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ABSTRACT. Maximal regularity in Cα-spaces of linear
Volterra equations in a Banach space X of the form

(∗) u(t) = f(t) +
∫ t

0
a(t − τ)Au(τ) dτ, t ≥ 0,

is studied. The conditions which ensure maximal regularity
involve a parabolicity condition for (∗), but also some regu-
larity conditions on the kernel a(t). As an illustration of the
results, examples from the theory of viscoelasticity and heat
conduction in materials with memory are discussed.

1. Introduction. Let X be a Banach space, A a closed linear
operator in X with dense domain D(A), a ∈ L1

loc (R+), and f ∈
C(J ; X), where J = [0, T ]. We consider the following vector-valued
Volterra equation of scalar type:

(1) u(t) = f(t) +
∫ t

0

a(t − τ )Au(τ ) dτ, t ∈ J.

In the sequel ∗ will be used for the convolution of two functions on
the halfline. Recall that u ∈ C(J ; X) is called a mild solution of (1) if
a ∗ u ∈ C(J ; XA) and

(2) u(t) = f(t) + A(a ∗ u)(t), t ∈ J,

holds; here XA denotes the Banach space D(A) equipped with the
graph norm of A. A strong solution of (1) is a function u ∈ C(J ; XA)
such that (1) holds on J .
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maximal regularity, Hölder-continuity, parabolicity, viscoelasticity

AMS Subject Classifications. Primary: 45N05, 45K05, 44A10; Secondary:
47D05, 47G05, 76A10

Copyright c©1991 Rocky Mountain Mathematics Consortium

63



64 J. PRÜSS

In this note we are concerned with maximal regularity of type Cα

for (1); by this we mean the property that, for any f ∈ Cα
0 (J ; X),

α ∈ (0, 1), there is a unique mild solution u ∈ Cα
0 (J ; X) of (1).

This property has turned out to be very useful in the study of linear
and also nonlinear Cauchy problems of parabolic type. For Volterra
equations of the form (1) it has been obtained by Da Prato and Iannelli
[5], Da Prato, Iannelli and Sinestrari [6], and it has been applied
successfully to nonlinear Volterra equations of parabolic type. We are
going to describe their main result on maximal regularity of the type
Cα for (1) briefly.

Suppose a is Laplace transformable (i.e,
∫ ∞
0

|a(t)|e−ωt dt < ∞ for
some ω ≥ 0), and suppose the Laplace transform â(λ) of a(t) admits
holomorphic extension to some sector

Σθ = {λ ∈ C : |arg (λ − ω)| < θ},
with θ > π/2, and satisfies |λγ â(λ)| ≤ C on Σθ for some γ > 0.
Suppose, moreover, that â(λ) ∈ Σφ ⊂ ρ(A) on Σθ, where ρ(A) denotes
the resolvent set of A, and that the estimate

(3) |(I − μA)−1| ≤ M, μ ∈ Σφ,

is satisfied for some constant M ≥ 1. Then (1) possesses the maximal
regularity property of type Cα for any α ∈ (0, 1) and each interval
J = [0, T ].

As an example where this result applies, we mention the case where
a(t) is completely monotonic on (0,∞) and A generates a bounded
analytic semigroup in X.

Here we show by quite different methods that the assumptions of
Da Prato and Iannelli mentioned above can be relaxed to some extent.
We will only require the parabolicity condition (3) with θ = π/2
and a certain regularity of the kernel a(t), namely a(t) is assumed
to be 2-regular, see Section 4. For example, if a(t) is nonnegative,
nonincreasing and convex, then a(t) is 1-regular, and if, in addition,
−ȧ(t) is convex, a(t) is 2-regular. This will follow from the Shea-
Wainger estimates for such kernels; cp. Shea and Wainger [10] and
also Carr and Hannsgen [2].

It should also be mentioned that the results of this paper admit
extensions to certain Volterra equations with operator-valued kernels by
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means of perturbation arguments. Assume (1) satisfies the assumptions
of Theorem 3 in Section 4; in particular, (1) admits a resolvent and has
the maximal regularity property of type Cα. Then

u(t) = f(t) +
∫ t

0

a(t − s)
[
Au(s) +

∫ s

0

dB(τ )u(s − τ )
]

ds, t ∈ J,

enjoys the same properties, provided B : J → B(XA, X) is of bounded
variation and B(0) = B(0+). The proof of this has been given in Prüss
[7] for the case a(t) = 1; it carries over quite directly to the general
case; however, we shall not go into this here.

Our plan for this note is as follows. In Section 2 we prepare some
Laplace transform inversion results which are the basis of our study of
maximal regularity. Section 3 contains the definition of k-regular and k-
monotone kernels, and it will be shown that k-monotonicity of a kernel
a(t) implies its (k − 1)-regularity; also kernels admitting holomorphic
extensions to a sector Σθ, θ > π/2, as described above are k-regular for
any k ≥ 0. Section 4 contains the main results. Somewhat simplified,
we show that boundedness of S(t), tS′(t), t2S′′(t) on finite intervals
implies maximal regularity of type Cα; these conditions, in turn, follow
from 2-regularity of a(t) and from the parabolic assumption, i.e., (3).
Some examples and applications to viscoelasticity are discussed in
Section 5.

2. Laplace transforms of vector Lipschitz functions. Let us
recall the following extension of a theorem of Widder [11] to the vector-
valued case which is due to Arendt [1].

PROPOSITION 1. A function g ∈ C∞((0,∞); X) has the representa-
tion

(4) g(λ) = λ

∫ ∞

0

e−λtf(t) dt, λ > 0,

for some function f ∈ C(R+; X) with f(0) = 0 and such that

|f(t) − f(s)| ≤ M |t − s|, for all t, s ≥ 0,

if and only if

(5) |λn+1g(n)(λ)| ≤ Mn!, for all λ > 0, n ∈ N0.
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Note that (5) involves only real values of λ, but all derivatives of g.
However, expanding ĝ(λ) into Taylor series it is not difficult to show
that (5) implies already that g(λ) is holomorphic in the open right half
plane C+ = {λ ∈ C : Reλ > 0} (complexify X in the usual way if X
is originally a real Banach space) and that

(5′) |(Reλ)n+1g(n)(λ)| ≤ Mn!, for all Re λ > 0, n ∈ N0

is satisfied. Verification of (5) for applications, e.g., to Volterra equa-
tions, is, in general, difficult; however, it is possible in some cases, cf.
Prüss [8].

For the case of parabolic Volterra equations we typically encounter a
decay of g(λ) of the type

(6) |g(λ)| ≤ M/|λ|, Re λ > 0.

We are not able to prove that (6) implies (5); however, we have

PROPOSITION 2. Suppose g : C+ → X is holomorphic and satisfies
(6) as well as

(7) |g′(λ)| ≤ M/|λ|2, Re λ > 0.

Then (5) holds and there is a Lipschitz function f ∈ C(R+; X), with
f(0) = 0 representing g(λ) by (4).

PROOF. Obviously, (5) holds for n = 0, 1 by (6) and (7). For n > 1
we use the Cauchy integral representation

g′(λ) = 1/(2πi)
∫ ε+i∞

ε−i∞
g′(z)(λ − z)−1 dz, λ > ε.

Differentiating (n − 1)-times this formula yields

g(n)(λ) = (−1)(n−1)(n − 1)!(2πi)−1

∫ ε+i∞

ε−i∞
g′(z)(λ − z)−n dz, λ > ε.
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By means of estimate (7) we obtain

|g(n)(λ)| ≤ (n − 1)!(M/2π)
∫ ∞

−∞
|ε + iρ|−2|λ − ε − iρ|−n dρ

≤ (n − 1)!(M/2π)(λ − ε)−n

∫ ∞

−∞
(ε2 + ρ2)−1 dρ

≤ (n − 1)!(M/2π)(λ − ε)−n(π/ε).

Choosing ε = λ/n the latter gives

|g(n)(λ)| ≤ n!(M/2)λ−(n+1)(1 − 1/n)−n ≤ n!(2M)λ−(n+1),

thereby proving (5) for all n ∈ N0.

If only (6) is satisfied we can prove the following weaker result which
shall, nevertheless, be useful as well.

PROPOSITION 3. Suppose g : C+ → X is holomorphic and satisfies

(6) |g(λ)| ≤ M/|λ|, Reλ > 0.

Then there is an f ∈ C(R+; X) with f(0) = 0 such that

(4) g(λ) = λf̂(λ), Reλ > 0;

moreover, there is an L > 0 such that

(8) |f(t) − f(s)| ≤ L(t − s)[1 + log(t/(t − s))], for all t > s ≥ 0.

PROOF. We define

(9) f(t) = (2πi)−1

∫
Γε,r

g(λ)eλt dλ/λ, t ≥ 0,

where Γε,r denotes the contour ε+i(−∞, r), ε+rei[−π/2,π/2], ε+i(r,∞),
where ε, r > 0. Observe that the integral is absolutely convergent, by
virtue of (6). Clearly, the definition of f(t) is independent of ε, r > 0,
and contracting the contour in the right half plane it follows that
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f(0) = 0, by Cauchy’s theorem. Fix t > s ≥ 0 and estimate by means
of (6) to the result

|f(t) − f(s)| ≤ (M/2π)
∫

Γε,r

|eλt − eλs||dλ|/|λ|2.

Letting ε → 0, this yields

|f(t) − f(s)| ≤ (M/π)

[∫ ∞

r

|eiρt − eiρs| dρ/ρ2

+
∫ π/2

0

|erteiφ − erseiφ | dφ/r

]

≤ (M/π)
[
2

∫ ∞

r

| sin(ρ(t − s)/2)| dρ/ρ2 + ert(t − s)π/2
]

≤ (M/2)(t − s)

[
2π−1

∫ ∞

r(t−s)/2

| sin τ | dτ/τ2 + ert

]
.

Choosing r = 2/t we obtain

|f(t) − f(s)| ≤ (M/2)(t − s)

[
π−1

∫ ∞

1−s/t

| sin τ | dτ/τ2 + e2

]

≤ L(t − s)(1 + log(t/(t − s))],
what was to be proved.

Finally, we have, by means of Cauchy’s theorem and Fubini’s theorem,

λf̂(λ) = λ

∫ ∞

0

e−λtf(t) dt = λ(2πi)−1

∫ ∞

0

∫
Γε,r

e−λteμtg(μ) dμ/μ dt

= (2πi)−1

∫
Γε,r

g(μ)λ
(∫ ∞

0

e−λteμt dt

)
dμ/μ

= (2πi)−1

∫
Γε,r

g(μ)λ(λ − μ)−1 dμ/μ

= (2πi)−1

∫
Γε,r

g(μ)(1 + μ/(λ − μ)) dμ/μ

= (2πi)−1

∫
Γε,r

g(μ)(λ − μ)−1 dμ

= g(λ) for all Reλ > r + ε;
hence, (4) holds on C+ by holomorphy.
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Combining Propositions 2 and 3 we obtain the following result on
inversion of the vector-valued Laplace transform

THEOREM 1. Suppose g : C+ → X is holomorphic and satisfies

|g(n)(λ)| ≤ M |λ|−(n+1) for Reλ > 0, 0 ≤ n ≤ k + 1,

where k ≥ 0. Then there is a function f ∈ Ck((0,∞); X) such that
g(λ) = f̂(λ) for Re λ > 0. Moreover, f satisfies

|tnf (n)(t)| ≤ C for t > 0, 0 ≤ n ≤ k,

and

|tk+1f (k)(t)−sk+1f (k)(s)| ≤ C|t−s|[1+log(t/(t−s))], 0 ≤ s < t < ∞.

PROOF. For n ≤ k + 1 we define gn(λ) = λng(n)(λ); then, for n ≤ k,
gn(λ) satisfies the assumptions of Proposition 2. Hence, there are
functions fn ∈ C(R+; X) with fn(0) = 0 such that gn(λ) = λf̂n(λ)
and there is an L > 0 such that

|fn(t) − fn(s)| ≤ L|t − s| for all t, s ∈ R+, 0 ≤ n ≤ k.

Proposition 3 yields fk+1 ∈ C(R+, X) with fk+1(0) = 0 such that
gk+1(λ) = λf̂k+1(λ) and

|fk+1(t) − fk+1(s)| ≤ L(t − s)(1 + log(t/(t − s))), 0 ≤ s < t < ∞.

Since

g′n(λ) = nλn−1g(n)(λ) + λng(n+1)(λ) = (ngn(λ) + gn+1(λ))/λ

for all Reλ > 0 and 0 ≤ n ≤ k, we obtain

f̂ ′
n(λ) = ((n − 1)f̂n(λ) + f̂n+1(λ))/λ,

which implies

−tfn(t) = (n − 1)
∫ t

0

fn(τ ) dτ +
∫ t

0

fn+1(τ ) dτ, t ≥ 0, 0 ≤ n ≤ k,
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by uniqueness of the Laplace transform. This identity shows fn ∈
C1((0,∞); X) and

−tf ′
n(t) = nfn(t) + fn+1(t), t > 0, 0 ≤ n ≤ k.

Let f(t) = f ′
0(t); then |f(t)| = |f1(t)|/t ≤ L; hence,

f̂(λ) = λf̂0(λ) = g0(λ) = g(λ), Reλ > 0,

and fn(t) = (−1)n(tnf(t))(n−1) as is easily seen by induction. The
assertion now follows from the properties of fn(t).

It would be interesting to know whether the logarithmic factor in (8)
can be removed even in the one-dimensional case X = C.

3. k-regular kernels. Suppose a ∈ L1
loc (R+) is of subexponential

growth, i.e.,

(10)
∫ ∞

0

|a(t)|e−εt dt < ∞ for each ε > 0.

The following class of kernels will be of central importance in the next
section.

Definition 1. Let a ∈ L1
loc (R+) be of subexponential growth and

k ∈ N. a(t) is called k-regular if there is a constant c > 0 such that

(11) |λnâ(n)(λ)| ≤ cn!|â(λ)| for Re λ > 0 and 0 ≤ n ≤ k.

Observe that any k-regular kernel (k ≥ 1) has the property that â(λ)
has no zeros in the open right half plane. Convolutions of k-regular
kernels are again k-regular; in particular, integrals of such kernels again
have this property. On the other hand, sums, in general, do not have
this property. It is not difficult to verify that (11) is equivalent to

(11′) |(λnâ(λ))(n)| ≤ c′n!|â(λ)|, for Re λ > 0, 1 ≤ n ≤ k,
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as well as to

(11′′)
â(λ) 	= 0, for Reλ > 0,

|λn(log â(λ))(n)| ≤ c′′n!, for Re λ > 0, 1 ≤ n ≤ k.

It has been shown in Clèment and Prüss [4] that every completely
monotonic a ∈ L1

loc (R+) is k-regular for any k ∈ N; in fact, c = 1 in
(11) will do. If a(t) is real-valued and 1-regular, then |arg â(λ)| ≤ πc/2
for Re λ > 0; use the identity

arg â(reiφ) = Im
∫ φ

0

[â′(reit)/â(reit)]ireit dt

for a proof. The converse of this is not true, as the example a(t) = 1
for t ∈ (0, 1], a(t) = 0 for t > 1 shows; in fact, then â(λ) = (1−e−λ)/λ.
Hence, −λâ′(λ)/â(λ) = 1 − λe−λ/(1 − e−λ), which is not bounded in
the right half plane.

LEMMA 1. Suppose the function g : C+ → C is holomorphic and
satisfies g(λ) 	= 0 and |arg g(λ)| ≤ Θ for Reλ > 0. Then, for each
n ∈ N, there is a constant cn > 0 such that

(12) (Reλ)n|g(n)(λ)| ≤ cn(Θ/π)|g(λ)| for Re λ > 0.

The constants cn depend only on n.

PROOF. Let u(λ) = arg g(λ); the Poisson formula for the half plane
and its analytic completion yield with some constant α

log g(λ) = α + (2π)−1

∫ ∞

−∞
[(1 − iρλ)/(λ − iρ)]u(iρ) dρ/(1 + ρ2);

hence, differentiation gives

(log g(λ))(n) = (n!/2π)
∫ ∞

−∞
(λ − iρ)−(n+1)u(iρ) dρ, Re λ > 0.
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A direct estimation leads to

|(log g(λ))(n)| ≤ (n!/π)(Reλ)−nΘ
∫ ∞

−∞
(1 + ρ2)−(n+1)/2 dρ

from which (12) follows.

Let Σφ = {z ∈ C : |arg z| < φ}. With this notation Lemma 1
yields a large class of kernels a(t) which are k-regular for any k ∈ N,
including the class used by Da Prato and Iannelli [5] mentioned in the
introduction.

PROPOSITION 4. Suppose a ∈ L1
loc (R+) is such that â(λ) admits

analytic extension to the sector Σφ, where φ > π/2, such that â(λ) 	= 0
and |arg â(λ)| ≤ θ for all λ ∈ Σφ. Then a is k-regular for every k ∈ N.

PROOF. We let g : C+ → C be defined by g(z) = â(zp), where
p = 2φ/π. Then the assumptions of Lemma 1 are fulfilled; hence, (12)
holds. This implies, with â(λ) = g(λα), α = 1/p,

λnâ(n)(λ) =
n∑

k=1

bn
kg(k)(λα)λαk, Reλ > 0, n ∈ N,

for some constants bn
k . Therefore

|λnâ(n)(λ)| ≤
n∑

k=1

|bn
k ||λαkg(k)(λα)|

≤ (θ/π)|â(λ)|
n∑

k=1

ck|bn
k |(|λα|/Re λα)k ≤ C(n)|â(λ)|,

for Reλ > 0, since Re λα = |λ|α cos(α arg λ) ≥ |λ|α cos(απ/2) and
α < 1.

We have seen above that kernels of positive type are, in general, not
even 1-regular. However, we can prove that nonnegative, nonincreasing,
convex kernels do have this property. More generally, let us introduce
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Definition 2. Let a ∈ L1
loc (R+), k ≥ 2. Then a is called

k-monotone if a ∈ Ck−2(0,∞), (−1)na(n)(t) ≥ 0 for all t > 0,
0 ≤ n ≤ k − 2, and (−1)k−2a(k−2)(t) is nonincreasing and convex.

Thus, by this definition, a 2-monotone kernel is nonnegative, nonin-
creasing and convex. We have the following

PROPOSITION 5. Suppose a ∈ L1
loc (R+) is k-monotone for some

k ≥ 2. Then a is (k − 1)-regular.

PROOF. Suppose a ∈ L1
loc (R+) is k-monotone for some k ≥ 2.

Since 2-monotone kernels are of positive type, Lemma 1 yields, with
λ = σ + iρ, σ > 0, ρ ∈ R,

σn|â(n)(λ)| ≤ Cn|â(λ)|, Reλ > 0, n ∈ N.

Therefore, it is sufficient to prove

|ρ|n|â(n)(λ)| ≤ Cn|â(λ)|, Re λ > 0, 1 ≤ n ≤ k − 1.

Let aσ(t) = a(t)e−σt, t, σ > 0; then aσ is, again, k-monotone. So it
remains to show

ρn|â(n)
σ (iρ)| ≤ Cn|âσ(iρ)|, σ, ρ > 0, 1 ≤ n ≤ k − 1,

since a(t) is real-valued. The constants Cn will be independent of the
particular function a and of σ as well, and so we drop the index σ in the
sequel and assume also that a ∈ L1(R+). To simplify further, we recall
the Shea-Wainger estimate for 2-monotone functions (cf. Shea-Wainger
[10]),

|â(iρ)| ≥ (2−3/2)
∫ 1/ρ

0

a(τ ) dτ, ρ > 0.

Thus, if we can prove the inequality

(13) |((iρ)k−1â(k−1)(iρ))| ≤ C

∫ 1/ρ

0

a(τ ) dτ, ρ > 0,

for a given k-monotone kernel a ∈ L1(R+), the result will follow.
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After these preparations we are going to prove (13). It is not difficult
to prove the following identity inductively via integration by parts:

(14)

∫ t

0

a(τ ) dτ =
k−1∑
j=0

(−1)ja(j)(t)tj+1/(j + 1)! +
∫ t

0

(−1)kτk/k! da(k−1)(τ ),

t > 0.

In particular, a(j)(t)tj+1 → 0 as t → 0 for each j ≤ k − 1, and the
integral on the right-hand side of this equation is absolutely convergent.
Similarly, one also obtains the formula

(15)

∫ ∞

t

(−1)kτk−1/(k − 1)! da(k−1)(τ ) =
k−1∑
j=0

(−1)ja(j)(t)tj/j!, t > 0;

in particular, the integral on the left-hand side converges absolutely,
and a(j)(t)tj → 0 as t → ∞ for each j ≤ k − 1. Also, an integration by
parts yields

∫ ∞

0

da(k−1)(t)
(k−1∑

j=0

(−iρt)j/j! − e−iρt

)
= (iρ)kâ(iρ), ρ ∈ R;

hence,

−((iρ)kâ(iρ))(k−1) =
∫ ∞

0

da(k−1)(t)(−1)ktk−1(1 − e−iρt), ρ > 0.

Since

|1 − e−ix| ≤ 2, for |x| ≥ 1, and |1 − e−ix| ≤ |x| for |x| ≤ 1,
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we obtain, by (14), (15) and k-monotonicity of a(t),

|[(iρ)kâ(iρ)](k−1)| ≤ ρ

∫ 1/ρ

0

da(k−1)(t)(−t)k + 2
∫ ∞

1/ρ

da(k−1)(−1)ktk−1

≤ k!ρ
∫ 1/ρ

0

a(τ ) dτ

+ 2
k−1∑
j=0

(−1)ja(j)(1/ρ)ρ−j(k − 1)!/j!

≤ 3k!ρ
∫ 1/ρ

0

a(τ ) dτ.

From this inequality (13) follows easily by induction.

4. Resolvents and maximal regularity. Recall that a family
{S(t)}t≥0 ⊂ B(X), the space of bounded linear operators in a Banach
space X, is called a resolvent for (1) if the following conditions are
satisfied:

(S1) S(t) is strongly continuous on R+, i.e., for each x ∈ X, the
function t 
→ S(t)x is continuous on R+.

(S2) S(t) commutes with A, i.e., S(t)D(A) ⊂ D(A) for all t ≥ 0, and
AS(t)x = S(t)Ax for all x ∈ D(A), t ≥ 0.

(S3) The resolvent equation is satisfied, i.e., for each x ∈ D(A),

(16) S(t)x = x +
∫ t

0

a(t − τ )AS(τ )x dτ, t ≥ 0.

Once a resolvent of (1) is known to exist, the mild solutions u(t) are
given by the variation of parameters formula

(17) u(t) = d/dt

(∫ t

0

S(t − τ )f(τ ) dτ

)
, t ∈ J ;

in particular, S ∗f ∈ C1(J ; X) if a mild solution of (1) exists. Maximal
regularity of type Cα will be based on (17); note that, in case S is
differentiable, (17) can be rewritten as

(18) u(t) = f(t) +
∫ t

0

S′(t − τ )f(τ ) dτ, t ∈ J.
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In general, a resolvent of (1) need not be differentiable, and even if it
is, S′(t) will have a strong singularity at t = 0 unless A is bounded,
even if a(t) is smooth. However, as in the case of an analytic semigroup
S(t) = eAt, a strong singularity of S(t) can be compensated by Hölder-
continuity of the inhomogeneity f(t).

Definition 3. Suppose a ∈ L1
loc (R+) satisfies

∫ ∞
0

|a(t)|e−ωt dt < ∞
for all ω ≥ ω0. Equation (1) is called parabolic if there is an ω ≥ ω0

such that 1/â(λ) ∈ ρ(A) for all Reλ > ω and

(19) |(I − â(λ)A)−1| ≤ M, Re λ > ω,

holds for some constant M ≥ 1.

Observe that Definition 3 is a natural extension of parabolic Cauchy
problems, i.e., a(t) ≡ 1 and A generates an analytic C0-semigroup.

It can be shown that every parabolic Volterra equation (1) admits an
Lp-resolvent S ∈ Lp

loc (R+;B(X)) which satisfies (S2) and (S3) almost
everywhere. However, it is not known whether this Lp-resolvent also
has the strong continuity property (S1), unless the kernel a(t) has extra
smoothness properties. Theorem 1 yields the following result.

THEOREM 2. Let X be a Banach space, A a closed linear densely
defined operator in X, a ∈ L1

loc (R+), and assume

(H1) aω(t) = a(t)e−ωt is k-regular for some k ∈ N, ω ∈ R.

(H2) Equation (1) is parabolic.

Then there is a resolvent S ∈ Ck−1((0,∞);B(X)) for (1); moreover,
for each T > 0 there is a constant MT > 0 such that

(20) |tnS(n)(t)| ≤ MT for all t ∈ [0, T ], n ≤ k − 1,

and

|tkS(k−1)(t) − skS(k−1)(s)| ≤ MT (t − s)[1 + log(t/(t − s))],(21)
0 ≤ s < t ≤ T.
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PROOF. Since we are only interested in the local behavior of the
Volterra equation (1), we may assume that ω = 0 in (H1) as well as in
the definition of parabolicity. Define

H(λ) = (I − â(λ)A)−1/λ, Re λ > 0;

by (H2) we then have |H(λ)| ≤ M/|λ| for Re λ > 0. By (H1) and by

H ′(λ) = −H(λ)/λ + (â′(λ)/â(λ))â(λ)A(I − â(λ)A)−1H(λ),

we obtain |H ′(λ)| ≤ M1/|λ|2, Re λ > 0, for some constant M1.
Proceeding this way it follows inductively that there is a constant C > 0
such that

|H(n)(λ)| ≤ C|λ|−(n+1) for Re λ > 0, n ≤ k.

Thus, Theorem 1 yields S ∈ Ck−1((0,∞);B(X)) satisfying (20) and
(21), such that

H(λ) = Ŝ(λ) for Re λ > 0

holds. It remains to show that S(t) is the resolvent for (1). For this
purpose let x ∈ D(A). Then the identity

H(λ)x = x/λ + â(λ)H(λ)Ax

implies
S(t)x = x + (a ∗ S)(t)Ax, t ≥ 0;

hence, S(t)x is continuous on R+ for each x ∈ D(A) since S(t) is
bounded on each interval J = [0, T ], and so S(t) satisfies (S1) by the
Banach-Steinhaus Theorem. Since H(λ) commutes with A, S(t) does as
well; therefore, (S2) and (S3) are also verified and S(t) is the resolvent
for (1).

Having established the existence of the resolvent for (1) with the
properties (20) and (21), we now prove the maximal regularity result
for (1). The following standard notation will be employed: for α ∈ (0, 1)
and J = [0, T ], we let

Cα(J ; X) = {u ∈ C(J ; X); |u|α := sup{|u(t) − u(s)|(t − s)−α :
0 ≤ s < t ≤ T} < ∞}
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and
Cα

0 (J ; X) = {u ∈ Cα(J ; X) ; u(0) = 0}.

THEOREM 3. Suppose S ∈ C1((0,∞); X) is a resolvent for (1), such
that |S(t)| + |tS′(t)| ≤ MT for t ∈ J = [0, T ], and

(22) |t2S′(t)−s2S′(s)| ≤ MT (t−s)[1+log(t/(t−s))], 0 ≤ s < t ≤ T.

Let α ∈ (0, 1). Then, for every f ∈ Cα(J ; X), the function u(t)
given by (18) is well-defined and a mild solution of (1). Moreover, if
f ∈ Cα

0 (J ; X), then u ∈ Cα
0 (J ; X), i.e., (1) has the maximal regularity

property of type Cα.

PROOF. Let f ∈ Cα(J ; X); rewrite (18) according to

(23)

u(t) = S(t)f(0)+S(t)(f(t)−f(0))+
∫ t

0

S′(t−τ )(f(τ )−f(t)) dτ, t ∈ J.

(23) shows that u(t) is well-defined on J and that in the sequel we may
assume f(0) = 0. Once we know that u(t) is also continuous on J ,
it follows by standard arguments involving the resolvent equation that
u is a mild solution of (1). Thus, it remains to show u ∈ Cα

0 (J ; X).
For this purpose let t, s ∈ J , h = t − s > 0 and use (23) to rewrite
u(t) − u(s) as

u(t) − u(s) = (S(t) − S(s))f(s) + S(h)(f(t)− f(s))

+
∫ t

s

S′(t − τ )(f(τ )− f(t)) dτ

+
∫ s

0

(S′(τ + h) − S′(τ ))(f(s− τ ) − f(s)) dτ

= I1 + I2 + I3 + I4.

The single terms Ij are estimated by

|I1| ≤
∣∣∣∣
∫ t

s

S′(τ ) dτ

∣∣∣∣ |f(s)| ≤ MT log(t/s)|f |αsα ≤ MT |f |αhα/α,
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where we used the elementary inequality

log(1 + ρ) ≤ ρα/α for all ρ > 0, α ∈ (0, 1),

as well as f(0) = 0. Then

|I2| ≤ |S(h)||f(t) − f(s)| ≤ MT |f |αhα,

|I3| ≤
∫ t

s

|S′(t − τ )||f(τ )− f(t)| dτ ≤ MT |f |α
∫ t

s

(t − τ )(α−1) dτ

= MT |f |αhα/α.

To estimate I4 observe that

|S′(t + h) − S′(t)| ≤ 3MT (h/t)(t + h)−1(1 + log(1 + t/h)), t, h > 0,

which follows from (22). Hence

|I4| ≤
∫ s

0

|S′(τ + h) − S′(τ )||f(s − τ ) − f(s)| dτ

= 3MT h|f |α
∫ s

0

τα−1(h + τ )−1(1 + log(1 + τ/h)) dτ

= 3MT hα|f |α
∫ s/h

0

τα−1(1 + τ )−1(1 + log(1 + τ )) dτ

≤ 3MT hα|f |α
∫ ∞

0

τα−1(1 + τ )−1(1 + log(1 + τ )) dτ

= 3MT hα|f |αCα.

Collecting terms, we obtain

|u|α ≤ MT |f |α[2/α + 1 + 3Cα];

in particular, u ∈ Cα(J ; X); u(0) = 0 is trivial from (23) since f(0) = 0.

5. Examples and applications. Combining Theorems 2 and 3,
we obtain the following corollary which extends the results of Da Prato
and Iannelli [5] and Da Prato, Iannelli and Sinestrari [6].
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COROLLARY 1. Suppose A generates a uniformly bounded analytic
semigroup in X, and let a(t) be nonnegative, nonincreasing, and con-
vex. Then (1) admits a resolvent S(t) which, in addition, belongs to
Cα

loc ((0,∞);B(X)) for every α ∈ (0, 1). If, in addition, −ȧ(t) is also
convex, then S(t) is of class C1+α

loc ((0,∞);B(X)) for every α ∈ (0, 1),
and (1) has the maximal regularity property of type Cα.

It is also interesting to compare Corollary 1 with the result on
existence of the resolvent for (1) obtained by Clèment and Nohel [3].
They prove existence of S(t) assuming that A generates a bounded
C0-semigroup and the kernel a(t) is completely positive. Even in
the parabolic case when the semigroup is analytic, their result is of
a different nature than Corollary 1 since completely positive kernels
need not be 1-regular, but also, for every k ≥ 2, there are k-monotone
kernels which are not completely positive.

For the proof of Corollary 1, we only have to observe that, under these
assumptions, equation (1) is parabolic. This follows from the facts that
Re â(λ) > 0 for all Re λ > 0 and that ρ(A) ⊃ C+ and |(I−μA)−1| ≤ M
holds for Reμ > 0. Application of Proposition 5 and Theorems 2 and
3 then yield the result.

EXAMPLE 1. We want to apply Corollary 1 to the problem

(24)
{

u(t, x) =
∫ t

0
a(t − τ )Δu(τ, x) dτ + f(t, x), t ∈ J, x ∈ Ω,

u(t, x) = 0, t ∈ J, x ∈ ∂Ω,

where Ω ⊂ RN is an open domain with compact smooth boundary,
and Δ denotes the Laplacian on RN . It is well-known that the real-
ization Ap (or A0) of Δ with Dirichlet boundary conditions generates
a bounded analytic C0-semigroup in Lp(Ω), 1 ≤ p < ∞, (or in C0(Ω)).
Thus, if a(t) ≥ 0 is nonincreasing and convex, then (24) admits a resol-
vent; if −ȧ(t) is also convex, then (24) has the maximal regularity prop-
erty for Lp(Ω) and for C0(Ω). Then, for any f ∈ Cα

0 (J ; Lp(Ω)), there
is a unique mild solution u of (24), which means u ∈ Cα

0 (J ; Lp(Ω)) and

a ∗ u ∈ Cα
0 (J ; W 2,p(Ω) ∩

◦
W 1,p(Ω)) since D(Ap) = W 2,p(Ω) ∩

◦
W 1,p(Ω),

1 < p < ∞. If, in addition, f = a ∗ g with g ∈ Cα
0 (J ; Lp(Ω)), then even

u ∈ Cα
0 (J ; W 2,p(Ω) ∩

◦
W 1,p(Ω).
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As another application of Theorems 2 and 3, we consider kernels of
the form

(25) a(t) = a0 +
∫ t

0

a1(τ ) dτ, t > 0,

where a0 ≥ 0, a1(t) ≥ 0 is nonincreasing and convex. The operator A
is assumed to generate a C0-semigroup which has an analytic extension
to C+ and is bounded on each sector Σθ, θ < π/2. This implies
σ(A) ⊂ (−∞, 0], as well as the estimate

|(I − μA)−1| ≤ Mφ, for μ ∈ Σφ,

for all φ < π. This is still not enough to ensure the parabolicity of (1);
however, in addition, we need, in case a0 = 0,

(26) |arg â1(λ)| ≤ θ < π/2, Re λ > 0.

The following corollary extends results of Carr and Hannsgen [2] and
of Prüss [8] in the parabolic case.

COROLLARY 2. Suppose A generates a C0-semigroup, analytic on
C+, which is uniformly bounded on each sector Σθ, θ < π/2, let a(t) be
of the form (25) and assume that the parabolicity condition (26) holds
in case a0 = 0. Then (1) admits a resolvent S(t) which, in addition,
belongs to Cα

loc ((0,∞);B(X)), for every α ∈ (0, 1). If −ȧ1(t) is also
convex, then S ∈ C1+α

loc ((0,∞);B(X)) for every α ∈ (0, 1), and (1)
possesses the maximal regularity property of type Cα.

PROOF. It remains to show that a(t) is 1-regular (respectively, 2-
regular). We have

−λâ′(λ)/â(λ) = (a0/λ − λâ′
1(λ)/(a0/λ + â1(λ))

= g(λ) + (1 − g(λ))(−λâ′
1(λ)/â1(λ)),

where
g(λ) = a0(a0 + λâ1(λ))−1.

Since a1(t) is of positive type and −Im λ · Im â1(λ) ≥ 0 for Re λ > 0,
we obtain |g(λ)| ≤ 1; therefore, a(t) is 1-regular since a1(t) has this
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property, according to Proposition 5. The proof of 2-regularity is
similar, taking into account that a1(t) is 2-regular if −ȧ1(t) is convex.

EXAMPLE 2. Consider a domain Ω ⊂ RN with compact smooth
boundary ∂Ω which is filled by a linear viscoelastic incompressible fluid.
The velocity field u(t, x) of this fluid is then governed by

(27)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(t, x) = a0Δu(t, x) +
∫ t

0
a1(t − τ )Δu(τ, x) dτ − grad p(t, x)

+ g(t, x), t ∈ J, x ∈ Ω,

div u(t, x) = 0, t ∈ J, x ∈ Ω,

u(t, x) = 0, t ∈ J, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω

where p(t, x) denotes the hydrostatic pressure, u0(x) the initial velocity
field and g(t, x) an external force field. The kernel a1(t) is always
nonnegative, nonincreasing and of positive type, and a0 ≥ 0. For more
on the physical background of (27) we refer to Renardy, Hrusa and
Nohel [9].

To apply Corollary 2, we put X = LP
σ (Ω;RN ), where the subscript

σ means divergence-free and let Ap = PΔ denote the Stokes operator,
where P denotes the Helmholtz-projection in Lp(Ω;RN ) which projects
onto X along the gradient fields. Applying P to (27) and integrating
with respect to time, (27) is equivalent to (1) with f(t) = u0 +∫ t

0
g(τ ) dτ . It is known that, for 1 < p < ∞, Ap generates a C0-

semigroup in X which admits analytic extension to C+ and is uniformly
bounded on each sector Σθ, θ < π/2; for p = 2, this is a consequence
of the fact that A2 is negative semi-definite. Thus, if the parabolic
condition (26) holds and a1(t) is also convex, a resolvent S(t) for (1)
exists. Consequently, for every u0 ∈ X, g ∈ C(J ; X), there is a mild
solution u(t) for (1) which satisfies u ∈ C(J ; X), a ∗ u ∈ C(J ; D(Ap)).
If, in addition, −ȧ1(t) is convex, u0 ∈ D(Ap) and g ∈ Cα(J ; X),
then u ∈ C1(J ; X) and a0u + a1 ∗ u ∈ C(J ; D(Ap)); hence, even
u ∈ C(J ; D(Ap)) if a0 > 0. If even g = a1 ∗ h (in case a0 = 0),
then one also has u ∈ C(J ; D(Ap)), i.e., u is a strong solution of (27).
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SWITZERLAND
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