λ, ·) is a compact map. Let
{Wn} be a convergent sequence in B, Wn →W in Cβ,β/2(QT ); consider
wn = P (λ,Wn). Since P (λ, ·) is a compact map, along a subsequence,
wn → w in Cβ,β/2 (in fact, in C2+β′,1+β′/2, for any β′ < β). One easily
shows that w = P (λ,W ). Since P (λ, ·) is single-valued, wn → w along
the whole sequence and P (λ, ·) is continuous.

(ii) For any bounded subset K of B, the family of maps P (·,W ) :
[0, 1] → B, W ∈ K, is uniformly equicontinuous. Let K be a bounded
subset of B. Fix W ∈ K. For U = T (W ) and λ, ρ in [0, 1], let wλ,
wρ be the respective solutions of (2.24). Note that wλ = P (λ,W ),
wρ = P (ρ,W ). The difference wλ −wρ satisfies the parabolic equation

(2.29)

(wλ − wρ)t = aλ(x, U(x, t),W (x, t))(wλ − wρ)xx

+ (λ− ρ)
[
a(x, U(x, t),W (x, t))wρxx

+ b(x, U(x, t),W (x, t)) −
(μ

2
wρxx + F (x)

)]
,

with boundary conditions (2.24)2 and initial condition (wλ−wρ)(x, 0) =
0. The Schauder estimates imply that

(2.30)

‖wλ − wρ‖2+β,1+β/2

≤ Λ2|λ− ρ|{‖wρ‖2+β,1+β/2 + ‖W‖β,β/2

+ ‖U‖β,β/2 + |w0|2+α + 1},

with Λ2 a constant as in (2.28). Combining (2.27), (2.28), and (2.30),
we arrive at

(2.31) ‖wλ − wρ‖2+β,1+β/2 ≤ Λ3|λ− ρ|,
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with Λ3 depending only on K, the initial data, μ,M and T . Thus,
P (·,W ), W ∈ K is a uniformly equicontinuous family of maps.

(iii) P (0, ·) has precisely one fixed point in B. For λ = 0, (2.24)1
becomes the heat equation, (2.23) and (2.24) decouple, and (2.24) has
a unique solution in B.

(iv) Any fixed point in B of P (λ, ·), 0 ≤ λ ≤ 1, is contained in some
bounded subset K of B. Let w ∈ B be a fixed point of P (λ, ·). Set
u = T (w). Then (2.27) implies u ∈ [Cβ,β/2(QT )]N , and (2.26) now
reads

(2.32) |u(x, t)| + |ut(x, t)| ≤ K3, (x, t) ∈ QT .

By (2.27) and (2.28), w ∈ C2+β,1+β/2(QT ) and satisfies

(2.33) wt = aλ(x, u, w)wxx + λb(x, u, w) + (1 − λ)F (x)

on QT with boundary and initial conditions as in (2.24). Since b is
bounded, the maximum principle yields
(2.34)

|w(x, t)| ≤ sup
0≤x≤1

|w0(x)| +K4+ (1− λ)T sup
0≤x≤1

|F (x)|, (x, t) ∈ QT .

Next, we multiply (2.33) by wt/aλ, integrate by parts over [0, 1]× [0, t],
and use Schwarz’s inequality to deduce

(2.35)
∫ t

0

∫ 1

0

w2
t dx dτ +

∫ 1

0

w2
x(x, t) dx

≤ K5

[
1 +

∫ 1

0

w2
0x(x) dx+ (1 − λ)2 sup

0≤x≤1
|F (x)|2

]
=: C2.

Using (2.35), we obtain

(2.36) |w(x, t) − w(y, t)| ≤ C|x− y|1/2.

Also, for fixed δ > 0, the calculus inequality

(2.37) 2δ|w(x, t) − w(x, τ)| ≤
∫ x+δ

x−δ

|w(x, t) − w(y, t)| dy

+
∫ x+δ

x−δ

∣∣∣∣
∫ t

τ

ws(y, s) ds
∣∣∣∣ dy +

∫ x+δ

x−δ

|w(y, τ ) − w(x, τ)| dy
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holds. We estimate (2.37), using (2.36) and (2.35), and in the resulting
inequality we set δ = |t− τ |1/2 to arrive at

(2.38) |w(x, t) − w(x, τ)| ≤ 3C|t− τ |1/4.

On account of (2.34), (2.36) and (2.38), any fixed point w ∈ B is con-
tained in a bounded set of C1/2,1/4(QT ), and, since β = min{α, 1/2},
also in a bounded set of B.

The map P fulfills the hypotheses of the Leray-Schauder fixed point
theorem. Thus, the map P (1, ·) has a fixed point in B. If w ∈ B is such
a fixed point and u = T (w), then (w(x, t), u(x, t)) is a classical solution
of (2.8) (2.11) on [0, 1] × [0, T ].

We collect in Lemma 2.2 certain a priori estimates for solutions of
(2.8) (2.11) that serve as a starting point to develop an existence theory
for the system (2.1) (2.5). Estimates (2.41) capture the regularizing
effect of the parabolic equation (2.8).

LEMMA 2.2. Let (w(x, t), u(x, t)) be a classical solution of (2.8) (2.11)
on QT satisfying (2.15) and (2.17). Then

‖w‖ 1
2 , 1

4
≤ C1

(
1 +

∫ 1

0

w2
0x(x) dx

)
,(2.39)

‖u‖β,β/2 ≤ C2

(
1 +

∫ 1

0

w2
0x(x) dx+ |u0|α

)
,(2.40)

where β = min{α, 1/2}. Moreover, for any x, y ∈ [0, 1], s, τ ∈ [t, T ]
with t > 0,

(2.41)
|w(x, τ) − w(y, τ )| ≤ C3√

t
|x− y|1/2

|w(x, τ) − w(x, s)| ≤ 3C3√
t
|τ − s|1/4.

The constants C1, C2 and C3 above depend only on μ, M and T .

PROOF. Estimate (2.39) is a direct consequence of (2.34) and (2.35)
with λ = 1, together with (2.36) and (2.38); (2.40) follows by combining
(2.27) with (2.39).
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To show (2.41), first multiply (2.8) by w/a(x, u, w) and write the
resulting identity in the form

∂t

∫ w

w0(x)

ξ

a(x, u, ξ)
dξ + w2

x

= (wwx)x +
wb(x, u, w)
a(x, u, w)

− ut ·
∫ w

w0(x)

ξau(x, u, ξ)
a2(x, u, ξ)

dξ.(2.42)

In view of (2.17), we may assume that (2.20) holds. Integrating (2.42)
over [0, 1] × [0, t], 0 < t ≤ T and using (2.9), (2.10), (2.15) and (2.20),
we obtain

(2.43)
∫ t

0

∫ 1

0

w2
x dx dτ ≤ K1.

Next, multiply (2.8) by (twt)/a(x, u, w) and integrate by parts over
[0, 1] × [0, t]; by estimating the resulting identity via (2.15), (2.20),
Schwarz’s inequality and (2.43), we conclude that

(2.44)
∫ t

0

∫ 1

0

τw2
t (x, τ) dx dτ + t

∫ 1

0

w2
x(x, t) dx ≤ K2.

K1 and K2 depend only on μ,M and T . The derivation of (2.41) from
(2.44) is similar to the derivation of (2.36) and (2.38) from (2.35); in
(2.41), C3 =

√
K2.

Lemma 2.3 guarantees that the a priori estimates (2.15) and (2.17)
required in the hypotheses of Theorem 2.1 are always valid for T
sufficiently small.

LEMMA 2.3. Let (w(x, t), u(x, t)) be a classical solution of (2.8) (2.11)
defined on [0, 1] × [0, T ∗), for some T ∗ > 0.

(a) Suppose that

(2.45) m1 := min
0≤x≤1

a(x, u0(x), w0(x)) > 0.

Then, given any positive constants μ,M with μ < m1, there is a T < T ∗

depending on μ,M and the L∞-norm of w0xx such that

(2.46) |w(x, t) − w0(x)| ≤M,
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(2.47) |u(x, t) − u0(x)| ≤M

and (2.17) hold for (x, t) ∈ QT .

(b) Suppose that, in addition,

(2.48) m2 := min
0≤x≤1

w0−≤r≤w0+

a(x, u0(x), r) > 0,

where w0− = inf0≤x≤1 w0(x), w0+ = sup0≤x≤1 w0(x). Then, given any
μ,M,M−,M+ with 0 < μ < m2, M > 0, M− < w0− ≤ w0+ < M+,
there is a T < T ∗ depending solely on μ,M,M− and M+ such that
(2.17), (2.47) and

(2.49) M− ≤ w(x, t) ≤M+

hold for (x, t) ∈ QT .

PROOF. Let W = w−w0, U = u−u0. Then, (W (x, t), U(x, t)) satisfy,
on [0, 1] × [0, T ∗), the differential equations

(2.50) Wt−A(x, U,W )Wxx = A(x, U,W )w0xx(x) +B(x, U,W )
Ut = G(x, U,W )(2.51)

with boundary conditions (2.10) and initial conditions W (x, 0) = 0,
U(x, 0) = 0, for 0 ≤ x ≤ 1; the functions A,B and G relate to a, b and
g through formulas of the format

(2.52) A(x, U,W ) = a(x, u0(x) + U,w0(x) +W ).

First, consider part (a). Since a,w0 and u0 are continuous, (2.45)
and (2.52) imply that there is a ρ > 0 so that if 0 ≤ x ≤ 1, |U | ≤ ρ and
|W | ≤ ρ, then A(x, U,W ) ≥ μ > 0. Set k = min{ρ,M}. To complete
the proof of part (a), it suffices to show that there is a T < T ∗ such
that, for (x, t) ∈ QT , the triplet

(2.53) (x, U(x, t),W (x, t)) ∈ E1 :=
{(x, U,W ) ∈ [0, 1] ×RN ×R : |W | ≤ k, |U | ≤ k}.

Then (2.17), (2.46) and (2.47) follow from (2.52) and (2.53).
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Clearly, (2.53) holds on Qτ for some τ sufficiently small. Moreover, so
long as (2.53) holds, the maximum principle for the parabolic equation
(2.50) gives the bound

(2.54) |W (x, t)| ≤ F1t,

where F1 = supE1
|A(x, U,W )w0xx(x) + B(x, U,W )|. Also, if G1 =

supE1
|G(x, U,W )|, then (2.51), together with Gronwall’s inequality,

yields

(2.55) |U(x, t)| ≤ G1t.

Finally, (2.54) and (2.55) imply that (2.53) holds on QT , for any
0 < T < T ∗ with T ≤ min{k/F1, k/G1}. Since F1 depends on the
L∞-norm of w0xx, the resulting T will exhibit the same dependence.
Under the stronger hypothesis (2.48), this dependence can be avoided.

Consider now part (b). By virtue of (2.48) and the continuity of a and
u0, there are ρ, ρ−, ρ+, with ρ > 0 and ρ− < w0− ≤ w0+ < ρ+ such that
0 ≤ x ≤ 1, |U | ≤ ρ, and ρ− ≤ w ≤ ρ+ imply a(x, u0(x)+U,w) ≥ μ > 0.
It now suffices to show that there is a T < T ∗ such that, for (x, t) ∈ QT ,
the triplet
(2.56)

(x, U(x, t), w(x, t)) ∈ E2 := [0, 1]×{U ∈ RN : |U | ≤ k}×[k−, k+];

here, k = min{ρ,M}, k− = max{ρ−,M−}, k+ = min{ρ+,M+} and
k− < w0− ≤ w0+ < k+.

Let B± = sup maxE2{0,±b(x, u0(x) + U,w)}, and consider the com-
parison functions W±(x, t) = ±B±t − w0(x) + w0±. On account of
(2.50), so long as (2.56) holds, the functions W± satisfy the differential
inequalities

∂tW−A(x, U,W )∂2
xW− ≤ ∂tW − A(x, U,W )∂2

xW

≤ ∂tW+ −A(x, U,W )∂2
xW+(2.57)

W−(x, 0) ≤W (x, 0) = 0 ≤W+(x, 0)

and, by (2.19), corresponding inequalities at the boundaries. Using
comparison principles for parabolic equations, we obtain

(2.58) −B−t+ w0− ≤ w(x, t) ≤ B+t+ w0+.
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Moreover, (2.51) yields

(2.59) |U(x, t)| ≤ G2t,

where G2 = supE2
|g(x, u0(x) + U,w)|. Finally, (2.58) and (2.59)

imply that (2.56) holds on QT for any 0 < T < T ∗ with T ≤
min{(k+ − w0+)/B+, (w0− − k−)/B−, k/G2}.

Theorem 2.1, in conjunction with Lemmas 2.2 and 2.3, gives rise to
the following local existence and continuation theorem for the initial-
boundary value problem (2.8) (2.11) in Schauder spaces.

THEOREM 2.4. Let w0(x) ∈ C1+α[0, 1], u0(x) ∈ [Cα[0, 1]]N satisfy the
compatibility conditions w0x(0) = w0x(1) = 0 in case (2.10)V applies,
or w0(0) = w0(1) = 0 in case (2.10)S applies, and suppose that (2.48)
holds. Then, there exists a unique classical solution (w(x, t), u(x, t)) of
(2.8) (2.11) defined on a maximal interval of existence [0, 1] × [0, T ∗)
such that, for any 0 < τ < T < T ∗, w is in Cα,α/2(QT ), u, ut are in
[Cα,α/2(QT )]N and wt, wx, wxx are in Cα,α/2([0, 1] × [τ, T ]). In case
T ∗ <∞, as t ↑ T ∗,

(2.60) lim sup
t↑T∗

sup
0≤x≤1

(|u(x, t)| + |w(x, t)|) = ∞

and/or

(2.61) lim inf
t↑T∗

inf
0≤x≤1

a(x, u(x, t), w(x, t)) = 0.

Furthermore, if w0(x) ∈ C2+α[0, 1] and the compatibility conditions
(2.19) hold, then wt, wx, wxx are in Cα,α/2(QT ) for any T < T ∗. If, in
addition, u0(x) ∈ [C1+α[0, 1]]N , then ux, uxt are in [Cα,α/2(QT )]N for
any T < T ∗.

PROOF. We work with the boundary conditions (2.10)S ; the case of
(2.10)V is treated similarly.

Let w0(x) ∈ C1+α[0, 1], u0(x) ∈ [Cα[0, 1]]N be given, satisfying
the compatibility conditions w0(0) = w0(1) = 0 as well as (2.48).
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We proceed to establish a local existence theorem for (2.8) (2.11).
First, construct approximating sequences {w0n} and {u0n} such that
w0n(x) and u0n(x) are C∞-functions on [0, 1] satisfying (2.19)S, and,
as n→ ∞,

(2.62) w0n → w0 in C1[0, 1], |w0n|1+α ≤ K|w0|1+α

(2.63) u0n → u0 in [C[0, 1]]N , |u0n|α ≤ K|u0|α,

with K a fixed positive constant (for details of such a construction, see
[19]).

Consider the problem (2.8) (2.11) with initial data (w0n(x), u0n(x)).
Referring to part (b) of Lemma 2.3, let

(2.64)

mn =min
{
a(x, u0n(x), r) : 0 ≤ x ≤ 1, inf

0≤x≤1
w0n(x)≤r ≤ sup

0≤x≤1
w0n(x)

}
.

Since (w0(x), u0(x)) satisfy (2.48) and u0(x) is continuous, lim infn→∞
mn > 0. By throwing away a finite number of terms, if needed,
we may assume that m0 := infnmn > 0. Fix μ,M,M− and M+

such that M− < infn inf0≤x≤1 w0n(x) ≤ supn sup0≤x≤1 w0n(x) <
M+, M > 0, 0 < μ < m0. Theorem 2.1, in conjunction with
Lemma 2.3, implies that, for each n = 1, 2, . . . , there is a classical
solution (wn(x, t), un(x, t)) of (2.8) (2.11) defined on [0, 1] × [0, Tn],
with smoothness as in Theorem 2.1, and corresponding to the initial
data (w0n(x), u0n(x)). Moreover, T0 := infn Tn > 0, and, on the
domain QT0

= [0, 1] × [0, T0], the functions (wn(x, t), un(x, t)) satisfy
the uniform bounds

(2.65) |un(x, t) − u0n(x)| ≤M, M− ≤ wn(x, t) ≤M+

and

(2.66) a(x, un(x, t), wn(x, t)) ≥ μ > 0.

Using (2.62), (2.63), (2.65) and (2.66), relations (2.39) and (2.40) in
Lemma 2.2, together with (2.9), imply that, on QT0

,

(2.67) ‖wn‖β,β/2 ≤ K, ‖un‖β,β/2 + ‖∂tun‖β,β/2 ≤ K,

where β = min{α, 1/2} and K is a constant independent of n.
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Since the injection Cβ,β/2(QT0
) → Cβ′,β′/2(QT0

) is compact for
β′ < β, (2.67) implies that there are subsequences {wn′} and {un′},
as well as functions w(x, t) and u(x, t), with w ∈ Cβ,β/2(QT0

) and u,
∂tu ∈ [Cβ,β/2(QT0

)]N , such that

(2.68)
wn′ → w in Cβ′,β′/2(QT0

),

un′ → u, ∂tun′ → ∂tu in [Cβ′,β′/2(QT0
)]N .

Clearly, (w(x, t), u(x, t)) satisfies (2.9), (2.10)S and (2.11). Using (2.68)
together with results on families of solutions of parabolic equations
(cf. Friedman [8, Section 3.6]), it follows that (w(x, t), u(x, t) is a
classical solution of (2.8). The stated regularity of this solution is an
outcome of the interior and boundary parabolic estimates [8, Section
4.7]. Uniqueness follows from a lengthy but routine argument that is
omitted.

If w0(x) ∈ C2+α[0, 1] and satisfies (2.19)S, then Theorem 2.1 im-
plies that wt, wx and wxx are in Cα,α/2(QT0

). Suppose that, in addi-
tion, u0(x) ∈ [C1+α[0, 1]]N . Now u(x, t) satisfies (2.9) with w,wx ∈
Cα,α/2(QT0

). Using standard theorems on continuous dependence for
ordinary differential equations, together with estimates in the spirit of
the derivation of (2.27), leads to ux, uxt ∈ [Cα,α/2(QT0

)]N .

Finally, Theorem 2.1 implies that the solution (w(x, t), u(x, t)) can
be continued on a maximal interval of existence [0, 1] × [0, T ∗), such
that either T ∗ = ∞, or, at least one of (2.60) or (2.61) occurs.

Next, we turn to the initial-boundary value problem (2.1) (2.5). We
assume that the initial data satisfy

(2.69) v0(x) ∈ C2+α[0, 1], u0(x) ∈ [C1+α[0, 1]]N ,

(2.70)
m0 = min

{
ϕq(x, u0(x), ψ(x, u0(x), r) : 0 ≤ x ≤ 1,

inf
0≤x≤1

w0(x) ≤ r ≤ sup
0≤x≤1

w0(x)
}
> 0,

where w0(x) is given by (2.6), and the compatibility conditions

(2.71)V v0(0) = v0(1) = 0, w0x(0) = w0x(1) = 0,
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in case (2.4)V applies, or

(2.71)S w0(0) = w0(1) = 0,

in case (2.4)S applies. We prove

THEOREM 2.5. Under the hypotheses (2.69) (2.71), there exists a
unique classical solution (v(x, t), u(x, t)) of (2.1) (2.5) defined on
a maximal interval of existence [0, 1] × [0, T ∗) such that, for any
0 < T < T ∗, v, vx, vt, vxx are in Cα,α/2(QT ) and u, ut, ux, uxt are in
[Cα,α/2(QT )]N . If T ∗ < ∞, then, as t ↑ T ∗, at least one out of (2.60)
or

(2.72) lim inf
t↑T∗

inf
0≤x≤1

ϕq(x, u(x, t), vx(x, t)) = 0

occurs. Finally, w(x, t) = ϕ(x, u(x, t), vx(x, t)) satisfies (2.41), where
C3 only depends on m0 and the sup-norms of w0 and u0.

PROOF. For concreteness, we treat the boundary conditions (2.4)S .
Let (v0(x), u0(x)) satisfying (2.69), (2.70) and (2.71)S be given and
define w0(x) by (2.6). Consider the problem (2.8) (2.11) with a, b
and g defined by (2.12). Theorem 2.4 asserts that there is a unique
solution (w(x, t), u(x, t)) of (2.8) (2.11) defined on [0, 1] × [0, T ∗) and
with regularity as stated there.

Our objective is to define v(x, t) by (2.13) subject to the initial data
v(x, 0) = v0(x), 0 ≤ x ≤ 1. Then (v(x, t), u(x, t)) is a solution of
(2.1) (2.5). For v(x, t) to be well defined, it is at least required that,
for each fixed x ∈ [0, 1], wx(x, ·) is integrable. In view of Theorem
2.4, to complete the proof it suffices to show that, for some τ small,
wx, vt, vxx ∈ Cα,α/2(Qτ ), ux, uxt ∈ [Cα,α/2(Qτ )]N and also that (3.41)
holds. This is accomplished by a density argument.

Consider approximating sequences {w0n} and {u0n}, consisting of
C∞-functions on [0, 1], with {w0n} as in (2.62) and {u0n} satisfying

(2.73) u0n → u0 in [C1[0, 1]]N , |u0n|1+α ≤ K1|u0|1+α,

as n→ ∞. Set v0n(x) = v0(0)+
∫ x

0
ψ(y, u0n(y), w0n(y)) dy and observe

that

(2.74) v0n → v0 in C2[0, 1], |v0n|2+α ≤ K2(|v0|2+α + |u0|1+α).
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Let (wn(x, t), un(x, t)) and (vn(x, t), un(x, t)) be the corresponding
solutions of (2.8) (2.11) and (2.1) (2.5), respectively; vn(x, t) is defined
by solving (2.13) subject to vn(x, 0) = v0n(x). Note that, by uniqueness
for (2.8) (2.11), (2.68) and (2.13) imply that

(2.75)
wn → w, ∂xvn → ∂xv in C(QT )

un → u in [C(QT )]N

for any fixed T < T ∗.

The functions vn and ωn := ∂xun satisfy the equations

∂tvn = An(x, t)∂2
xvn +Bn(x, t) · ωn + Cn(x, t),(2.76)

∂tωn = Dn(x, t)ωn + En(x, t)∂2
xvn + Fn(x, t),(2.77)

where, on account of (2.66), (2.67) and (2.13)1, the components of
An − Fn are uniformly bounded in Cα,α/2(QT ), and, for n large,
An(x, t) ≥ μ for some μ > 0. The Schauder estimates for (2.76),
together with (2.74), yield

(2.78) ‖vn‖2+α,1+α/2 ≤ K3[|v0|2+α + |u0|1+α + ‖ωn‖α,α/2 + 1].

Proceeding as in the derivation of (2.27), (2.77) implies that, on Qτ

with 0 < τ ≤ T ,

(2.79) ‖ωn‖α,α/2 ≤ K4[|u0|1+α + (τ + τ1−α)‖∂2
xvn‖α,α/2 + 1].

The constants K3 and K4 are independent of n. Combining (2.78) and
(2.79), we conclude that, provided τ+τ1−α < 1/(2K3K4), the estimate

(2.80) ‖vn‖2+α,1+α/2 + ‖ωn‖α,α/2 ≤ K5(|v0|2+α + |u0|1+α + 1)

is valid on Qτ . Also, by virtue of Lemma 2.2, wn(x, t) satisfies (2.41).

Relations (2.80) and (2.75) give wx, vxx ∈ Cα,α/2(Qτ ) and ux ∈
[Cα,α/2(Qτ )]N . Also, vt = wx ∈ Cα,α/2(Qτ ) and uxt = fx + fp · ux +
fqvxx ∈ [Cα,α/2(Qτ )]N . Finally, w(x, t) satisfies (2.41).

3. On the competition of strain softening and strain rate de-
pendence. The scope of this Section is to elucidate the competition
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between the destabilizing influence of strain softening and the stabi-
lizing influence of strain rate sensitivity during the course of shearing
motions and to provide quantitative criteria that determine which one
prevails.

We use, as a test case, the initial-boundary value problem consisting
of (1.1) (1.3), namely,

(3.1)
vt = (τ (u)vn

x )x,

ut = vx,
0 ≤ x ≤ 1, t > 0,

with boundary conditions (1.9)S and initial conditions (1.5). The
initial data are taken smooth: v0(x) ∈ C2+α[0, 1], u0(x) ∈ C1+α[0, 1],
for some 0 < α < 1; compatible with the boundary conditions:
σ0(0) = σ0(1) = 1; and satisfying the sign restrictions

(3.2) u0(x) > 0, σ0(x) > 0, 0 ≤ x ≤ 1.

Henceforth, we will refer to this problem as (P)S. Recall that τ (u) is
a smooth function satisfying (1.4) and n is a positive parameter.

The theory developed in Section 2 implies the existence of a unique
solution (v(x, t), u(x, t)) of (P)S , defined on a maximal interval of
existence [0, 1] × [0, T ∗), such that v, vt, vx, vxx, u, ut and ux are in
Cα,α/2(QT ), for any T < T ∗. In addition, given any compact sub-
set K of (0,∞) × R, (σ(x, t), u(x, t)) escapes K as t ↑ T ∗, i.e.,
there are sequences {xn} ⊂ [0, 1] and {tn}, with tn ↑ T ∗ such that
(σ(xn, tn), u(xn, tn)) /∈ K. The identification of (P)S with (2.1) (2.6)
is done by setting w = ϕ(x, p, q) = τ (p)qn−1. (Although ϕ is not C2 at
q = 0, it is C2 when restricted to compact subsets of [0, 1]×R× (0,∞);
this remark, together with the results of Section 2, provides the above
statements).

Our objectives are (a) to characterize the class of functions τ (u) and
parameters n that guarantee global solvability of (P)S , and (b) to study
the behavior of solutions (v(x, t), u(x, t)) of (P)S.

Toward this end, it is expedient to use a different formulation of (3.1).
Note that, for (x, t) ∈ [0, 1] × [0, T ∗), a solution of (P)S satisfies

(3.3) σ(x, t) > 0, ut(x, t) = vx(x, t) > 0, u(x, t) ≥ u0(x) > 0.
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A simple calculation, using (1.1) (1.3), shows that (σ(x, t), u(x, t)) is a
positive solution of the reaction-diffusion system

(σ
1
n )t = τ (u)

1
nσxx +

1
n

τ ′(u)
τ (u)1+1/n

(σ
1
n )2,(3.4)

ut =
σ

1
n

τ (u)
1
n

,(3.5)

on [0, 1] × [0, T ∗). For this step and for the remainder of the Section,
we assume that (v(x, t), u(x, t)) enjoys some additional smoothness,
namely, vxt, vxxx and uxx are in Cα,α/2(QT ), for any T < T ∗. Such
solutions are generated if we take smoother initial data, a hypothesis
that can later be relaxed using density arguments (cf. Section 2).
Integrating (3.5) yields

(3.6) Φ(u(x, t)) = Φ(u0(x)) +
∫ t

0

σ
1
n (x, τ) dτ,

where

(3.7) Φ(u) =
∫ u

1

τ (ξ)
1
n dξ.

An important ingredient of the forthcoming analysis lies in estimating
σ(x, t) by means of comparison principles (e.g., [13, Chapter 3, Section
7]) for the parabolic equation (3.4); in turn, u(x, t) is estimated using
(3.6). We state the comparison principle used as a lemma for future
reference.

LEMMA 3.1. Suppose that, for any T < T ∗, σ1(x, t) and σ2(x, t) are
both in C2,1(QT ) with σ1(x, t) > 0 and σ2(x, t) > 0, A(x, t) ∈ C(QT )
with A(x, t) > 0, and B(x, t) ∈ C(QT ). If, for any T < T ∗,

(3.8)

(σ
1
n
1 )t −A(x, t)σ1xx +B(x, t)(σ

1
n
1 )2

≤ (σ
1
n
2 )t −A(x, t)σ2xx +B(x, t)(σ

1
n
2 )2, on QT ,

σ1(i, t) ≤ σ2(i, t), i = 0, 1, 0 ≤ t ≤ T,

σ1(x, 0) ≤ σ2(x, 0), 0 ≤ x ≤ 1,
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then

(3.9) σ1(x, t) ≤ σ2(x, t), 0 ≤ x ≤ 1, 0 ≤ t < T ∗.

In applications of the lemma, the functions A and B are taken,
respectively, A = τ (u)1/n > 0 and B = −(1/n)(τ ′(u)/τ (u)1+

1
n ) > 0.

Our first theorem characterizes global solvability of (P)S in terms of
the behavior of Φ(u) as u→ ∞.

THEOREM 3.2. Let (v(x, t), u(x, t)) be a classical solution of (P)S

defined on a maximal interval of existence [0, 1]× [0, T ∗). Suppose that
τ (u) satisfies (1.4). Then:

(i) T ∗ = ∞ if and only if Φ(∞) = ∞.

(ii) If T ∗ <∞, then

(3.10) lim
t→T∗

sup
0≤x≤1

u(x, t) = ∞.

PROOF. Let (v(x, t), u(x, t)) be a solution of (P)S on [0, 1] × [0, T ∗),
with T ∗ maximal; let σ(x, t) be defined by (1.3). We estimate the
solution in the interval of existence [0, 1] × [0, T ∗).

Under hypothesis (1.4), any positive, concave function Σ(x) satisfies

(3.11) −τ (u) 1
n Σxx − 1

n

τ ′(u)
τ (u)1+

1
n

Σ
2
n > 0.

If, in addition,

(3.12) Σ(x) ≥ σ0(x), 0 ≤ x ≤ 1,

then applying Lemma 3.1, with comparison functions σ(x, t) and Σ(x),
yields

(3.13) σ(x, t) ≤ Σ(x).
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First, we show (ii). Assume that T ∗ < ∞ and, at the same time,
u(x, t) is bounded from above on [0, 1] × [0, T ∗), i.e.,

(3.14) u0− ≤ u(x, t) ≤ U+ <∞;

here we used the fact that u(x, t) ≥ inf0≤x≤1 u0(x) =: u0− . Let s(t) be
the solution of the initial value problem

(3.15)

d

dt
s

1
n +B0(s

1
n )2 = 0,

s(0) = σ0− := inf
0≤x≤1

σ0(x),

where B0 = maxu0−≤ξ≤U+(1/n)(|τ ′(ξ)|/τ (ξ)1+ 1
n ). Integrating (3.15)

yields

(3.16) s(t) =
σ0−

(1 + σ
1/n
0− B0t)n

> 0.

On account of (3.15) and (3.4), the comparison functions s(t) and
σ(x, t) satisfy the parabolic differential inequality (3.8) on QT , for any
T < T ∗. Using Lemma 3.1, we deduce

(3.17) s(t) ≤ σ(x, t).

Estimates (3.12), (3.14) and (3.17) imply that (σ(x, t), u(x, t)) remains
in some compact subset of (0,∞)×R as t ↑ T ∗. But, then the solution
can be continued past T ∗, which contradicts the assumption that T ∗ is
maximal and finite. Since ut > 0, we conclude that, if T ∗ < ∞ and is
maximal, then (3.10) holds.

Next, we proceed to prove (i). Consider Φ(u) defined for u ∈ (0,∞)
by (3.7). Φ(u) is increasing and invertible with an inverse function
Φ−1(ξ) defined for ξ ∈ (Φ(0),Φ(∞)) and increasing. In case Φ(∞) =
∞, combining (3.6) and (3.13), we arrive at

(3.18) u(x, t) ≤ Φ−1(Φ(u0(x)) + Σ
1
n (x)t).

Then (3.14) holds for any QT with T > 0 and, necessarily, if T ∗ is
maximal, then T ∗ = ∞. By contrast, in case Φ(∞) < ∞, (3.6) at
x = 0 or x = 1, together with (1.9)S , leads to

(3.19) Φ(u(i, t)) = Φ(u0(i)) + t, i = 0, 1.



220 A.E. TZAVARAS

In turn, (3.19) implies

(3.20) u(i, t) → ∞ as t→ Ti,

where Ti = Φ(∞) − Φ(u0(i)) < ∞ for i = 0, 1. Therefore, in case
Φ(∞) <∞, T ∗ ≤ min{T0, T1} <∞.

According to Theorem 3.2, the criterion for global solvability of (P)S

is the divergence of the integral
∫ ∞
1
τ (ξ)1/n dξ =: Φ(∞). Therefore, it

is the decay rate of τ (u) as u → ∞ that determines global existence
for (P)S. The class of positive, decreasing constitutive functions τ (u)
can be decomposed into two categories, depending on whether Φ(∞)
is finite or infinite. Roughly speaking, the dividing line consists of
functions τ (u) that decay to zero like the power u−n.

Next, we restrict attention to functions τ (u) such that Φ(∞) = ∞
(and, thus, T ∗ = ∞) and consider the asymptotic behavior of solutions
(v(x, t), u(x, t)) of (P)S as t→ ∞. In case τ (u) ≡ τ0, a constant, σ(x, t)
is a positive solution of

(3.21) (σ
1
n )t = τ

1
n
0 σxx

subject to the boundary conditions (1.9)S; thus, σ(x, t) → 1 uniformly
in x ∈ [0, 1] as t → ∞. The question is whether this behavior persists
for positive and decreasing functions τ (u).

Two representative classes of functions τ (u) are considered: Class
(H1) consists of functions that decay to a positive constant τ (∞) at a
rate dominated by a power, i.e., for some c > 0 and α > 0,

(H1) τ (u) > τ (∞) > 0, 0 < − τ ′(u) ≤ c

uα
, u > 0.

Class (H2) consists of functions that decay to zero like a power, up to
first order derivatives, i.e., for some c > 0 and m > 0,

(H2)
1
c

1
um

≤ τ (u) ≤ c

um
, 0 < − τ ′(u)

τ (u)
≤ m

u
, u > 0.

Note that, to guarantee global existence for functions of class (H2),
we assume 0 < m ≤ n so that Φ(∞) = ∞. Also, note that, under
hypothesis (H1),

(3.22) lim
u→∞

Φ(u)
u

= τ (∞)
1
n ,
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while, under hypothesis (H2) for 0 < m < n,

(3.23) lim sup
u→∞

Φ(u)
u1−m

n
<∞, lim inf

u→∞
Φ(u)
u1−m

n
> 0,

and, for m = n,

(3.24) lim sup
u→∞

Φ(u)
lnu

<∞, lim inf
u→∞

Φ(u)
lnu

> 0.

We prove

THEOREM 3.3. Suppose the function τ (u) belongs to either the class
(H1) or the class (H2) with 0 < m/n < 1/2. Let (v(x, t), u(x, t)) be
a classical solution of (P)S on [0, 1] × [0,∞), corresponding to initial
data (v0(x), u0(x)) with u0(x) > 0, σ0(x) > 0 for 0 ≤ x ≤ 1 and
σ0(0) = σ0(1) = 1. Then, for any choice of the initial data in case
0 < n < 2 and, under restrictions for the data that are outlined below
in case n ≥ 2, the following hold: As t→ ∞,

(3.25) σ(x, t) = 1 +O(t−β),

(3.26)
∫ u(x,t)

u0(x)

τ (ξ)
1
n dξ = t+O

(∫ t

1

s−β ds

)

and

(3.27) v(x, t) =
∫ 1

0

v0(y) dy +
∫ 1

0

∫ x

y

1
τ (u(ξ, t))

1
n

dξ dy +O(t−β+γ)

uniformly on [0, 1]. In case (H1) holds, β = α > 0 and γ = 0, while, in
case (H2) holds, 0 < β = (n− 2m)/(n−m) < 1 and γ = m/(n−m).

PROOF. Let (v(x, t), u(x, t)) be a classical solution of (P)S defined on
Q∞ := [0, 1] × [0,∞). Then, (3.3) holds and (σ(x, t), u(x, t)) satisfies
(3.4), (3.5) on Q∞. We proceed to obtain an initial a priori estimate,
independent of t, for σ(x, t) using comparison principles. In the sequel,
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K will stand for a generic constant that can be estimated in terms of
the initial data and properties of the function τ (u).

Set −γ(u) to be the quotient of the coefficient of the reaction term
over the coefficient of the diffusion term in (3.4):

(3.28) γ(u) =
1
n

(
− τ ′(u)
τ (u)

)
1

τ (u)2/n
.

If we can find positive functions S(x) and s(x) defined on [0, 1] and
satisfying, for (x, t) ∈ Q∞, the differential inequalities

(3.29)
−Sxx + γ(u(x, t))S2/n ≥ 0

S(x) ≥ σ0(x)

and

(3.30)
−sxx + γ(u(x, t))s2/n ≤ 0

s(x) ≤ σ0(x),

respectively, then Lemma 3.1 implies

(3.31) s(x) ≤ σ(x, t) ≤ S(x)

for (x, t) ∈ Q∞.

Next, we examine the possibility of finding such functions S(x) and
s(x). Observe that, under hypothesis (H1),

(3.32) 0 < γ(u) ≤ K1

uα
≤ K2, u ≥ inf

0≤x≤1
u0(x),

while, under hypothesis (H2) for 0 < m/n ≤ 1/2,

(3.33) 0 < γ(u) ≤ K3

u1−2 m
n

≤ K4, u ≥ inf
0≤x≤1

u0(x).

Under either of (H1) or (H2), any concave, positive function S(x)
satisfies (3.29)1. Moreover, for any choice of the initial function
σ0(x) > 0, there is a concave function S(x) such that S(x) ≥ σ0(x),
0 ≤ x ≤ 1. Therefore, the right-hand inequality of (3.31) is valid for
all values of the parameters and choices of the initial data.
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Turn now to (3.30). If a positive function s(x) satisfies

(3.34) −sxx + γ0s
2
n ≤ 0, 0 ≤ x ≤ 1,

where γ0 = K2 in case (H1) holds or γ0 = K4 in case (H2) holds,
0 < m/n ≤ 1/2, then s(x) also satisfies (3.30)1. Consider two cases
n < 2 and n ≥ 2.

(i) If n < 2, the parametric family sα(x) = (α/2)(x2 + 1) satisfies
the inequality (3.34) provided α > 0 and α2/n−1 ≤ 1/γ0. Given any
(σ0(x), u0(x)) both positive on [0, 1], we fix γ0 (which depends on u0(x))
and choose α sufficiently small so that sα(x) ≤ σ0(x) and (3.34) is
fulfilled for x ∈ [0, 1]. Then, sα(x) satisfies (3.30), and the left-hand
side of (3.31) is established.

(ii) If n ≥ 2, a function s(x) satisfying (3.34) and (3.30)2 can only
be found for restricted choices of the data (σ0(x), u0(x)). For instance,
given σ0(x), find the largest α > 0 such that sα(x) = (α/2)(x2 + 1) ≤
σ0(x). With this α fixed, sα(x) satisfies (3.34) provided γ0 ≤ α1−2/n.
In view of the choice of γ0 and (3.32), (3.33), this imposes a restriction
on u0(x) and/or the function τ (u). If these restrictions are satisfied,
then the left-hand inequality of (3.31) holds.

Henceforth, we restrict attention to the cases when (3.31) holds.
Using (3.31), (3.6) yields

(3.35)
1
K5

t ≤ Φ(u(x, t)) − Φ(u0(x)) ≤ K5t, t > 0.

Combining (3.3) and (3.35) with (3.22) or (3.23), we conclude that,
under hypothesis (H1),

(3.36)
1
K6

(t+ 1) ≤ u(x, t) ≤ K6(t+ 1),

while, under hypothesis (H2) with 0 < m/n ≤ 1/2,

(3.37)
1
K7

(t+ 1)
n

n−m ≤ u(x, t) ≤ K7(t+ 1)
n

n−m .

In view of (1.1) and (1.9)S, we have the identity

(3.38)
1
2
d

dt

∫ 1

0

v2
t dx+

∫ 1

0

σtvxt dx = 0.
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Using (3.38), together with (3.4) and (1.1),
(3.39)
1
2
d

dt

∫ 1

0

v2
t dx+ n

∫ 1

0

τ (u)
1
nσ1− 1

n v2
xt dx =

∫ 1

0

(
− τ ′(u)
τ (u)

)
σ1+ 1

n

τ (u)
1
n

vxt dx,

which, together with Schwarz’s inequality, implies
(3.40)
1
2
d

dt

∫ 1

0

v2
t dx+

n

2

∫ 1

0

τ (u)
1
n σ1− 1

n v2
xt dx ≤ 1

2n

∫ 1

0

(
τ ′(u)
τ (u)

)2
σ1+ 3

n

τ (u)
3
n

dx.

Also, the calculus identity

(3.41) σx(x, t) =
∫ 1

0

σx(y, t) dy +
∫ 1

0

∫ x

y

σxx(ξ, t) dξ,

together with (1.1), (1.9)S and Schwarz’s inequality, leads to

(3.42) v2
t (x, t) ≤

∫ 1

0

v2
xt(ξ, t) dξ.

Suppose first that (H2) holds and 0 < m/n ≤ 1/2. Then, combining
(3.31), (3.37) and the inequalities in (H2) with (3.40) and (3.42), we
arrive at the differential inequality

(3.43)
d

dt

∫ 1

0

v2
t dx+

1
K8

(t+ 1)−
m

n−m

∫ 1

0

v2
t dx ≤ K9(t+ 1)

3m−2n
n−m .

If 0 < m/n < 1/2, then integrating (3.43) yields

(3.44)
∫ 1

0

v2
t (x, t) dx ≤ K10(t+ 1)

4m−2n
n−m ;

however, if m/n = 1/2, then (3.43) does not provide any decay.
Relation (3.44), in conjunction with the Poincaré inequality

(3.45) (σ(x, t) − 1)2 ≤
∫ 1

0

σ2
x(ξ, t) dξ

and (1.1), yields (3.25) when (H2) holds.
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When (H1) holds, the same sequence of steps using (3.36) and (H1)
in the place of (3.37) and (H2) lead to the differential inequality

(3.46)
d

dt

∫ 1

0

v2
t dx+

1
K11

∫ 1

0

v2
t dx ≤ K12(t+ 1)−2α,

which, once integrated, yields

(3.47)
∫ 1

0

v2
t (x, t) dx ≤ K13(t+ 1)−2α.

Combining (3.45) and (3.47), we arrive at (3.25) in case (H1) holds.

To show (3.26), observe that (3.6), (3.7), Poincaré’s inequality, (3.31)
and (1.1) yield

(3.48)

∣∣∣∣
∫ u(x,t)

u0(x)

τ (ξ)
1
n dξ − t

∣∣∣∣ ≤
∫ t

0

|σ 1
n (x, τ) − 1| dτ

≤ K14

∫ t

0

(∫ 1

0

v2
t (x, τ) dx

)1/2

dτ.

Using (3.48), together with (3.44) or (3.47) in cases (H2) or (H1),
respectively, we deduce (3.26).

Finally, the identities

v(x, t) =
∫ 1

0

v(y, t) dy +
∫ 1

0

∫ x

y

σ
1
n (ξ, t)

τ (u(ξ, t))
1
n

dξ dy(3.49)

and ∫ 1

0

v(y, t) dy =
∫ 1

0

v0(y) dy(3.50)

(by (1.1) and (1.9)S), together with Poincaré’s inequality and (3.31),
imply

(3.51)
∣∣∣∣v(x, t) −

∫ 1

0

v0(y) dy −
∫ 1

0

∫ x

y

1
τ (u(ξ, t))

1
n

dξ dy

∣∣∣∣
≤

∫ 1

0

|σ 1
n − 1|
τ (u)

1
n

dx

≤ K15

( ∫ 1

0

v2
t dx

)1/2( ∫ 1

0

1
τ (u)

1
n

dx

)
.
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Using (3.47) in case (H1) holds, or (3.44) and (3.37) in case (H2) holds,
we arrive at (3.27).

Between the class of functions τ (u) satisfying Φ(∞) < ∞, for which
solutions of (P)S blow up in finite time, and the class of τ (u) satisfying
(H2) with 0 < m/n < 1/2, for which solutions of (P)S behave
asymptotically like in (3.21) (cf. (3.25)), there remains a gap to be
analyzed. For a power law

(3.52) τ (u) = u−m,

the gap corresponds to the powers 1/2 ≤ m/n ≤ 1.

In the sequel we consider the power law (3.52) with m/n ≥ 1/2 and
analyze the behavior of solutions of (P)S. Let (v(x, t), u(x, t)) be such
a solution defined on [0, 1] × [0, T ∗); here T ∗ = +∞ if 1/2 ≤ m/n ≤ 1
and T ∗ < +∞ if m/n > 1. The function σ(x, t) satisfies (3.4) with
τ (u) as in (3.52), while (3.6) yields

(3.53) u(x, t)1−
m
n = u0(x)1−

m
n +

(
1 − m

n

)∫ t

0

σ
1
n (x, τ) dτ,

in case m/n �= 1, and

(3.54) lnu(x, t) = lnu0(x) +
∫ t

0

σ
1
n (x, τ) dτ

in case m/n = 1.

We examine the class of solutions of the differential inequality (3.29).
Note that, by virtue of (3.28), (3.52) and (3.3), for m/n ≥ 1/2,

(3.55) γ(u(x, t)) =
m

n
u(x, t)2

m
n −1 ≥ m

n
u0(x)2

m
n −1.

Then Lemma 3.1 implies

LEMMA 3.4. Let m/n ≥ 1/2. If S(x) is a smooth, positive function
satisfying, for x ∈ [0, 1],

(3.56)
−Sxx(x) + γ0(x)S

2
n (x) ≥ 0

S(x) ≥ σ0(x),
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where γ0(x) := (m/n)u0(x)2
m
n −1, then

(3.57) σ(x, t) ≤ S(x), 0 ≤ x ≤ 1, 0 ≤ t < T ∗.

If m/n > 1/2, given any S(x) ≥ σ0(x) > 0, (3.56) can always be
satisfied by choosing u0(x) > 0 appropriately. Namely,

(3.58)
m

n
u0(x)2

m
n −1 ≥ Sxx(x)

S
2
n (x)

.

In particular, σ0(x) can be used as a choice for S(x) for restricted
choices of u0(x).

If m/n = 1/2, then S(x) ≥ σ0(x) > 0 will satisfy (3.56) provided

(3.59)
1
2
≥ Sxx(x)
S

2
n (x)

.

In light of the above remark, we study the family of potential choices

(3.60) Sα(x) = 1 + αx(x− 1), 0 ≤ x ≤ 1,

where 0 < α < 4. Note that Sα(x) is convex and attains its minimum
Sα(1/2) = 1 − α/4 > 0. Also, Sα(x) → 1 uniformly on [0, 1] as α→ 0.

(a) Case m/n > 1/2. If the initial data (u0(x), σ0(x)) are restricted
so as to satisfy
(3.61)

σ0(x) ≤ Sα(x), u0(x) ≥ uα :=

[
n

m

2α
(1 − α

4 )
2
n

] n
2m−n

, 0 ≤ x ≤ 1,

then Lemma 3.4, in conjunction with (3.58), implies

(3.62) σ(x, t) ≤ Sα(x), 0 ≤ x ≤ 1, 0 ≤ t < T ∗.

Observe that uα → 0 as α→ 0.

Consider now the problem (P)S with initial data (σ0(x), u0(x)) =
(Sα(x), uα), for some 0 < α < 4. Let (σα(x, t), uα(x, t)) be the
corresponding solution; it is defined on [0, 1] × [0, T ∗). Also,

(3.63) σα(x, t) ≤ Sα(x) = 1 + αx(x− 1)

for (x, t) ∈ [0, 1] × [0, T ∗).
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We consider three separate regions:

(i) (1/2 < m/n < 1) Here T ∗ = +∞. In addition, (3.63) and (3.53)
yield

(3.64) uα(x, t) ≤
[
u

1−m
n

α +
(
1 − m

n

)
S

1
n
α (x)t

] n
n−m

for 0 ≤ x ≤ 1, 0 ≤ t < ∞. Note that, since Sα(0) = Sα(1) = 1, the
boundary condition (1.9)S , together with (3.53), implies that (3.64)
is, in fact, an equality at x = 0 and x = 1. A comparison of (3.25)
and (3.26) with (3.63) and (3.64) reveals the drastic difference in the
behavior of solutions across the parameter values m/n = 1/2. In
particular, σα(x, t) does not converge to 1 as t → ∞, and spatial
nonuniformities of the strain u(x, t) develop and persist in time. This
is the case no matter how close to the constant function 1 the initial
state Sα(x) is. The diffusion is, in this case, too weak to uniformize
the solution.

(ii) (m/n = 1) The situation is similar to part (i) with (3.64) replaced
by

(3.65) uα(x, t) ≤ uα exp
{
S

1
n
α (x)t

}
,

by virtue of (3.54).

(iii) (m/n > 1) Here T ∗ < +∞. The solution (σα(x, t), uα(x, t))
satisfies, on [0, 1] × [0, T ∗), the bounds (3.63) and

(3.66) uα(x, t) ≤
[
u

1−m
n

α −
∣∣∣1 − m

n

∣∣∣S 1
n
α (x)t

]− n
m−n

.

The bound on the right-hand side of (3.66) blows up for the first time
at the boundary points x = 0 and x = 1 as t → Tcr := 1

|1−m
n |
u

1−m
n

α .

Then (3.10) and (3.66) imply that T ∗ ≥ Tcr. However, since Sα(0) =
Sα(1) = 1, (3.66) is, in fact, an equality at x = 0 and x = 1 and, thus,
T ∗ = Tcr. The function uα(x, t) blows up exactly at the boundary
points x = 0 and x = 1 as t→ Tcr = T ∗; in blowing up it satisfies (3.66)
and appears like two shear bands located at the boundaries x = 0 and
x = 1. Moreover, as t → T ∗, the function σα(x, t) obeys the bound
(3.63), while

(3.67) ∂tuα(x, t) = ∂xvα(x, t) ≤ S
1
n
α (x)

[
u

1−m
n

α −
∣∣∣1 − m

n

∣∣∣S 1
n
α (x)t

]− m
m−n

with an equality at x = 0 and x = 1.
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Note that, in the above cases, any 0 < α < 4 can be chosen. Also,
by choosing other types of functions S(x) in the place of (3.60), the
nonuniformities that develop near the boundary can be made very
strong, at the expense of restrictions on the initial data (cf. (3.58)).

(b) Case m/n = 1/2. If α is small enough so that 2α ≤
(1/2)(1 − α/4)2/n, then Sα(x) satisfies (3.59). Consider initial data
(Sα(x), u0(x)), with α small and u0(x) > 0 but otherwise unrestricted.
Let (σα(x, t), uα(x, t)) be the corresponding solution of (P)S ; it is de-
fined on [0, 1] × [0,∞). On account of (3.60) and Lemma 3.4, σα(x, t)
satisfies (3.63) and the uniform state σ ≡ 1 again loses stability, as is
the situation in the case m/n > 1/2.

4. The power law and scale invariance. For the particular
choice τ (u) = 1/um, the constitutive relation (1.3) takes the form of
the power law

(4.1) σ =
1
um

vn
x ,

where m,n are positive parameters. Under (4.1), (1.1) (1.2) read

(4.2)
vt =

(
1
um

vn
x

)
x

ut = vx

and, correspondingly, (3.4) (3.5) take the form

(4.3)
(σ

1
n )t = u−

m
n σxx − m

n
u

m
n −1σ

2
n

ut = u
m
n σ

1
n .

The power structure of the system (4.2) induces the following scaling
property: If (v(x, t), u(x, t)) is a solution of (4.2) on R × (0,∞), then
(vλ(x, t), uλ(x, t)), defined by

vλ(x, t) = λ
δ
α v(λx, λ−

1
α t)(4.4)

uλ(x, t) = λ
α+δ+1

α u(λx, λ−
1
α t),(4.5)
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where λ > 0 and δ, α are any constants with

(4.6) −m(α+ δ + 1) + n(α+ δ) + α− δ + 1 = 0,

is also a solution of (4.2) on R × (0,∞) [16]. As a consequence,

(4.7) σλ(x, t) = λ
δ−α−1

α σ(λx, λ−
1
α t),

and (σλ(x, t), uλ(x, t)) satisfies (4.3) on R × (0,∞) for any λ > 0.
Therefore, the systems (4.2) and (4.3) are invariant under the group of
stretching transformations Tα,δ:

x→ λx, t→ λ−
1
α t, v → λ

δ
α v, u→ λ

α+δ+1
α u,

σ → λ
δ−α−1

α σ, 0 < λ <∞,(4.8)

with α, δ constrained by (4.6).

The system (4.2) admits a special class of solutions describing uniform
shearing

(4.9) v̄(x, t) = x, ū(x, t) = t+ u0.

They correspond to initial data v̄0(x) = x and ū0(x) = u0, where
u0 is an arbitrary positive constant. For the special choice u0 = 0,
(x, t) is a self-similar solution under the transformation Tα,δ with
α = −δ = (m− 1)/2.

Consider now the initial-boundary value problem consisting of (4.2)
on [0, 1] × {t > 0} with boundary conditions (1.9)V and initial con-
ditions (1.5). Suppose that the initial data are smooth, v0(x) ∈
C2+α[0, 1], u0(x) ∈ C1+α[0, 1], for some 0 < α < 1, are compatible
with the boundary data, and satisfy the sign restrictions σ0(x) > 0,
u0(x) > 0, 0 ≤ x ≤ 1. We will refer to this problem as (P)V (including
the assumptions on the initial data).

The existence theory developed in Section 2 implies that (P)V admits
a unique classical solution defined on a maximal interval of existence
[0, 1] × [0, T ∗). Moreover, if T ∗ < +∞, given any compact subset K
of (0,∞) × (0,∞), (σ(x, t), u(x, t)) escapes K as t ↑ T ∗. Also, for
(x, t) ∈ [0, 1] × [0, T ∗),

(4.10) σ(x, t) > 0, ut(x, t) > 0, u(x, t) ≥ u0(x).
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The uniform shearing solution (4.9) is a special solution of (P)V

for initial data (x, u0). Our objective is to study the stability of this
solution. To this end, we use a transformation, motivated by the scaling
properties of (4.2), to obtain a system that admits invariant regions [4].
A similar idea has been independently pursued by Bertsch, Peletier and
Verduyn Lunel [1] for a related system.

We prove

THEOREM 4.1. Suppose m < n. There exists a unique classical
solution (v(x, t), u(x, t)) of (P)V defined on [0, 1] × [0,∞) such that
v, vx, vt, vxx, u, ux and ut are in Cα,α/2(QT ), for any T > 0. Moreover,
if m < min{n, 1}, as t→ ∞,

vx(x, t) = 1 +O(tβ−1)(4.11)
u(x, t) = t+O(tβ)(4.12)

and

(4.13) σ(x, t) = t−m(1 +O(tβ−1)),

uniformly on [0, 1], with β = max{m/n,m} < 1.

PROOF. Introduce the transformations

v(x, t) = V (x, s(t))(4.14)
u(x, t) = (t+ 1)U(x, s(t))(4.15)

σ(x, t) = (t+ 1)−mΣ(x, s(t))(4.16)

with

(4.17) s(t) = ln(t+ 1),

which are motivated by the form of the uniform shearing solutions and
the scaling invariance (4.8). Relations (4.14) (4.16) and (4.1) induce

(4.18) Σ =
1
Um

V n
x .
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Moreover, since (σ(x, t), u(x, t)) satisfies (4.3) and

(4.19) σx(0, t) = σx(1, t) = 0, t > 0,

it follows that (Σ(x, s), U(x, s)) solve the system of reaction-diffusion
equations

(4.20)
Σs = ne(1−m)sU−m

n Σ1− 1
n Σxx −m

Σ
U1−m

n
(Σ

1
n − U1−m

n )

Us = U
m
n (Σ

1
n − U1−m

n ),

subject to boundary conditions

(4.21) Σx(0, s) = Σx(1, s) = 0, s > 0,

and initial conditions

(4.22) Σ(x, 0) = σ0(x), U(x, 0) = u0(x), 0 ≤ x ≤ 1.

If 0 < m/n < 1, the theory of Chueh, Conley and Smoller [4] guaran-
tees that (4.20) admits positively invariant rectangles of arbitrary size
in the first quadrant {(Σ, U) ∈ R2 : Σ > 0, U > 0}. They are centered
around the line Σ = Un−m and look like that in Figure 1. Given initial
data σ0(x) > 0, u0(x) > 0, let U−, U+,Σ− and Σ+ be the defining co-
ordinates of the smallest invariant rectangle containing (σ0(x), u0(x)),
0 ≤ x ≤ 1. Then

(4.23) Σ− ≤ Σ(x, s) ≤ Σ+, U− ≤ U(x, s) ≤ U+.

In turn, (4.15), (4.16), (4.14) and (4.18), in conjunction with (4.23),
yield

U−(t+ 1) ≤ u(x, t) ≤ U+(t+ 1),(4.24)
Σ−(t+ 1)−m ≤ σ(x, t) ≤ Σ+(t+ 1)−m,(4.25)

Σ
1
n−U

m
n− ≤ vx(x, t) ≤ Σ

1
n
+U

m
n

+ .(4.26)

The first implication of (4.24) (4.26) is that, for 0 < m/n < 1, the
functions (σ(x, t), u(x, t)) remain in a compact subset of (0,∞)×(0,∞)
for any finite time. Thus, T ∗ = +∞, that is, solutions (v(x, t), u(x, t))
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0
0

+

= U
n m

U U + U

FIGURE 1. Invariant regions for (4.20).

of (P)V are globally defined. In addition, (4.24) (4.26) provide pre-
liminary information on the time evolution of solutions. They are sup-
plemented below with parabolic-type energy estimates to establish the
stated asymptotic behavior. In what follows, K will stand for a generic
constant that depends only on the data and the parameters m and n.

Our first goal is to estimate the L2-norm of vt. Toward this end,
differentiate (1.1) with respect to t and use (4.1) and (1.2) to obtain

(4.27) vtt =
(

1
um

nvn−1
x vxt −

m

um+1
vn+1

x

)
x

.

We multiply (4.27) by vt and integrate by parts over [0, 1], using (1.9)V ,
to arrive at

(4.28)
1
2
d

dt

∫ 1

0

v2
t dx+ n

∫ 1

0

vn−1
x

um
v2

xt dx = m

∫ 1

0

vn+1
x

um+1
vxt dx.

On account of (4.24), (4.26) and Schwarz’s inequality, (4.28) yields

(4.29)
d

dt

∫ 1

0

v2
t dx+

1
K1

(t+ 1)−m

∫ 1

0

v2
xt dx ≤ K1(t+ 1)−m−2.
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Finally, combining (4.29) with the Poincaré inequality

(4.30) v2
t (x, t) ≤

∫ 1

0

v2
xt(x, t) dx,

we arrive at the differential inequality

(4.31)
d

dt

∫ 1

0

v2
t dx+

1
K1

(t+ 1)−m

∫ 1

0

v2
t dx ≤ K1(t+ 1)−m−2.

Integrating (4.31), we deduce
(4.32)∫ 1

0

v2
t (x, t) dx ≤

(∫ 1

0

v2
t (x, 0) dx

)
exp

{
− 1
K1

∫ t

0

(s+1)−m ds

}

+K1

∫ t

0

(s+ 1)−m−2 exp
{
− 1
K1

∫ t

s

(τ+1)−m dτ

}
ds.

In case m < 1, L’Hopital’s rule implies

(4.33) lim
t→∞

∫ t

0
(s+ 1)−m−2 exp{ 1

K1

∫ s

0
(τ + 1)−m dτ} ds

(t+ 1)−2 exp{ 1
K1

∫ t

0
(τ + 1)−m dτ}

= K1.

In view of (4.33), (4.31) yields, for 0 < m < 1,

(4.34)
∫ 1

0

v2
t (x, t) dx ≤ K2(t+ 1)−2.

By contrast, if m > 1, (4.32) does not provide decay for the L2-norm
of vt. Finally, if m = 1, the decay rate depends on the coefficient K1

in (4.31).

Equations (4.3)2 and (1.1) readily imply
(4.35)

u−
m
n (x, t)ux(x, t) = u

−m
n

0 (x)u0x(x) +
1
n

∫ t

0

σ
1
n−1(x, τ)vt(x, τ) dτ.

Two cases are considered: (i) If n �= 1, then, by virtue of (4.24), (4.25)
and (4.34), (4.35) yields
(4.36)∫ 1

0

|ux(x, t)| dx ≤ K3(t+1)
m
n

+K4(t+1)
m
n

∫ t

0

(τ+1)−
m
n +m

(∫ 1

0

v2
t (x, τ) dx

)
1/2dτ

≤ K5(t+ 1)
m
n +K6(t+ 1)m.
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(ii) If n = 1, then (4.35) reads

(4.37) u−m(x, t)ux(x, t) = u−m
0 (x)u0x(x) + v(x, t) − v0(x).

Using (4.24), together with the maximum principle for (4.2)1, we again
arrive at (4.36). Combining (4.36) with the identities

(4.38)
u(x, t) −

∫ 1

0

u(y, t) dy =
∫ 1

0

∫ x

y

ux(ξ, t) dξ dy

∫ 1

0

u(y, t) dy = t+
∫ 1

0

u0(y) dy

obtains (4.12).

Next, use the identity,

(4.39) nvn−1
x vxx = umvt +

m

u
uxv

n
x ,

in conjunction with (4.26), (4.24), (4.34), and (4.36) to deduce

(4.40)

∫ 1

0

|vxx(x, t)| dx ≤ K7(t+ 1)m

(∫ 1

0

v2
t (x, t) dx

)1/2

+
K8

t+ 1

∫ 1

0

|ux(x, t)| dx

≤ K9(t+ 1)m−1 +K10(t+ 1)
m
n −1.

Then (4.11) follows by virtue of (4.40) and the Poincaré inequality

(4.41) |vx(x, t) − 1| ≤
∫ 1

0

|vxx(x, t)| dx.

Finally, to show (4.13), note that, on account of (4.11), (4.12), as
t→ ∞,

vn
x (x, t) = 1 +O(tβ−1)(4.42)

u−m(x, t) = t−m(1 +O(tβ−1)),(4.43)

where β = max{m/n,m} < 1. Combining (4.1) with (4.42) and (4.43)
gives (4.13).
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To shed some light on the relevance of the constraint m < 1, consider
the case 1 < m < n, and observe that (4.24) implies

(4.44) U−m
+ (t+ 1)−m ≤ u−m(x, t) ≤ U−m

− (t+ 1)−m.

Thus, the diffusion coefficient in (4.2)1 decays like (t+ 1)−m.

Consider the problem

(4.45) vt = a(t)(vn
x )x

on [0, 1]× [0,∞), subject to (1.9)V and v(x, 0) = v0(x) with v0x(x) > 0.
The change of variables

V (x, s(t)) = v(x, t)(4.46)

s(t) =
∫ t

0

a(τ ) dτ(4.47)

suggests that V (x, s) satisfies

(4.48) Vs = (V n
x )x

subject to the same initial and boundary conditions. For a(t) =
(t + 1)−m, we have that s∞ := limt→∞ s(t) is infinite for m ≤ 1, but
finite for m > 1. Also,

(4.49) lim
t→∞ v(x, t) = lim

s→s∞
V (x, s).

If s∞ = +∞, then limt→∞ v(x, t) = x; however, if s∞ < +∞, in
general, this will no longer be true.
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