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A SLEWING BEAM PROBLEM

WOLFGANG DESCH, RICHARD K. MILLER, AND STEVEN B. SKAAR

ABSTRACT. We consider feedback stabilization of a sim-
ple mechanical system involving a flexible viscoelastic beam.
Though we use linear constitutive equations, nonlinearities
come in by asymmetry of the geometric configuration of the
system. The nonlinearities are handled as Lipschitz perturba-
tions of a linear C0-semigroup. Using Lyapunov techniques,
we prove that solutions of the purely elastic stabilized system
converge to zero weakly; if viscoelastic damping is present,
the convergence is exponential in energy norm.

1. Introduction. In recent papers we have considered the model of
a satellite set up in [8]. The system consists of a rigid hub with four
identical flexible radial beams rigidly attached. The system is free to
rotate and translate in a plane orthogonal to the axis of the hub. The
beams are described by the Euler-Bernoulli model, based on a linearly
viscoelastic constitutive equation for their material. A control torque
can be applied on the hub in order to control its angular position. If
we assume that all beams vibrate in phase, the model equations add
up to a linear system of the type treated in [3] and [4]. In these papers
it is proved that linear feedback from angular position to torque can
force the potential energy stored in deflection and the part of kinetic
energy contained in rotation to decay to zero exponentially.

In the model described above the deformation of the flexible parts
has no bearing on the location of the center of gravity, as the beams
are arranged symmetrically around the axis, and their vibrations are
assumed to be synchronized. The latter hypothesis is, of course, some-
what unrealistic. The former assumption imposes a severe restriction
on the system’s generality. We consider, therefore, the case of a me-
chanical system, where this symmetry is broken. The simplest one, and
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the only one treated here, is obtained when we leave only one beam
attached to the hub.

Below, we set up the equations for this system, based again on
linear viscoelasticity. We will now encounter bilinear terms in the
differential equations, which are due to the more complicated geometry
of the object. (Notice that we do not consider the more complicated
problem of handling nonlinear constitutive equations.) Fortunately,
the nonlinearities come up as Lipschitz continuous perturbations of a
semigroup similar to the kind treated in [4]. It is therefore easy to
show well-posedness of the semilinear system. We can, however, no
longer rely on spectral methods to prove stability. Instead, we utilize a
Lyapunov function invariance princple for abstract dynamical systems
developed in [2].

With a feedback from angular position and angular velocity to the
control torque, even the purely elastic system can be stabilized in the
sense that solutions tend to zero weakly. For a viscoelastic material, we
require only feedback observing the angular position and get exponen-
tial stabilization in the sense of energy norm. This works for completely
monotonic, exponentially decaying relaxation kernels, which may be
singular or not at zero.

It is worth mentioning that the semilinear structure of the equations
seems to be due to the simple mechanical system chosen. More
complex systems, or even more accurate modelling of the system under
consideration (e.g., curvature correction in the beam model), yield
nonlinearities which occur in the boundary conditions or even in the
coefficients of the partial differential equations, making the problem
a quasilinear one. The quasilinear structure seems to be the generic
one for such problems. However, it is much harder to treat. The
present paper should, therefore, be regarded as a first attempt to treat
nonlinearities caused by asymmetric geometry, rather than a general
answer to this class of problems.

The paper is organized as follows. We derive the model equations
from the Lagrangian principle in the next section. Section 3 settles
the technicalities about well-posedness of the problem. Section 4 is
then devoted to our central issue of proving stability by a Lyapunov
function.
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2. Derivation of the model equations.

Equations for the elastic system. We consider a mechanical system
consisting of a rigid hub of radius R and a flexible appendage of length
L radially and rigidly attached to this hub. A control moment gyro is
attached to the center of the hub, the torque u(t) acting between the
gyro and the hub at time t will be controlled by a DC motor. The
system is constrained to rotate (and translate) in a plane.

We describe the position of the system at time t by the following
coordinates:

x(t), y(t) position of the center of the hub,

θ(t) angular position of the hub,

Φ(t) angular position of the gyro,
w(t, z) deflection from rest of the flexible rod

at distance z from the center of the hub.

The following physical constants will be required:
R radius of the hub,

L length of the flexible appendage,
M mass of the hub plus the gyro,

ρ mass per unit length of the appendage
MT total mass of the system: ρL + M,

I1 moment of inertia of the gyro,

I2 moment of inertia of the hub,

IT total moment of inertia with undeflected appendage,
without gyro: I2 + ((R + L)3 − R3)/3ρ,

I cross sectional moment of inertia of the appendage,
E elastic modulus of the appendage.

The appendage will be modelled as a Euler-Bernoulli beam, which is
linearly viscoelastic. For the derivation of the mechanical equations,
however, we assume linear elasticity. Viscoelasticity will be introduced
in the next subsection.

The potential energy of the system (by deflection of the rod) is

Epot =
1
2

∫ R+L

R

EIw2
zz dz.



34 W. DESCH, R.K. MILLER, AND S.B. SKAAR

The kinetic energy contains terms from the rotation of the gyro, the
rotation of the hub, translation of the hub, and the motion of the
appendage:

Ekin =
1
2
I1Φ̇2 +

1
2
I2θ̇

2 +
1
2
M(ẋ2 + ẏ2)

+
ρ

2

∫ R+L

R

[(−ẋ sin θ+ẏ cos θ+ẇ+zθ̇)2 + (ẋ cos θ+ẏ sin θ)2] dz,

where dots denote partial derivatives with respect to time. The virtual
work performed on the system by the control torque is

δW = u(δθ − δΦ).

The principle of minimal action states that, for any trajectory Φ, θ, x, y, w
in a time interval [0, T ] and any variation δΦ, δθ, δx, δy, δw vanishing
at 0 and T ,

∫ T

0

[δEkin − δEpot + δW ] dt = 0.

This is

0 =
∫ T

0

{
I1Φ̇δΦ̇ + I2θ̇δθ̇ + M(ẋδẋ + ẏδẏ)

+ ρ

∫ R+L

R

[(−δẋ sin θ − ẋ cos θδθ + δẏ cos θ − ẏ sin θδθ + δẇ + zδθ̇)

(−ẋ sin θ + ẏ cos θ + ẇ + zθ̇)
+ (δẋ cos θ − ẋ sin θδθ + δẏ sin θ + ẏ cos θδθ)
· (ẋ cos θ + ẏ sin θ)] dz

−
∫ R+L

R

EIwzzδwzz dz + u(δθ − δΦ)
}

dt.
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Thus

0 =
∫ T

0

{
δΦ

[
−I1Φ̈ − u

]

+ δθ

[
ρ

∫ R+L

R

[(−ẋ cos θ − ẏ sin θ)(−ẋ sin θ+ẏ cos θ+ẇ+zθ̇)

+ (−ẋ sin θ + ẏ cos θ)(ẋ cos θ + ẏ sin θ)] dz

− I2θ̈ + u

]

+ δx

[
−Mẍ + ρ

∫ R+L

R

∂

∂t
[sin θ(−ẋ sin θ + ẏ cos θ + ẇ + zθ̇)

− cos θ(ẋ cos θ + ẏ sin θ)] dz

]

+ δy

[
−Mÿ + ρ

∫ R+L

R

∂

∂t
[− cos θ(−ẋ sin θ+ẏ cos θ+ẇ+zθ̇)

− sin θ(ẋ cos θ + ẏ sin θ)] dz

]

+
∫ R+L

R

δ(w + zθ)
[
ρ

∂

∂t
(ẋ sin θ − ẏ cos θ − ẇ − zθ̇)

− EIwzzzz

]
dz

+ δθEI

∫ R+L

R

zwzzzz dz

}
dt.

Integrations by parts and rearrangements give

0 =
∫ T

0

{
δΦ

[
−I1Φ̈ − u

]

+ δθ

[
−I2θ̈ + u − pρ

∫ R+L

R

(ẇ + zθ̇) dz − EIRwzzz(R)

+ EIwzz(R)
]
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+ δx

[
−MT ẍ + ρθ̇ cos θ

∫ R+L

R

(ẇ + zθ̇) dz

+ ρ sin θ

∫ R+L

R

(ẅ + zθ̈) dz

]

+ δy

[
−MT ÿ + ρθ̇ sin θ

∫ R+L

R

(ẇ + zθ̇) dz

− ρ cos θ

∫ R+L

R

(ẅ + zθ̈) dz

]

+
∫ R+L

R

δ(w + zθ)
[
ρ(−q̇ − ẅ − zθ̈) − EIwzzzz

]
dz

}
dt.

Here
p = ẋ cos θ + ẏ sin θ, q = −ẋ sin θ + ẏ cos θ.

We also put
W (t, z) = w(t, z) + zθ(t).

We infer the following equations:

(2.1) I1Φ̈ = −u,

(2.2) I2θ̈ + pρ

∫ R+L

R

Ẇdz + EIRWzzz(R) − EIWzz(R) = u,

(2.3) −MT ẍ + ρθ̇ cos θ

∫ R+L

R

Ẇ dz + ρ sin θ

∫ R+L

R

Ẅ dz = 0,

(2.4) −MT ÿ + ρθ̇ sin θ

∫ R+L

R

Ẇ dz − ρ cos θ

∫ R+L

R

Ẅ dz = 0,

(2.5) ρ(−q̇ − Ẅ ) − EIWzzzz = 0.

We observe that
− sin θẍ + cos θÿ = q̇ + pθ̇,

cos θẍ + sin θÿ = ṗ − qθ̇.
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Now, suitable linear combinations of (2.3) and (2.4) yield

(2.6) MT (q̇ + pθ̇) + ρ

∫ R+L

R

Ẅ dz = 0,

(2.7) MT (ṗ − qθ̇) − ρθ̇

∫ R+L

R

Ẇ dz = 0.

We insert (2.5) in (2.6) to obtain

(2.8) Mq̇ + MT pθ̇ + EIWzzz(R) = 0.

Then (2.5) yields

(2.9) Ẅ = −EI

ρ
Wzzzz +

EI

M
Wzzz(R) +

MT

M
pθ̇.

The fixed end boundary conditions in terms of W are

(2.10) W (t, R) = Rθ, Wz(t, R) = θ.

The free end boundary conditions are

(2.11) Wzz(t, R + L) = Wzzz(t, R + L) = 0.

Let us finally remark that (2.1) is completely decoupled from the
other equations. Hence, we may ignore this equation in the further
course of our investigations.

Viscoelasticity. We assume now that the material of the flexible
appendage is linearly viscoelastic, relating stress σ and strain ε by the
constitutive equation

σ(t, z) =
∫ t

−∞
a(t − s)ε̇(s, z) ds,

where a is a completely monotonic function a(t) =
∫∞
0

e−λt dg(λ)
with some measure dg on the positive half line. We assume that a is
integrable on compact subintervals of [0,∞), i.e.,

∫∞
0

1/(λ+η) dg(λ) <
∞ for all η > 0, with limt→∞ a(t) = E > 0, i.e., dg has an atom E at 0.
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The elastic case is included in this setting since dg may be the measure
consisting of an atom E at 0. Furthermore, this model includes kernels
that are (finite or countable) sums of exponentials as well as fractional
derivative models.

The system (2.2), (2.7), (2.8), (2.9) is now modified:
(2.12)

I2θ̈ +pρ

∫ R+L

R

Ẇ dz + I

∫ t

−∞
a(t−s)[RẆzzz(s, R)−Ẇzz(s, R)] ds = u,

(2.7) remains unchanged,

(2.13) Mq̇ + MT pθ̇ + I

∫ t

−∞
a(t − s)Ẇzzz(s, R) ds = 0,

(2.14)

Ẅ =
∫ t

−∞
a(t − s)

[
−I

ρ
Ẇzzzz(s, z) +

I

M
Ẇzzz(s, R)

]
ds +

MT

M
pθ̇.

To rewrite the integrodifferential system as an ODE in a larger Hilbert
space, we follow an approach in [4]. We define

φ(t, λ, z) = I

∫ t

−∞
e−λ(t−s)Ẇzz(s, z) ds.

This yields

(2.15) φ̇(t, λ, z) = −λφ(t, λ, z) + IẆzz(t, z).

Since

I

∫ t

−∞
a(t − s)Ẇzz(s, z) ds =

∫ ∞

0

φ(t, λ, z) dg(λ),

we obtain

(2.16) I2θ̈+pρ

∫ R+L

R

Ẇ dz+
∫ ∞

0

[Rφz(t, λ, R)−φ(t, λ, R)] dg(λ) = u,

(2.17) Mq̇ + MT pθ̇ +
∫ ∞

0

φz(t, λ, R) dg(λ) = 0,
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(2.18) Ẅ =
∫ ∞

0

[
−1

ρ
φzz(t, λ, z) +

1
M

φz(t, λ, R)
]

dg(λ) +
MT

M
pθ̇.

The free end boundary conditions can be rewritten in terms of φ:

(2.19)
∫ ∞

0

φ(t, λ, R + L) dg(λ) =
∫ ∞

0

φz(t, λ, R + L) dg(λ) = 0.

The control motor. Let v be the voltage driving the control motor.
With inductivity l, resistance r, friction f , and motor constants k1 ≥
k2, the relation between voltage, current J and torque is

lJ̇ = −rJ + v − k1(θ̇ − Φ̇),

u = k2J − f(θ̇ − Φ̇).

We may ignore the inductivity of the coils, which is usually small, and
put l = 0. In order to stabilize the motion to an equilibrium at θ = 0,
we feed back the voltage

v = −rK1

k2
θ − rK2

k2
θ̇ +

(
k1 +

fr

k2

)
(θ̇ − Φ̇)

with K1 > 0, K2 ≥ 0, so that we obtain a linear feedback law,

(2.20) u = −K1θ − K2θ̇.

Summary of the equations. For convenience we summarize the system
of equations we are going to investigate with their original equation
numbers:

(2.7) MT (ṗ − qθ̇) − ρθ̇

∫ R+L

R

Ẇ dz = 0.

(2.15) φ̇(t, λ, z) = −λφ(t, λ, z) + IẆzz(t, z).

(2.16) I2θ̈+pρ

∫ R+L

R

Ẇ dz+
∫ ∞

0

[Rφz(t, λ, R)−φ(t, λ, R)] dg(λ) = u,
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(2.17) Mq̇ + MT pθ̇ +
∫ ∞

0

φz(t, λ, R) dg(λ) = 0,

(2.18) Ẅ =
∫ ∞

0

[
−1

ρ
φzz(t, λ, z) +

1
M

φz(t, λ, R)
]

dg(λ) +
MT

M
pθ̇,

(2.20) u = −K1θ − K2θ̇,

(2.19)
∫ ∞

0

φ(t, λ, R + L) dg(λ) =
∫ ∞

0

φz(t, λ, R + L) dg(λ) = 0.

(2.21) Ẇ (t, R) = Rθ̇, Ẇz(t, R) = θ̇.

(The last equation is a differentiated version of (2.10).)

3. Well-posedness. In this section we put equations (2.7) to (2.20)
in a functional analytic framework to prove existence and uniqueness of
solutions. We exploit the fact that the nonlinearities in the model are
Lipschitz continuous, and the linear part has the structure of a linear
viscoelastic problem of the type treated in [4]. Therefore, the key to
well-posedness is Lipschitz perturbation of a linear C0-semigroup. For
basic facts about semigroups we refer the reader to [5] or [7]. The
concept of a weak solution has been adopted from [1] and [2].

We consider the vector

u(t) = (θ(t), θ̇(t), p(t), q(t), Ẇ(t, z)φ(t, λ, z))
∈ R4 × L2([R, R + L],R) × L2

g([0,∞], L2([R, R + L],R)) = X
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as state of the system. In vector form the equations read
(3.1)

∂

∂t

⎛
⎜⎜⎜⎜⎜⎝

θ(t)
θ̇(t)
p(t)
q(t)

Ẇ (t, z)
φ(t, λ, z)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
− 1

I2

∫∞
0

[Rφz(t, λ, R) − φ(t, λ, R)] dg(λ)
0

− 1
M

∫∞
0

φz(t, λ, R) dg(λ)∫∞
0

[− 1
ρφzz(t, λ, z) + 1

M φz(t, λ, R)] dg(λ)
−λφ(t, λ, z) + IẆzz(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

θ̇(t)
−K1

I2
θ(t) − K2

I2
θ̇(t)

−p(t)
0
0
0

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
− ρ

I2
p(t)

∫ R+L

R
Ẇ (t, z) dz

q(t)θ̇(t) + p(t) + ρ
MT

∫ R+L

R
Ẇ (t, z) dz

−MT

M p(t)θ̇(t)
MT

M p(t)θ̇(t)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with the appropriate boundary conditions. Abstractly, this is

(3.2) u̇(t) = Au(t) + Cu(t) + Fu(t),

with a linear unbounded operator A, a linear bounded operator C, and
a Lipschitz continuous nonlinear operator F. Before we explain these
operators further, let us introduce an inner product in X by

〈
⎛
⎜⎜⎜⎜⎜⎝

θ1

θ̇1

p1

q1

Ẇ1(z)
φ1(λ, z)

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

θ2

θ̇2

p2

q2

Ẇ2(z)
φ2(λ, z)

⎞
⎟⎟⎟⎟⎟⎠
〉

= K1θ1θ2 + I2θ̇1θ̇2

+ MT p1p2 + Mq1q2 + ρ

∫ R+L

R

(Ẇ1(z) + q1)(Ẇ2(z) + q2) dz

+
1
I

∫ ∞

0

∫ R+L

R

φ1(λ, z)φ2(λ, z) dzdg(λ).

(This inner product will also make up the Lyapunov function in Sec-
tion 4.)
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The operator A is defined on the set dom A of all

(θ, θ̇, p, q, Ẇ (z), φ(λ, z)) ∈ X

such that

Ẇ ∈ W 2,2([R, R + L],R), Ẇ (R) = Rθ̇, Ẇz(R) = θ̇

IẆzz(z) − λφ(λ, z) ∈ L2
g([0,∞], L2([R, R + L],R)),∫ ∞

0

φ(λ, z) dg(λ) ∈ W 2,2([R, R + L],R),∫ ∞

0

φ(λ, R + L) dg(λ) =
∂

∂z

∫ ∞

0

φ(λ, R + L) dg(λ) = 0.

For such (θ, θ̇, p, q, Ẇ (z), φ(λ, z)), we define

A

⎛
⎜⎜⎜⎜⎜⎝

θ
θ̇
p
q

Ẇ (z)
φ(λ, z)

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
− 1

I2
[ ∂
∂z

∫∞
0

Rφ(λ, R)dg(λ) − ∫∞
0

φ(λ, R) dg(λ)]
0

− 1
M

∂
∂z

∫∞
0

φ(λ, R) dg(λ)
− 1

ρ
∂2

∂z2

∫∞
0

φ(λ, z) dg(λ) + 1
M

∂
∂z

∫∞
0

φ(λ, R) dg(λ)
−λφ(λ, z) + IẆzz(z)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let us consider the state u = (θ, θ̇, p, q, Ẇ (z), φ(λ, z)) consisting of the
four pieces

p ∈ R,

θ ∈ R,

(θ̇, q, Ẇ ) ∈ R2 × L2([R, R + L],R),
φ ∈ L2

g([0,∞], L2([R, R + L],R)).

Then the first two components of Au are zero while the last two are

−D
∫ ∞

0

φ dg(λ)=

⎛
⎜⎝

− 1
I2

[ ∂
∂z

∫∞
0

Rφ(λ, R)dg(λ) − ∫∞
0

φ(λ, R) dg(λ)]
− 1

M
∂
∂z φ(λ, R) dg(λ)

− 1
ρ

∂2

∂z2

∫∞
0

φ(λ, z) dg(λ) + 1
M

∂
∂z

∫∞
0

φ(λ, R) dg(λ)

⎞
⎟⎠

− λφ + D∗

⎛
⎝ θ̇

q
Ẇ

⎞
⎠ = −λφ + IẆzz.
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Here, D : L2([R, R + L],R) ⊃ domD → R2 × L2([R, R + L],R) is
defined by

domD = {v ∈ W 2,2([R, R + L],R) : v(R + L) = vz(R + L) = 0},

Dv =

⎛
⎝

1
I2

[Rvz(R) − v(R)]
1
M vz(R)

1
ρvzz − 1

M vz(R)

⎞
⎠ .

D∗ : R2 × L2([R, R + L],R) ⊃ domD∗ → L2([R, R + L],R) is defined
by

domD∗ =⎧⎨
⎩
⎛
⎝ θ̇

q
Ẇ

⎞
⎠ ∈ R2×W 2,2([R, R+L],R) : Ẇ (R) = Rθ̇, Ẇz(R) = θ̇

⎫⎬
⎭ ,

D∗

⎛
⎝ θ̇

q
Ẇ

⎞
⎠ = IẆzz.

We take the inner products

〈v1, v2〉 =
1
I

∫ R+L

R

v1(z)v2(z) dz

in L2([R, R + L],R) and〈⎛⎝ θ̇1

q1

Ẇ1

⎞
⎠ ,

⎛
⎝ θ̇2

q2

Ẇ2

⎞
⎠〉 = I2θ̇1θ̇2 + Mq1q2

+ ρ

∫ R+L

R

(Ẇ1(z) + q1)(Ẇ2(z) + q2) dz

in R2×L2([R, R+L],R). With these inner products, D and D∗ are in
fact adjoint to each other. This can be checked by an easy computation.

The operator C : X → X is defined by

C

⎛
⎜⎜⎜⎜⎜⎝

θ
θ̇
p
q

Ẇ (z)
φ(λ, z)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

θ̇
−K1

I2
θ − K2

I2
θ̇

−p
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ .
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Thus, C is a compact linear operator on X.

When we ignore the p-component, which is completely uncoupled
from the other components as far as A and C are concerned, we see
that A+C fits precisely in the structure of the operator A on page 404
of [4]. (The reader should not get confused by the fact that, in [4], the
atom of dg at 0 is treated separately, while we include it in the kernel
a here, so that the expressions with the constant E in [4] do not show
up explicitly here.) We may, therefore, adopt the results of the paper
quoted and obtain

LEMMA 3.1. A + C is the infinitesimal generator of a linear C0-
semigroup S0 on X. Moreover, if (a(·)−E) decays exponentially, then
S0 is exponentially stable.

PROOF. [4] Theorem 2.3 states that A is a generator. Theorem
3.1 ibidem states that the essential growth rate of S0 is negative if
a − E decays exponentially. Using more of the methods in [4] and [3],
we can rule out eigenvalues on the imaginary axis and therefore infer
exponential stability.

We turn now to the nonlinear operator F : X → X defined by

F

⎛
⎜⎜⎜⎜⎜⎝

θ
θ̇
p
q

Ẇ (z)
φ(λ, z)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
− ρ

I2
p
∫ R+L

R
Ẇ (z) dz

qθ̇ + p + ρ
MT

∫ R+L

R
Ẇ (z) dz

−MT

M pθ̇
MT

M pθ̇
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

We see that F depends, in fact, only on p, θ̇, and
∫ R+L

R
Ẇ (z) dz, which

can all be regarded as continuous linear functionals of the state. Thus
F is continuous, even from the weak topology into the norm topology,
so that the abstract system (3.2) fits in the framework of [2, Section
5, Subsection (b)]. In addition, F is continuously differentiable, in
fact, infinitely often, the (Frechet) derivative being globally Lipschitz
on bounded subsets of X.
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By a weak solution of (3.2) we mean a function u ∈ C([t0, t1),X)
satisfying the variation of parameters formula

(3.3) u(t) = S0(t − t0)u(t0) +
∫ t

t0

S0(t − s)Fu(s) ds.

This is consistent with the notion in [2].

LEMMA 3.2. For each t0 ∈ R and each initial value u(t0) there exists
a unique weak solution for (3.2) on a maximal interval of existence
[t0, tmax). Moreover, if tmax is finite, then u is unbounded on its
interval of existence. If the initial value is contained in domA, then
u ∈ C1([t0, tmax),X) ∩ C([t0, tmax), domA); here, domA is equipped
with the graph norm of A. In this case, u satisfies the differential
equation (3.2) for all t.

We remark that we will rule out the case that u is unbounded in
the next section, so this Lemma, in fact, implies existence of a global
solution.

PROOF. This is, in fact, a well known result about Lipschitz contin-
uous perturbations of linear generators. The existence and uniqueness
result can be obtained by using (3.3) as a fixed point equation for u
in C([t0, t1],X) for sufficiently small t1, which has a unique solution
by the Contraction Principle. A continuation argument works then
as long as u remains bounded, so that the Lipschitz constant for F
remains bounded. For u to stay in domA and to satisfy the differen-
tial equation, it is sufficient that the term Fu entering the variation
of parameters formula is in C1([t0, tmax),X). For this purpose we set
up the same fixed point equation but check the contraction property
with respect to C1([t0, t1],X). Again, t1 has to be sufficiently small. If
u,v are in C1([t0, t1],X) with the same initial value and ‖u(s)‖ ≤ MU ,
‖v(s)‖ ≤ MU for some constant MU , ‖u̇(s)‖ ≤ MD, ‖v̇(s)‖ ≤ MD for
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another constant MD, then

∥∥∥∥S0(t − t0)u(t0) +
∫ t

t0

S0(t − s)Fu(s) ds

− S0(t − t0)u(t0) +
∫ t

t0

S0(t − s)Fv(s) ds

∥∥∥∥
≤ (t1 − t0)MSMF max

s∈[t0,t1]
‖u(s) − v(s)‖,

where MS = maxs∈[0,t1−t0]‖S0(s)‖ and MF is a Lipschitz constant for
F valid for arguments bounded by MU .

∥∥∥∥ d

dt

[
S0(t − t0)u(t0) +

∫ t

t0

S0(t − s)Fu(s) ds

]

− d

dt

[
S0(t − t0)u(t0) +

∫ t

t0

S0(t − s)Fv(s) ds

]∥∥∥∥
=
∥∥∥∥
∫ t

t0

S0(s)
d

dt
[Fu(t − s) − Fv(t − s)] ds

∥∥∥∥
=
∥∥∥∥
∫ t

t0

S0(s)[∇F(u(t − s))u̇(t − s) −∇F(v(t − s))v̇(t − s)] ds

∥∥∥∥
≤ (t1 − t0)MSMDM∇ max

s∈[t0,t1]
‖u(s) − v(s)‖

+ (t1 − t0)MSMUMB max
s∈[t0,t1]

‖u̇(s) − v̇(s)‖,

where M∇ is a Lipschitz constant and MB is a bound for ∇F for
arguments bounded by MU . From these equations it is easily seen
that, for any MU , MD, we can find sufficiently small t1 − t0 so that
(3.3) is a contraction in {u ∈ C1([t0, t1],X) : ‖u‖ ≤ MU , ‖u̇‖ ≤ MD}.
We can therefore construct a solution in C1, at least locally. The usual
continuation argument yields that the solution stays in C1 as long as
‖u(t)‖ and ‖u̇(t)‖ stay bounded. We prove that ‖u̇‖ cannot go to ∞ on
any interval [t0, t1), where the solution exists and is uniformly bounded,
and u̇ exists. On such intervals we have bounds MU for ‖u‖, MB for
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‖∇F(u(t))‖, Mωeωt for ‖S0(t)‖. Thus, by (3.3),

‖u̇(t)‖ =
∥∥∥∥ d

dt

[
S0(t − t0)u(t0) +

∫ t

t0

S0(t − s)Fu(s) ds

]∥∥∥∥
=
∥∥∥∥AS0(t − t0)u(t0) + S0(t − t0)Fu(t0)

+
∫ t−t0

0

S0(s)∇F(u(t − s))u̇(t − s) ds

∥∥∥∥
≤ Mωeω(t−t0)‖u̇(t0)‖ +

∫ t−t0

0

MωeωsMB‖u̇(t − s)‖.

A Gronwall inequality argument shows that ‖u̇(t)‖ is also bounded on
that interval.

The following lemma states conservation of momentum along solu-
tions. It will be needed for technical reasons in the analysis of the
asymptotic behavior.

LEMMA 3.3. The following two functions are constant along trajecto-
ries of (3.1):

MT p cos θ − MT q sin θ − ρ sin θ

∫ R+L

R

Ẇ dz,

MT p sin θ + MT q cos θ + ρ cos θ

∫ R+L

R

Ẇ dz.

PROOF. By a simple density argument, we may assume that the
trajectory starts in domA and satisfies the differential equations in
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a strict sense. We can therefore compute the derivative

∂

∂t

[
MT p cos θ − MT q sin θ − ρ sin θ

∫ R+L

R

Ẇ dz

]

= cos θ

[
MT ṗ − MT qθ̇ − ρθ̇

∫ R+L

R

Ẇ dz

]

+ sin θ

[
−MT pθ̇ − MT q̇ − ρ

∫ R+L

R

Ẅ dz

]

=
MT

M
sin θ

[
−Mq̇ − MT pθ̇ + ρLpθ̇

+
M

MT

∫ R+L

R

∫ ∞

0

φzz(t, λ, z) dg(λ) dz

− ρL

MT

∫ ∞

0

φz(t, λ, R) dg(λ) − ρLpθ̇

]
= 0.

The derivative of the second term is computed the same way.

4. Lyapunov function analysis. In this section we state and
prove our main result.

MAIN THEOREM. Suppose that either a is nonconstant (i.e., the
material is viscoelastically damped) or K2 
= 0 (i.e., damping is provided
by feedback opposite to angular velocity). Then each trajectory of (3.1)
converges weakly to a state with θ = 0, θ̇ = 0, Ẇ = 0, φ = 0. Moreover,
in the weak limit, W = 0.

With suitable kernels, we obtain strong convergence to the limiting
state:

COROLLARY . If a is nonconstant and a−E is exponentially decaying
(so that the support of dg, except the atom at 0, is contained in an
interval [ε,∞) with ε > 0), then the trajectories of (3.1) converge to
their weak limit even with respect to the norm.
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PROOF OF THE COROLLARY . By Lemma 3.2 the linearized semi-
group S0 converges exponenitally to the zero state, while, from weak
convergence, we infer that the nonlinear perturbation F(t) converges to
0. It is an easy exercise in semigroup theory to show that the solutions
of the nonlinear system converge in norm.

The remainder of this section is devoted to the proof of the Main
Theorem. As this proof is rather technical, we split it up into several
lemmas, and begin with a short overview.

The key idea is to define a Lyapunov function V (4.1), consisting of
mostly energy terms. V decays along trajectories of (3.1), which can
be seen from its derivative G. We infer that solutions are bounded in
norm, thus trajectories are weakly compact. An invariance principle
from [2] states that points of the weak ω-limit set are starting points
for trajectories where V is constant. (We refer also to [6] for general
information on abstract dynamical systems with compact trajectories.)
Some technicalities have to be solved for adapting this theorem to our
situation, since G is not defined and not continuous on the whole state
space (Lemmas 4.1 to 4.4). Given the invariance principle, we proceed
to show that V cannot be constant unless θ = 0, θ̇ = 0, Ẇ = 0, φ = 0.
This is fairly easy in the case of viscoelastic damping, since G contains
terms from the potential energy bound to decay in the material, and
G = 0 means no potential energy, thus no deflection (Lemma 4.5). In
the purely elastic case, energy in the material will not decay, thus it
will not appear in G. Feedback based on position alone would give rise
to oscillatory modes. Feeding back velocity as well, we see that G = 0
implies θ̇ = 0. Proceeding from there in a rather technical manner,
we end up with the fact that no deflection is possible if the angular
position remains constant (Lemmas 4.6, 4.7).

We are now ready for the details. We define the Lyapunov function

(4.1)
V (θ, θ̇, p, q, Ẇ , φ) =

K1

2
θ2 +

I2

2
θ̇2 +

MT

2
p2 +

M

2
q2

+
ρ

2

∫ R+L

R

(Ẇ (z) + q)2 dz +
1
2I

∫ R+L

R

∫ ∞

0

φ2(λ, z) dg(λ) dz.
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LEMMA 4.1. For (θ, θ̇, p, q, Ẇ , φ) ∈ domA,

(4.2)
G(θ, θ̇, p, q, Ẇ , φ) = − ∂

∂t
V (θ, θ̇, p, q, Ẇ , φ)

= K2θ̇
2 +

1
I

∫ R+L

R

∫ ∞

0

λφ2 dg(λ) dz.

PROOF. For (θ, θ̇, p, q, Ẇ , φ) ∈ domA, we multiply (2.7) by p, (2.15)
by φ/I and integrate with respect to λ and z, (2.16) by θ̇, (2.17) by
q and a suitable linear combination of (2.18), and (2.17) by ρ(Ẇ + q),
integrating with respect to z. Adding up these equations we obtain

0 =
[
MT pṗ − MT pqθ̇ − pρθ̇

∫ R+L

R

Ẇ dz

]

+
[
1
I

∫ R+L

R

∫ ∞

0

φφ̇ dg(λ) dz +
1
I

∫ R+L

R

∫ ∞

0

λφ2 dg(λ) dz

−
∫ R+L

R

Ẇzz

∫ ∞

0

φ dg(λ) dz

]

+
[
I2θ̈θ̇ + pρθ̇

∫ R+L

R

Ẇ dz + θ̇

∫ ∞

0

[Rφz(t, λ, R) − φ(t, λ, R)] dg(λ)

+ K1θθ̇ + K2θ̇
2

]

+
[
Mqq̇ + MT pqθ̇ + q

∫ ∞

0

φz(t, λ, R) dg(λ)
]

+

[
ρ

∫ R+L

R

(Ẅ +q̇)(Ẇ +q) dz+
∫ R+L

R

(Ẇ +q)
∫ ∞

0

φzz dg(λ) dz

]
,
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i.e.,

0 =MT pṗ + Mqq̇ + K1θθ̇ + I2θ̈θ̇

+
1
I

∫ R+L

R

∫ ∞

0

φφ̇ dg(λ) dz + ρ

∫ R+L

R

(Ẅ + q̇)(Ẇ + q) dz

+ K2θ̇
2 +

1
I

∫ R+L

R

∫ ∞

0

λφ2 dg(λ) dz

+
[∫ R+L

R

Ẇ

∫ ∞

0

φzz dg(λ) dz −
∫ R+L

R

Ẇzz

∫ ∞

0

φ dg(λ) dz

+ θ̇

∫ ∞

0

[Rφz(t, λ, R) − φ(t, λ, R)] dg(λ)
]

+

[
q

∫ ∞

0

φz(t, λ, R) dg(λ) + q

∫ R+L

R

∫ ∞

0

φzz dg(λ) dz

]
.

Integration by parts and exploiting the boundary conditions shows
that the terms in square brackets disappear so that we obtain the
desired result.

We want to apply the methods of [2, p. 255]. V is evidently a
continuously Frechet differentiable function, and its gradient maps
bounded sets into bounded sets. G, however, is only defined for
(θ, θ̇, p, q, Ẇ , φ) ∈ domA and has no continuous extension to the whole
state space. This is due to the integral term

∫ R+L

R

∫∞
0

λφ2 dg(λ) dz.
Therefore, we need a slight modification of the proof of [2, Theorem
5.14].

LEMMA 4.2. Let (θ(t), θ̇(t), p(t), q(t), Ẇ(t, z), φ(t, λ, z)) be a (weak)
solution of (3.1). We put

V (t) = V (θ(t), θ̇(t), p(t), q(t), Ẇ(t, z), φ(t, λ, z)).

Then ∫ R+L

R

∫ ∞

0

λφ2 dg(λ) dz < ∞, for t > 0 a.e.,

so that G(θ(t), θ̇(t), p(t), q(t), Ẇ(t, z), φ(t, λ, z)) is defined a.e.



52 W. DESCH, R.K. MILLER, AND S.B. SKAAR

Moreover,

V (0) − V (t) =
∫ t

0

G(θ(s), θ̇(s), p(s), q(s), Ẇ(s, z), φ(s, λ, z)) ds.

In particular, V is bounded and decreasing along trajectories, and

lim
t→∞(V (t) − V (t + τ )) = 0, for all τ > 0.

PROOF. If (θ(0), θ̇(0), p(0), q(0), Ẇ (0, z), φ(0, λ, z)) ∈ domA, then
the solution stays in domA for all t > 0 and Lemma 4.1 can be applied
immediately. Define

Gn(θ, θ̇, p, q, Ẇ , φ) = K2θ̇
2 +

1
I

∫ R+L

R

∫ n

0

λφ2 dg(λ) dz.

By the monotone convergence principle,

G(θ, θ̇, p, q, Ẇ , φ) = lim
n→∞ Gn(θ, θ̇, p, q, Ẇ , φ).

Since domA is dense and V and Gn are continuous on the whole state
space, we have

V (0) − V (t) ≥
∫ t

0

Gn(θ(s), θ̇(s), p(s), q(s), Ẇ(s, z), φ(s, λ, z)) ds.

This yields an upper bound for Gn in the L1-norm, and the desired
result can be inferred by the principle of monotone convergence.

LEMMA 4.3. Let (θn(t), θ̇n(t), pn(t), qn(t), Ẇn(t, z), φn(t, λ, z)) be a
sequence of trajectories converging pointwise weakly to (θ(t), θ̇(t), p(t),
q(t), Ẇ (t, z), φ(t, λ, z)). Put Vn(t) = V (θn(t), θ̇n(t), pn(t), qn(t),
Ẇn(t, z), φn(t, λ, z)).

Then
lim

n→∞
(Vn(0) − Vn(t)) ≥ V (0) − V (t).



A SLEWING BEAM PROBLEM 53

PROOF. We have to show

lim
n→∞

∫ t

0

G(θn(s), . . . , φn(s, λ, z)) ds ≥
∫ t

0

G(θ(s), . . . , φ(s, λ, z)) ds.

Put

γn = G(θn(s), θ̇n(s), pn(s), qn(s), Ẇn(s, z), φn(s, λ, z)),

and
γ = G(θ(s), θ̇(s), p(s), q(s), Ẇ(s, z), φ(s, λ, z)).

By convexity of G and weak convergence of the trajectories, one can
easily show that, for s ∈ [0, t] a.e.,

lim
n→∞

γn(s) ≥ γ(s).

Let ε > 0 and Mn = {s ∈ [0, t] : γm(s) ≤ γ(s) + ε for m ≥ n}. Notice
that the measure of [0, t]\Mn converges to 0. Now

∫ t

0

γ(s) ds =
∫

[0,t]\Mn

γ(s) ds +
∫

Mn

γ(s) ds

≤
∫

[0,t]\Mn

γ(s) ds +
∫

Mn

γn(s) ds + tε

≤
∫

[0,t]\Mn

γ(s) ds +
∫ t

0

γn(s) ds + tε

→ 0 + lim
n→∞

∫ t

0

γn(s) ds + tε

for a suitable subsequence. As ε was arbitrarily small, this proves the
claim.

We recall that a point (θ, θ̇, p, q, Ẇ , φ) is said to lie in the weak ω-limit
set of (3.1) iff there is some trajectory (θ(t), θ̇(t), p(t), q(t), Ẇ(t), φ(t))
and a sequence tn → ∞ such that

(θ(tn), θ̇(tn), p(tn), q(tn), Ẇ (tn), φ(tn)) → (θ, θ̇, p, q, Ẇ , φ)
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in the weak topology.

LEMMA 4.4. Any (θ, θ̇, p, q, Ẇ , φ) in the weak ω-limit set of (3.1) is
the initial value for a weak solution with

G(θ(t), θ̇(t), p(t), q(t), Ẇ(t, z), φ(t, λ, z)) = 0.

PROOF. The lemmas above allow us to follow the lines of the proof
of Theorem 5.14 in [2], so that we may apply Theorem 3.5 ibidem to
see that V is constant along the trajectory starting at (θ, θ̇, p, q, Ẇ , φ).
We define Gn as in the proof of Lemma 4.2 and infer that Gn vanishes
everywhere on this trajectory. The principle of monotone convergence,
applied at each point of the trajectory, shows that G is defined and
equals zero everywhere.

We will prove that the only possible weak limit is zero. The bounded-
ness of the trajectories implies then that each solution converges weakly
to zero.

LEMMA 4.5. If dg is not just an atom at 0 (i.e., the material is not
elastic), then the only points in the weak ω-limit set of (3.1) are of the
form (0, 0, p, q, 0, 0).

PROOF. Let (θ, θ̇, p, q, Ẇ , φ) be in the weak ω-limit set of (3.1). From
Lemma 4.4 we infer that G = 0 along the trajectory (θ(t), θ̇(t), p(t), q(t),
Ẇ (t), φ(t)) starting at (θ, θ̇, p, q, Ẇ , φ). In particular, φ(t, λ, z) = 0 for
almost all λ except 0. From (2.15) we infer that Ẇzz(t, z) = 0. Together
with the boundary conditions (2.21) this implies Ẇ (t, z) = zθ̇. By
(2.15) φ is independent of t. (2.18) now reads

zθ̈ = −E

ρ
φzz(0, z) +

E

M
φz(0, R) +

MT

M
pθ̇.

As zθ̈ and pθ̇ are now the only possibly time dependent entries in this
equation and the latter is independent of z, we infer that, in fact, both
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are independent of t. In particular, θ is a quadratic polynomial, but as
V is bounded along the trajectory, θ must be constant. We now have

θzz(0, z) =
ρ

M
φz(0, R),

so that (with boundary condition (2.19))

0 = φz(0, R + L) =
(

1 +
ρL

M

)
φz(0, R)

and, finally, φz vanishes everywhere. By the free end boundary condi-
tion, φ vanishes as well. The whole left-hand side of (2.16) has disap-
peared and we are left with u = 0, thus θ = 0.

The purely elastic case is more complicated. We require the following
lemma.

LEMMA 4.6. For no x ≥ 0 with 1 + cos x cosh x 
= 0 are the following
two inequalities simultaneously satisfied:

(4.3)
sin x coshx + cos x sinh x

1 + cos x cosh x
< 0,

(4.4)
sin x sinh x

1 + cos x cosh x
> 0.

PROOF. If x = π(n + 1/2) with n = 1, 2, . . . , then (4.3) reduces to
(−1)n cosh x < 0, and (4.4) reduces to (−1)n sinh x > 0. Since cosh x
and sinh x are positive, this is impossible.

If x 
= π(n + 1/2), the pair of inequalities reduces to

cos x cosh x

1 + cos x cosh x
(tanx + tanhx) < 0,

cos x cosh x

1 + cos x cosh x
(tanx tanh x) > 0.
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In order to satisfy both inequalities, tanx + tanhx and tanx tanhx
must be of opposite sign. Thus

0 < − tanx < tanh x.

Now (4.3) and (4.4) hold simultaneously if and only if

0 > cos x > − 1
cosh x

.

Then
1 − 1

cosh2 x
= tanh2 x > tan2 x

=
1

cos2 x
− 1 > cosh2 x − 1.

Thus,
(cosh2 x − 1)2 = cosh4 x − 2 cosh2 x + 1 < 0,

which is impossible.

LEMMA 4.7. Suppose that dg consists only of the atom E at 0 (i.e.,
a(t) = E for all t) and that K2 > 0. Then the only points in the weak
ω-limit set of (3.1) are of the form (0, 0, p, q, 0, 0).

PROOF. Let (θ, θ̇, p, q, Ẇ , φ) be in the weak ω-limit set of (3.1). Again
Lemma 4.4 implies that G = 0 along the trajectory (θ(t), θ̇(t), p(t), q(t),
Ẇ (t), φ(t)) starting at (θ, θ̇, p, q, Ẇ , φ). Since K2 > 0, we infer that
θ̇ = 0, thus θ is constant. (3.1) reduces to

(4.5) MT ṗ = 0,

(4.6) φ̇(t, z) = IẆzz(t, z),

(4.7) pρ

∫ R+L

R

Ẇ dz + E[Rφz(t, R) − φ(t, R)] = u,

(4.8) Mq̇ + Eφz(t, R) = 0,
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(4.9) Ẅ = E

[
−1

ρ
φzz(t, z) +

1
M

φz(t, R)
]

,

(4.10) u = −K1θ,

(4.11) φ(t, R + L) = φz(t, R + L) = 0,

(4.12) Ẇ (t, R) = 0, Ẇz(t, R) = 0.

(We have suppressed the argument λ in φ, since φ is only defined at
λ = 0, as the measure dg vanishes on (0,∞).) We infer immediately
that p(t) and θ(t) are constant.

Consider the operator B defined on

domB = {(W, φ) ∈ W 2,2([R, R + L],R) × W 2,2([R, R + L],R) :
W (R) = Wz(R) = 0, φ(R + L) = φz(R + L) = 0}

⊂ L2([R, R + L],R) × L2([R, R + L],R)

by

B(W, φ) =
(

E

ρ
φzz,−IWzz

)
.

B is skew-adjoint with respect to the inner product

〈(W1, φ1), (W2, φ2)〉 = ρ

∫ R+L

R

W1W2 dz +
E

I

∫ R+L

R

φ1φ2 dz

on L2([R, R + L],R) × L2([R, R + L],R). Let e = (1, 0) ∈ L2([R, R +
L],R) × L2([R, R + L],R), where 1 denotes the constant function 1.
The equations (4.6) and (4.9), together with all boundary conditions,
can be written in the form

∂

∂t
(Ẇ (t, ·), φ(t, ·)) = −B(Ẇ (t, ·), φ(t, ·)) − 1

M

〈
e,B(Ẇ (t, ·), φ(t, ·))

〉
e

= HB(Ẇ (t, ·), φ(t, ·)),
where H = id +(1/M)〈e, ·〉e is evidently a positive definite, self-adjoint
operator. Consequently, H−1 exists as a bounded, positive definite
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operator, and the operator HB is skew-adjoint with respect to the
inner product 〈·,H−1·〉. It has, therefore, a spectral resolution, and
solutions may be written in the form

(Ẇ (t, ·), φ(t, ·)) =
∞∑

j=1

cos(νjt)uj + sin(νjt)vj ,

uj , vj being suitable vectors in L2([R, R + L],R)× L2([R, R + L],R).

Notice that (4.7) takes the form

∞∑
j=1

cos(νjt)uj + sin(νjt)vj = −K1θ,

where the coefficients uj , vj contain all information coming from Ẇ ,
φz, and φ. By linear independence of sums of exponentials we infer that
all uj , vj as well as θ are zero. Suppose that Ẇ or φ do not vanish.
In this case there is some nonzero uj or vj . Then the components of
cos(νjt)uj +sin(νjt)vj provide a nontrivial solution to the system (4.6),
(4.9) with all boundary conditions, and since uj = vj = 0, they also
satisfy (4.7) with u = 0.

Let U and V be the first components of uj , vj . By (4.6), the second
components are −(I/νj)Vzz, (I/νj)Uzz. Thus (4.9) yields

(4.13)

U(z) =
EI

ρν2
j

Uzzzz(z) − EI

Mν2
j

Uzzz(R),

V (z) =
EI

ρν2
j

Vzzzz(z) − EI

Mν2
j

Vzzz(R).

The boundary conditions are

U(R) = Uz(R) = Uzz(R + L) = Uzzz(R + L) = 0,

V (R) = Vz(R) = Vzz(R + L) = Vzzz(R + L) = 0.

(4.7) is rewritten

pρνj

∫ R+L

R

U dz − EIR

νj
Vzzz(R) +

EI

νj
Vzz(R) = 0,

−pρνj

∫ R+L

R

V dz − EIR

νj
Uzzz(R) +

EI

νj
Uzz(R) = 0.



A SLEWING BEAM PROBLEM 59

Using (4.13) and the boundary conditions, we can rewrite the last
equation as

−pEI

νj
Uzzz(R) − pρLEI

νjM
Uzzz(R) − EIR

νj
Vzzz(R) +

EI

νj
Vzz(R) = 0,

−pEI

νj
Vzzz(R) − pρLEI

νjM
Vzzz(R) +

EIR

νj
Uzzz(R) − EI

νj
Uzz(R) = 0,

i.e.,

(4.14)
−MT p

M
Uzzz(R) − RVzzz(R) + Vzz(R) = 0,

MT p

M
Vzzz(R) − RUzzz(R) + Uzz(R) = 0.

Put κ = ((ν2
j ρ)/(EI))1/4, C = (EI)/(Mν2

j ), β = Uzzz(R), and
β̃ = Uzzz(R). Then (4.13) and the boundary conditions at R yield

U(z + R) = c1(cos(κz) − cosh(κz)) + c2(sin(κz) − sinh(κz))
+ Cβ(cos(κz) − 1),

V (z + R) = c̃1(cos(κz) − cosh(κz)) + c̃2(sin(κz) − sinh(κz))
+ Cβ̃(cos(κz) − 1).

By definition of β and β̃, we have

(4.15) β = −2c2κ
3, β̃ = −2c̃2κ

3.

The free end boundary conditions are rewritten as

−c1(cos(κL) + cosh(κL)) − c2(sin(κL) + sinh(κL)) − Cβ cos(κL) = 0,

c1(sin(κL) + sinh(κL)) + c2(cos(κL) + cosh(κL)) − Cβ sin(κL) = 0,

and precisely the same equations hold for c̃1, c̃2, and β̃. Solving these
equations we obtain

(4.16)

2c1 + Cβ = − sinh(κL) sin(κL)
1 + cosh(κL) cos(κL)

Cβ,

2c2 =
cosh(κL) sin(κL) + sinh(κL) cos(κL)

1 + cosh(κL) cos(κL)
Cβ,

2c̃1 + Cβ̃ = − sinh(κL) sin(κL)
1 + cosh(κL) cos(κL)

Cβ̃,

2c̃2 =
cosh(κL) sin(κL) + sinh(κL) cos(κL)

1 + cosh(κL) cos(κL)
Cβ̃.
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A comparison with (4.15) shows that either β and β̃ are both 0 or

(4.17)
cosh(κL) sin(κL) + sinh(κL) cos(κL)

1 + cosh(κL) cos(κL)
< 0.

Since β = 0 and β̃ = 0 would imply c1 = c2 = c̃1 = c̃2 = 0, so that
u = v = 0, we infer that (4.17) holds. We notice also that, by (4.16),
β̃c1 = βc̃1 and β̃c2 = βc̃2. Now we rewrite (4.14) as

2MT p

M
κ3c2 + 2Rκ3c̃2 − 2κ2c̃1 − Cκ2β̃ = 0,

−2MT p

M
κ3c̃2 + 2Rκ3c2 − 2κ2c1 − Cκ2β̃ = 0.

We multiply the first equation by β and the second one by β̃ and add:

4Rκ3βc̃2 = κ2(4βc̃1 + 2Cββ̃).

Dividing by 2κ2ββ̃ and utilizing (4.16) obtains

2Rκ
cosh(κL) sin(κL) + sinh(κL) cos(κL)

1 + cosh(κL) cos(κL)
= − sinh(κL) sin(κL)

1 + cosh(κL) cos(κL)
.

Thus, by (4.17),

(4.18)
sinh(κL) sin(κL)

1 + cosh(κL) cos(κL)
> 0.

(4.17) and (4.18) together contradict Lemma 4.6. We have, therefore,
shown that all uj , vj vanish, i.e., Ẇ and φ are zero.

PROOF OF THE MAIN THEOREM . Since each trajectory of (3.1) is
bounded, each sequence tj → ∞ contains a subsequence such that
the corresponding states converge to a state in the weak ω-limit set.
Lemma 4.5 and Lemma 4.7 show that the states in the weak ω-limit
set are of the form θ = 0, θ̇ = 0, Ẇ = 0, φ = 0. From the conservation
of momentum Lemma 3.3, we infer that p and q are now determined
uniquely by the trajectory, so that the trajectory admits only one weak
cluster point. Consequently, this is its weak limit. The weak limit
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for W can be obtained from the boundary conditions W (R) = Rθ,
Wz(R) = θ̇, and that IWzz(t, z) = φ(t, 0, z).
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