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SOME EXISTENCE RESULTS FOR A NONLINEAR
HYPERBOLIC INTEGRODIFFERENTIAL EQUATION

WITH SINGULAR KERNEL

STIG -OLOF LONDEN

ABSTRACT. We consider the nonlinear Volterra integro-
differential equation

ut(t, x) −
∫ t

0

a(t − s)σ(ux(s, x))x ds = f(t, x), t ≥ 0, x ∈ R,

with initial function u(0, x) = u0(x). We prove existence of
global (in time) smooth solutions in the case where the data
are small, assuming only a′ ∈ L1(R+) and strong positivity on
the kernel. A local existence result for large data is obtained.
The proofs use approximating kernels, uniformly of strong
positive type and energy estimates.

1. Introduction. The equation

(V)
ut(t, x) −

∫ t

0

a(t− s)σ(ux(s, x))x ds = f(t, x), t ≥ 0, x ∈ R,

u(0, x) = u0(x),

where a(t) is positive in some sense, presents a bridge between problems
of a nonlinear parabolic and problems of a nonlinear hyperbolic nature.
If a(t) ≡ 1, then (V) is nonlinear hyperbolic; if a(t)dt is a pure
point mass at the origin, then (V) is nonlinear parabolic. In the
intermediate case, where a(t) is positive and, say, decreasing, convex
and in some sense singular at the origin, one may expect solutions
combining features of both the extreme cases.

In the linear case, where σ(u) = ku, this has been established in
much detail. Roughly speaking, the more singular the kernel is at the
origin, the more smoothing out of initial conditions does the solution
present. In fact, the finite propagation speed of the wave equation and
the smoothing properties of the heat equation may coexist. See [3, 7]
and the references mentioned therein, [8, 15], and [16].
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In the nonlinear case (where one usually assumes, at least, that σ is
sufficiently smooth and satisfies σ′(x) > 0, x ∈ R) the available results
on classical solutions are mainly of three types, i.e., local (in time)
existence for large data, global existence for small data and results on
the development of singularities of solutions for certain initial data in
the case where a is sufficiently regular at the origin.

The equation (V) was first considered by MacCamy [12] and later
by Dafermos and Nohel [1]. They assumed that a(i) is continuous and
bounded on R+, for i = 0, 1, 2, 3, that a is of strong positive type,
and, in addition, that certain moment conditions on the derivatives of
the kernel are satisfied. The existence results in [1] were improved by
Staffans [19] who demonstrated that sufficient conditions on the kernel
for local (large data) and global (small data) existence are, respectively,

a′′ ∈ L1
loc (R+), a(0) > 0,

and
a of strong positive type, a′, a′′ ∈ L1(R+).

Obviously, less assumptions on the size of the derivatives of a allow
setups closer to the parabolic case and should, therefore, in principle
not make the existence question more difficult. However, the more
singular the kernel is, the greater are the technical problems involved
in the proofs. In fact, even local existence for large data in the case
where a(0+) = ∞ or a′(0+) = −∞, is an intricate matter.

The equation (V) is a particular case of

(W) utt −φ(ux(t, x))x −
∫ t

0

a′(t− s)ψ(us(s, x))x ds = f(t, x), t ≥ 0,

which has been studied in several recent papers. (Included in the
problem (W) are initial conditions and, if x is restricted to a bounded
interval, some boundary conditions.) A major motivation for the study
of (W) is the fact that this equation occurs in viscoelasticity, see [7] for
a brief survey and [18] for a thorough account. In these applications,
both φ and ψ are taken monotone strictly increasing and are assumed
to be sufficiently smooth. Thus (V) may be viewed as a first model of
the time behavior of an unbounded bar of a material with memory.
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The studies on (W) include [2, 9] and [10]. In [9], where both local
and global existence results are obtained, it is assumed that

b, a′ ∈ L1(R+), (−1)ib(i) ≥ 0, i = 0, 1, 2,

and (for global existence) that

φ′ − b(0)ψ′ > 0.

Here b(t)def= − ∫ ∞
t
a′(s) ds. Thus, this last condition requires, if one has

(V) in mind (where a is given and φ = ψ), that a(∞) > 0. In [10], a
local existence result is obtained for the case

b ∈ L1(R+), (−1)ib(i) ≥ 0, i = 0, 1, 2, 3.

In the recent paper [17] both local and global existence results are
proved for a generalization of (W). These results allow a′ /∈ L1

loc , i.e.,
a(0+) = ∞ in (V) is not excluded. Instead, the transform condition
|R b̃(ω)| ≥ C|I b̃(ω)|, for ω ∈ R and some constant C, is imposed.
(Again, b(t) = − ∫ ∞

t
a′(s) ds.) For the global existence result (in the

notation of (V)), the condition a(∞) > 0 appears to be essential.

The breakdown of smooth solutions of (V) has been studied in [6]
and [13].

In the present paper we show that

a′ ∈ L1(R+), a is of strong positive type,

are sufficient conditions on the kernel for obtaining global existence
of solutions of (V) for small data. We impose no conditions on a′′,
and a′(0+) = −∞, a(∞) = 0 are not excluded. Neither is the kernel
required to be monotone in any sense. With a′ ∈ L1(R+) replaced by
a′ ∈ L1

loc (R+), we give a local existence result for data of arbitrary
size. Our method of proof uses kernels ak, uniformly of strong positive
type, that approximate the given kernel, and modified versions of the
energy estimates developed in [19].

It is of interest to compare the present Theorem 2.1 with a result
concerning global weak solutions of
(V0)

ut(t, x) −
∫ t

0

a(t− s)σ(ux(s, x))x ds = f(t, x), x ∈ (0, 1), t ≥ 0,

u(0, x) = u0(x) ∈ H1
0 (0, 1).
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We have [11, Corollary 1]

THEOREM 1.1. Let

(1.1)

a ∈ C2(0,∞) ∩ C[0,∞),

a(t) > 0, (−1)ia(i)(t) ≥ 0, i = 0, 1, 2, t > 0,

lim inf
t↓0

(
t inf
0<τ≤t

a′′(τ )
)

= ∞,

assume that σ is continuous, monotone nondecreasing, and let, for
some constants λ1, λ2,

|σ(x)| ≤ λ1(|x| + 1), xσ(x) ≥ λ2(x2 − 1), x ∈ R.

Finally suppose that

f ∈ ACloc (R+;L2(0, 1)).

Then there exists u such that

u ∈ L∞
loc (R+;H1

0 (0, 1)), ut ∈ L∞
loc (R+;L2(0, 1)),

utt ∈ L1
loc (R+;H−1(0, 1)),

and such that u satisfies (V0).

It is seen that (1.1) (roughly equivalent to a′(0+) = −∞) gives us
global existence of weak solutions for large data. In view of Theorems
2.1 and 2.2 (and overlooking the fact that, in Theorem 1.1, x ∈ (0, 1),
whereas, in Theorems 2.1 and 2.2, x ∈ R) it is an intriguing problem to
analyze how smooth the solutions of Theorem 1.1 are, or, alternatively,
whether and how the local solutions of Theorem 2.2 break down if (1.1)
holds.

Further results on weak solutions have been obtained by Engler [4]
(on (W)) and by Nohel, Rogers and Tzavaras [14] (on (V)).

2. Summary of results. Our main result concerns (V) in the case
where the data are small. We show that if a is of strong positive type,
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with a′ ∈ L1(R+), then (V) has a solution that exists for all t ≥ 0.
No assumptions are made on a′′, and a′(0+) = −∞ is not excluded.
The solution obtained is smooth in the sense that (2.10), (2.12) are
satisfied. Moreover, the second and third order derivatives are small
at infinity in the sense given by (2.11), (2.12). The symbol Lp(L2),
p ∈ [1,∞], stands for the class of functions f(t, x), defined for t ≥ 0,
x ∈ R, satisfying ‖f(t, ·)‖2

L2 =
∫
R
|f |2 dx < ∞ a.e. on R+, and such

that ‖f(t, ·)‖p
L2 is integrable with respect to t over R+.

THEOREM 2.1. Let

(2.1) a ∈ ACloc (R+),

(2.2) a′ ∈ L1(R+),

and assume that

(2.3) a is of strong positive type.

Let

(2.4) σ ∈ C3(R), σ(0) = 0, σ′(0) > 0,

assume that the initial function u0 satisfies

(2.5) u0x, u0xx, u0xxx ∈ L2(R),

write u1(x) = f(0, x) and suppose that

(2.6) u1, u1x, u1xx ∈ L2(R).

Assume that f = f1 + f2 + f3, where

(2.7)
f1 ∈ L∞(L2), f1x ∈ (L1 ∩ L∞)(L2), f1xx ∈ (L2 ∩ L∞)(L2),

f1xxx ∈ L2(L2), f1t, f1tx, f1txx ∈ L1
loc (L2),

(2.8) f2, f2t, f2x, f2tx, f2xx, f2txx ∈ L2(L2),
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(2.9) f3, f3x, f3xx ∈ L∞(L2), f3t, f3tx, f3txx ∈ L1(L2).

In addition, if a(∞) = 0, then let f3 = 0. If the Lp-norms of
u0, u1, f1, f2, f3 and their derivatives listed in (2.5) (2.9) are sufficiently
small, then there exists a global solution u of (V) such that

(2.10) ut, ux, utx, uxx, utxx, uxxx ∈ L∞(L2),

(2.11) utx, uxx, utxx, uxxx ∈ L2(L2),

(2.12) utt − ft, uttx − ftx, uttt − ftt − a′(t)σ(u0x)x ∈ (L2 ∩ L∞)(L2).

Our proof may be outlined as follows. First, we replace a by a
smooth kernel ak having the same constant of strong positivity as a,
and such that ak → a in a suitable sense as k → ∞. (See Lemma
3.1.) Previous results allow us to conclude that the equation with the
approximating kernel ak has a solution uk. Next, we show that uk

satisfies certain bounds, uniformly in k. The fact that ak has the same
constant of strong positivity as a is crucial for this step. To obtain
these bounds we proceed as in the proof of [19, Theorem 2]. However,
certain changes have to be introduced since we make no assumptions
on a′′. Once uniform bounds on ukt, ukx, uktx, ukxx, uktxx, ukxxx have
been established, one may let k → ∞ and obtain uk → u, where u
solves (V).

Of course, from (2.10) (2.12) and (V), one may obtain further results
on the asymptotic size of the derivatives of u. We refer the reader to
[19] for such statements.

The procedure outlined above can be used to obtain a local existence
result for large data. This is done in Theorem 2.2. The global condition
a′ ∈ L1(R+) is now replaced by a′ ∈ L1

loc (R+); again, no assumptions
are made on a′′ and a′(0+) = −∞ is not excluded.

In the proof of Theorem 2.2 we replace the given kernel a by smooth
approximating kernels ak having the same constant of strong positivity
as a. (See Lemma 3.2.) The approximated equation has a unique
local solution uk. Next, we prove that the same derivatives of uk that
we listed above have uniformly bounded L∞((0, T );L2)-norms for some
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T > 0. To obtain these bounds we apply the same (although somewhat
simplified) arguments as in the proof of Theorem 2.1. Letting k → ∞
we obtain uk → u, where u solves (V) on (0, T ). Finally, we show
that if the L∞((0, T0);L2)-norms of u remain bounded on the maximal
interval of existence (0, T0), then T0 = ∞. The proof of this requires
some additional analysis.

THEOREM 2.2. Let a, σ satisfy (2.1), (2.3), (2.4), and, in addition,
suppose that, for some constants p0 and p1,

(2.13) 0 < p0 ≤ σ′(x) ≤ p1, x ∈ R.

Let u0, u1 satisfy (2.5) and (2.6), respectively. Assume that f =
f1 + f2 + f3, where

f1, f1x, f1xx ∈ L∞
loc (L2), f1xxx ∈ L2

loc (L2),
f1t, f1tx, f1txx ∈ L1

loc (L2),(2.14)

(2.15) f2, f2t, f2x, f2tx, f2xx, f2txx ∈ L2
loc (L2),

(2.16) f3, f3x, f3xx ∈ L∞
loc (L2), f3t, f3tx, f3txx ∈ L1

loc (L2).

In addition, if a(∞) = 0, then let f3 = 0. Then there exists a solution
u of (V) defined on a maximal interval [0, T0)×R, where 0 < T0 ≤ ∞.
This solution satisfies

(2.17) ut, ux, utx, uxx, utxx, uxxx ∈ L∞
loc ([0, T0);L2).

If

(2.18) ut, ux, utx, uxx, utxx, uxxx ∈ L∞([0, T0);L2),

and if uxxxx ∈ L1
loc ([0, T0);L2), then T0 = ∞.

We conclude this section with a few technical comments.
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The inequality

(2.19) |αβ| ≤ λα2 +
1
4λ
β2, α, β ∈ R, λ > 0,

is frequently used in the proofs of Theorems 2.1 and 2.2 without specific
mentioning.

Norms are denoted by ‖ · ‖ with various subindices. In Section 4, the
notation ‖ · ‖p is to be understood as follows. Let uk(t, x) be defined
for t ∈ [0, T0k), x ∈ R. Then
(2.20)

‖uk‖p
p = ‖uk‖p

Lp((0,T0k);L2) =
∫ T0k

0

(∫
R

|uk(t, x)|2 dx
) p

2

dt, p ∈ [1,∞),

(2.21) ‖uk‖2
∞ = ‖uk‖2

L∞((0,T0k);L2) = ess sup
t∈[0,T0k)

∫
R

|uk(t, x)|2 dx.

Above, T0k = ∞ is not excluded.

In Section 5, the time integration is always over a compact interval.
Thus ‖uk‖p is defined by (2.20), (2.21) but with T0k replaced by
Tk = min(1, T0k, T1k). See (5.3), (5.4).

Other occurring norms are self-explanatory.

3. Auxiliary lemmas. The proofs of Theorems 2.1 and 2.2 rely
on an approximation of the given kernel a which is of strong positive
type by kernels ak that are smooth up to the origin and are of strong
positive type with the same constant q as a. Below, we formulate and
prove the two lemmas needed. The third lemma provides a convenient
estimate for the evaluation of integrals of the type

∫ t

0
ψ(s)(b ∗ϕ)(s) ds.

The use of this lemma is a key step in avoiding any assumption on
a′′. Finally, for the convenience of the reader, we formulate Lemmas
3.4 3.7 (corresponding to [19, Lemmas 4.1 4.4]). These lemmas are
used in Sections 4 and 5.

Although they are used only in the scalar case, we formulate the
approximation Lemmas 3.1 and 3.2 for (complex and) matrix-valued
kernels. To do this, we need to recall some notation.
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Let 〈·, ·〉 denote some inner product on Cn. An n×n matrix A is said
to be positive, denoted A  0, iff 〈v,Av〉 ≥ 0 for all vectors v ∈ Cn.
Denote the adjoint of A by A∗. The matrix RA = (A+A∗)/2 is called
the real part of A, and the matrix I A = (A−A∗)/(2i) the imaginary
part of A. Thus A = RA + i I A. A matrix-valued measure α that is
finite on J ⊂ R is said to be positive if α(E)  0 for every Borel set
E ⊂ J .

A function a ∈ L1
loc (R+;Cn×n) is said to be of positive type iff, for

every ϕ ∈ L2(R;Cn) with compact support, one has

(3.1) R
∫
R

〈ϕ(t), (a ∗ ϕ)(t)〉 dt ≥ 0.

A function a ∈ L1
loc (R+;Cn×n) is said to be of strong positive type

if there exists a constant q > 0 for which the function a(t) − qe−tI is
of positive type.

Let a ∈ L1
loc (R+;Cn×n) satisfy

∫
R+ e

−εt|a(t)| dt < ∞ for all ε > 0.
Then the following conditions are equivalent:

(i) a is of positive type,

(ii) R â(z)  0 for R z > 0,

(iii) lim infz→iτ,R z>0 R â(z)0 for every τ ∈R and lim inf |z|→∞,R z>0

R â(z)  0.

Obviously, a is of strong positive type with constant q iff (ii) or (iii)
holds with R â(z) replaced by R [â(z) − q(1 + z)−1]. See also (3.21).

For further properties of positive matrices and functions (and mea-
sures) of positive type, see [5, Chapter 16, Sections 2 4].

Our first lemma concerns a kernel of strong positive type having an
integrable derivative.

LEMMA 3.1. Assume that

(3.2) a ∈ ACloc (R+;Cn×n),

(3.3) a′ ∈ L1(R+;Cn×n),

and let

(3.4) a be of strong positive type with constant q > 0.
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Then there exist {ak}∞k=1 satisfying

(3.5) ak ∈ C∞(R+;Cn×n),

(3.6) sup
k

‖a′k‖L1(R+) <∞, a′′k ∈ L1(R+;Cn×n),

(3.7) ak is of strong positive type with constant q > 0,

and such that, for k → ∞,

(3.8) ak(t) → a(t) uniformly on R+,

(3.9) a′k → a′ in L1(R+;Cn×n).

Moreover, a− ak is of positive type for all k.

PROOF OF LEMMA 3.1. Without loss of generality, take a(∞) = 0
and q = 1. Note that since a′ ∈ L1(R+), the (distribution) Fourier
transform ã of a is a function, defined for ω �= 0. Moreover, the
condition a(∞) = 0 implies that the Fourier transform of a has no
point mass at the origin. Write α(ω) = R ã(ω).

By the fact that a is bounded, continuous and of positive type on
R+, one has, using Bochner’s Theorem [5, p. 498],

(3.10) a(t) =
1
π

∫
R

eiωtα(ω) dω, t ∈ R+.

Furthermore, α is positive and integrable, i.e., α  0 and α ∈ L1(R).

Let η be defined by

η(t) =
1
πt2

(cos t− cos 2t), t ∈ R\{0},

η(0) =
3
2π
.
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Then η ∈ C∞(R), η(i) ∈ L1(R) for i = 0, 1, 2, . . . , and
∫
R
η(t) dt = 1.

The transform η̃ satisfies

η̃(ω) =

⎧⎨
⎩

1, |ω| ≤ 1,
2 − |ω|, 1 ≤ |ω| ≤ 2,
0, |ω| ≥ 2.

For k > 0 and t ∈ R, let ηk(t) = kη(kt). Clearly,

‖ηk‖L1(R) = ‖η‖L1(R), η′k ∈ L1(R).

In addition, one has η̃k(ω) = η̃(ω
k ), and so

(3.11) η̃k(ω) =

⎧⎨
⎩

1, |ω| ≤ k,
2 − |ωk |, k ≤ |ω| ≤ 2k,
0, 2k ≤ |ω|.

Define
b(t) = a(t), t ≥ 0; b(t) = a(−t)∗, t < 0.

Then b̃ = 2α. Let fk = ηk ∗ b. There follows

(3.12) fk ∈ C∞(R;Cn×n), sup
k

‖f ′k‖L1(R) <∞, f ′′k ∈ L1(R+),

and

f̃k(ω) = η̃k(ω)b̃(ω) =

⎧⎨
⎩

2α(ω), |ω| ≤ k,
2(2 − |ωk |)α(ω), k ≤ |ω| ≤ 2k,
0, 2k ≤ |ω|.

Next define E(t) = e−|t|I, t ∈ R, and gk = E − ηk ∗ E. Then
gk ∈ C∞(R+) ∩ C∞(R−), with

(3.13) sup
k

‖g′k‖L1(R) <∞, g′′k ∈ L1(R+).

Obviously,

g̃k(ω) = R g̃k(ω) =

⎧⎪⎨
⎪⎩

0, |ω| ≤ k,
2

1+ω2 (|ωk | − 1)I, k ≤ |ω| ≤ 2k,
2

1+ω2 I, 2k ≤ |ω|.
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Let bk(t) = fk(t) + gk(t), t ∈ R. Thus b̃k = f̃k + g̃k, and, hence, since
a is of strong positive type with constant 1,
(3.14)

b̃k(ω) =

⎧⎪⎨
⎪⎩

2α(ω), |ω| ≤ k,
2(2 − |ωk |)α(ω) + 2(|ωk | − 1) 1

1+ω2 I  2
1+ω2 I, k ≤ |ω| ≤ 2k,

2
1+ω2 I, |ω| ≥ 2k.

Consequently,

(3.15)
2

1 + ω2
I � b̃k(ω) = R b̃k(ω) � 2α(ω).

Finally, define
ak = bk, t ≥ 0; ak = 0, t < 0.

Then αk
def=R ãk = b̃k/2; thus, each ak is of strong positive type with

constant 1. Moreover, each ak is bounded and continuous on R+;
hence, by Bochner’s Theorem [5, p. 498],

(3.16) ak(t) =
1
π

∫
R

eiωtαk(ω) dω, t ∈ R+.

By (3.10), (3.14), (3.16),

sup
t∈R+

|(a− ak)(t)| ≤ 1
π

∫
R

|α(ω) − αk(ω)| dω → 0, k → ∞.

To conclude the proof, observe that, by (3.12) and (3.13), one has
a′′k ∈ L1(R+), and that

g′k → 0, f ′k = ηk ∗ b′ → b′, k → ∞,

both in L1(R).

For the proof of Theorem 2.2, we need the following lemma regarding
a kernel of strong positive type with nonintegrable derivative.

LEMMA 3.2. Let a satisfy (3.2) and (3.4). Then there exist {ak}∞k=1

satisfying (3.5), (3.7), (3.8) and such that, for every T > 0,

(3.17) a′k → a′ in L1((0, T );Cn×n).
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Moreover, a− ak is of positive type for all k.

PROOF OF LEMMA 3.2. As in the previous proof, we may take
a(∞) = 0 and q = 1. Note that (3.2), (3.4) imply that a is bounded on
R+. It follows from Bochner’s Theorem that

(3.18) a(t) =
1
π

∫
R

eiωtα(dω), t ∈ R+,

where the positive measure α may be identified with the real part of
the distribution Fourier transform of a. Observe that α is finite, i.e.,∫
R
|α|(dω) <∞.

Let η, ηk, b, fk, gk be defined as in the proof of Lemma 3.1. As in that
proof one gets (cf. (3.15))

2
1 + ω2

I dω � b̃k(dω) = R b̃k(dω) � 2α(dω).

Again, let ak = bk, t ≥ 0; ak = 0, t < 0. Then ak ∈ C∞(R+;Cn×n) is
of strong positive type with constant 1 and

ak(t) =
1
π

∫
R

eiωtαk(dω), t ∈ R+,

where αk = R ãk = b̃k/2. The uniform convergence of ak to a is
immediate.

There remains to prove that a′k → a′ in L1(0, T ) for T > 0 arbitrary.
Since g′k → 0 in L1(R), it suffices to show that η′k ∗ b→ a′ in L1(0, T ).

Fix ε > 0, T > 0, choose N ≥ 2T sufficiently large, and write

(3.19) η′k ∗ b =
∫ ∞

N

+
∫ N

0

+
∫ 0

−∞
{η′k(t− s)b(s)} ds.

Then note that
∣∣∣∣
∫ ∞

N

η′k(t− s)a(s) ds
∣∣∣∣ ≤ ε, t ∈ [0, T ],
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independently of k, provided N = N(ε, T ) was taken large enough.
Integrate the second term on the right side of (3.19) by parts to get

∫ N

0

η′k(t− s)a(s) ds = − ηk(t−N)a(N) + ηk(t)a(0)

+
∫ N

0

ηk(t− s)a′(s) ds, t ∈ [0, T ].

Since a is bounded, we have limk→∞[−ηk(t−N)a(N)+ ηk(t)a(0)] = 0,
uniformly for t ∈ [0, T ]. From the fact that a′ ∈ L1(0, T ) there follows∫ N

0
ηk(t− s)a′(s) ds→ a′ in L1(0, T ). See, e.g., [5, Chapter 2, Lemma

7.4].

The integral in (3.19) over R− is handled in an analogous fashion.

For the estimation of the higher derivatives in the proofs of Theorems
2.1 and 2.2, the following lemma is crucial. It is a simple reformulation
for the Hilbert space case of [5, Chapter 17, Lemma 4.2].

Let H be a complex Hilbert space with scalar product 〈·, ·〉 and norm
‖ · ‖H . For ϕ ∈ L2

loc (R+;H) and a ∈ L1
loc (R+;R), define

(3.20) Q(ϕ, T, a) =
∫ T

0

〈
ϕ(t),

∫ t

0

a(t− s)ϕ(s) ds
〉
dt.

Note that here a is scalar-valued, whereas ϕ takes values in H. (Cf.
(3.1).)

If a is of positive type, then Q(ϕ, T, a) ≥ 0 for all ϕ and T . Let
e = e−t, t ∈ R+. Then, if a is of strong positive type with constant q,
one has

(3.21) Q(ϕ, T, e) ≤ q−1Q(ϕ, T, a)

for ϕ ∈ L2
loc (R+;H) and T > 0.



SOME EXISTENCE RESULTS 17

LEMMA 3.3. Let T > 0, let ψ ∈ L2((0, T );H) be absolutely continuous
with ψ′ ∈ L2((0, T );H), assume that b ∈ L1((0, T );R) and that
ϕ ∈ L2

loc (R+;H). Then

(3.22)

∫ T

0

〈ψ(t), (b ∗ ϕ)(t)〉 dt

≤ ‖b‖L1(0,T )‖ψ(T )‖H sup
t∈[0,T ]

(2Q(ϕ, t, e))
1
2

+ ‖b‖L1(0,T )(‖ψ‖L2((0,T );H) + ‖ψ′‖L2((0,T );H))Q
1
2 (ϕ, T, e).

To make the arguments in the proofs to follow somewhat more
self-contained, we formulate Lemmas 3.4 3.7 that are needed for the
estimates in Sections 4 and 5. Below Q and e are as in Lemma 3.3. In
our applications of Lemmas 3.3 3.7, H = L2(R).

LEMMA 3.4. ([19, Lemma 4.1], [5, Chapter 16, Corollary 6.6].) Let
a ∈ C(R+,R) be of positive type, let ϕ ∈ L1

loc (R+;H), and let T > 0.
Then ∥∥∥∥∥

∫ T

0

a(T − s)ϕ(s) ds

∥∥∥∥∥
2

H

≤ 2a(0)Q(ϕ, T, a).

LEMMA 3.5. ([19, Lemma 4.2], [5, Chapter 16, Corollary 5.3].) Let
a satisfy a, a′ ∈ L1(R+;R). Then, for every ϕ ∈ L1

loc (R+;H) and
T > 0, ∫ T

0

∥∥∥∥
∫ t

0

a(t− s)ϕ(s) ds
∥∥∥∥

2

H

dt ≤ CaQ(ϕ, T, e),

where Ca = ‖a‖2
L1(R+) + 4‖a′‖2

L1(R+).

LEMMA 3.6. ([19, Lemma 4.3], [5, Chapter 16, Corollary 6.3].) Let
f, f ′ ∈ L2(R+;H). Then, for every ϕ ∈ L1

loc (R+;H) and T > 0,

∣∣∣∣∣
∫ T

0

〈ϕ(t), f(t)〉 dt
∣∣∣∣∣
2

≤ CfQ(ϕ, T, e),

where Cf = 2
∫
R+(‖f‖2

H + ‖f ′‖2
H) dt.
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LEMMA 3.7. ([19, Lemma 4.4].) Let a ∈ L1
loc (R+;R) be of positive

type with a(∞) > 0 and let f ′ ∈ L1(R+;H). Then, for every
ϕ ∈ L1

loc (R+;H) and T > 0,

∣∣∣∣∣
∫ T

0

〈ϕ(t), f(t)〉 dt
∣∣∣∣∣
2

≤
(

Cf

a(∞)

)
sup

t∈[0,T ]

Q(ϕ, t, a),

where Cf = 2(supt∈R+ ‖f(t)‖H +
∫
R+ ‖f ′(t)‖H dt)2.

4. Proof of Theorem 2.1. Let q be the constant of strong positivity
of a and choose a sequence of kernels ak satisfying (3.5) (3.9). By
(2.1) (2.3), such a sequence exists. It is a consequence of the present
assumptions and [19, Theorem 1] that, for each k, there exists a unique
local solution uk of

(Vk)
u′(t, x) −

∫ t

0

ak(t− s)σ(ux(s, x))x ds = f(t, x), t ≥ 0, x ∈ R,

u(0, x) = u0(x),

defined on the maximal interval [0, T0k) × R and satisfying (2.17).
We intend to show that if the data are sufficiently small, then the
derivatives in (2.10), (2.11) of these solutions uk are bounded uniformly
in k, i.e., that

α
def= sup

k
[‖ukt‖∞ + ‖ukx‖∞ + ‖uktx‖∞ + ‖ukxx‖∞

(4.1)

+ ‖uktxx‖∞ + ‖ukxxx‖∞] <∞,

β
def= sup

k
[‖uktx‖2 + ‖ukxx‖2 + ‖uktxx‖2 + ‖ukxxx‖2] <∞.

(4.2)

From this fact it follows that T0k = ∞ for all k. Finally, we let k → ∞
and show that, by (4.1), (4.2), one has uk → u, where u solves (V).
Recall that, in this section, ‖ · ‖p = ‖ · ‖Lp((0,T0k);L2).

Without loss of generality, let u0x and f (for each t) have compact
support on R. Then ukx has compact support on R. As in [1, 19],
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let C stand for an a priori constant, and let γ denote a controllably
small constant, that is, a constant that can be made arbitrarily small
(uniformly in k) by taking the norms in (2.5) (2.9) sufficiently small.

Fix positive numbers c0, p0, p1 such that

(4.3) 0 < p0 ≤ σ′(x) ≤ p1, |x| ≤ c0.

We claim that there exists μ ∈ (0, c0], independent of k, such that if

(4.4) |ukx| ≤ μ, |uktx| ≤ μ, |ukxx| ≤ μ, t ∈ R+, x ∈ R,

then α and β are controllably small. On the other hand, if α is
sufficiently small, then (4.4) holds for all k. This legitimizes the
(seemingly circular) argument.

The estimates below are quite analogous to those in [19, Proof of
Theorem 2]. Consequently, we do not repeat them in all detail. There is
one exception, namely, the following. Since we do not assume a′′ ∈ L1,
we are able to bound the second order derivatives only by a third order
derivative. However (this is where the use of Lemma 3.3 is crucial),
using these bounds we can show that the third order derivatives, hence
the second order derivatives, are in fact controllably small.

To simplify the notation in the estimates, we write u = uk, ϕ =
−σ(ux)x. For the moment, let σ be smooth so that Q(ϕxx, t, ak) is
well-defined.

The estimates [19, (5.3) (5.8)] may be repeated to yield (Q as in
(3.20) with H = L2(R))

‖ux‖∞ + sup
s∈[0,T0k)

Q(ϕ, s, ak) ≤ γ,(4.5)

‖uxx‖2
∞ + sup

s∈[0,T0k)

Q(ϕx, s, ak) ≤ γ + γ‖uxx‖2 + Cμ‖uxx‖2
2.(4.6)

Next, as in [19], write (Vk) as ut + w1 = f − w3, where w1 =
(ak − (ak(0) + 1)e) ∗ ϕ, w3 = (ak(0) + 1)e ∗ ϕ. Multiply (Vk) by
utx

∂
∂x and integrate over [0, s]×R, s ∈ [0, T0k). This yields, after some

simple estimates and integrations by parts,
(4.7)

‖utx‖2
2 + p0‖uxx‖2

2 ≤
∫
R

uxx(s, x)w1(s, x) dx−
∫ s

0

∫
R

uxxw2 dx dt

+
∫ s

0

∫
R

utx(fx − w3x) dx dt,
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where w2 = (a′k +(ak(0)+1)e) ∗ ϕ. To estimate the term
∫ s

0

∫
R
uxxw2

dx dt, we use Lemma 3.3. Define bk = a′k + (ak(0) + 1)e. Then, by
(3.21), Lemma 3.1, (3.22) and (4.5)
∣∣∣∣∣
∫ s

0

∫
R

uxxw2 dx dt

∣∣∣∣∣
=

∣∣∣∣
∫ s

0

∫
R

uxx(bk ∗ ϕ) dx dt
∣∣∣∣

≤ ‖bk‖L1(R+)(2
1
2 ‖uxx‖∞+‖uxx‖2+‖utxx‖2) sup

s∈[0,T0k)

Q
1
2 (ϕ, s, e)

≤ γ(‖uxx‖∞ + ‖uxx‖2 + ‖utxx‖2).

The remaining integrals in (4.7) are estimated as in [19]. One obtains
(4.8)
‖utx‖2

2 + ‖uxx‖2
2 ≤ γ + γ‖uxx‖∞ + γ‖utxx‖2 + C sup

s∈[0,T0k)

Q(ϕx, s, ak).

Divide (4.8) by a sufficiently large constant, add the resulting inequality
to (4.6), and finally choose μ sufficiently small. This yields

(4.9) ‖utx‖2
2+‖uxx‖2

2+‖uxx‖2
∞+ sup

s∈[0,T0k)

Q(ϕx, s, ak) ≤ γ+γ‖utxx‖2.

To obtain estimates on the third order derivatives, multiply (Vk) by
ϕxx

∂2

∂x2 and integrate. The result is (cf. [19, (5.15)])

(4.10)
1
2

∫
R

σ′(ux(s, x))u2
xxx(s, x) dx+Q(ϕxx, s, ak)

=
1
2

∫
R

σ′(u0x)u2
0xxx(0, x) dx+

1
2

∫ s

0

∫
R

σ′′(ux)utxu
2
xxx dx dt

+
∫ s

0

∫
R

σ′′′(ux)u3
xxutxx dx dt+ 2

∫ s

0

∫
R

σ′′(ux)uxxuxxxutxx dx dt

+
∫ s

0

∫
R

ϕxxfxx dx dt.

Use (2.5), (2.7) (2.9), (4.3), (4.4), (4.9), and Lemmas 3.6 and 3.7
to estimate the right side (estimate the nonhomogeneous term as in
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(5.9) (5.11)). This gives
(4.11)

‖uxxx‖2
∞ + sup

s∈[0,T0k)

Q(ϕxx, s, ak) ≤ γ + Cμ(‖uxxx‖2
2 + ‖utxx‖2

2)

+ γ(‖uxxx‖2 + ‖utxx‖2).

For the final estimates, multiply (Vk) by utxx
∂2

∂x2 and write the
resulting equation as

(4.12) u2
txx + utxxw1xx = utxx(fxx − w3xx).

Integrate this equation over [0, s] × R, s ∈ [0, T0k), and observe that
the second term can be written as
(4.13)∫ s

0

∫
R

utxxw1xxdx dt =
∫ s

0

∫
R

uxxxw2x dx dt−
∫
R

uxxx(s, x)w1x(s, x) dx

+
∫ s

0

∫
R

σ′(ux)u2
xxx dx dt+

∫ s

0

∫
R

σ′′(ux)u2
xxuxxx dx dt.

From (4.3), (4.4), (4.12), (4.13) there results, after simple estimates (cf.
[2, (5.17) and the preceding inequality]),

(4.14)

‖utxx‖2
2 + p0‖uxxx‖2

2

≤
∣∣∣∣
∫ s

0

∫
R

uxxxw2x dx dt

∣∣∣∣
+ ‖utxx‖2(‖f1xx‖2 + ‖w3xx‖2)
+ ‖uxxx‖∞(‖f2x‖∞ + ‖f3x‖∞ + ‖f3tx‖1 + ‖w1x‖∞)
+ ‖uxxx‖2‖f2tx‖2 + ‖u0xxx‖L2(R)(‖f2x‖∞ + ‖f3x‖∞)
+ Cμ‖uxx‖2‖uxxx‖2.

Integrate the first term on the right side by parts, then apply (3.6) and
Lemma 3.3 to obtain

(4.15)
∣∣∣∣
∫ s

0

∫
R

uxxxw2x dx dt

∣∣∣∣ =
∣∣∣∣
∫ s

0

∫
R

uxx(bk ∗ ϕxx) dx dt
∣∣∣∣

≤ C(‖uxx‖∞ + ‖uxx‖2 + ‖utxx‖2) sup
s∈[0,T0k)

Q
1
2 (ϕxx, s, ak).
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Also recall that, by Lemmas 3.4 and 3.5,

(4.16)

‖w1x‖∞ ≤ C sup
s∈[0,T0k)

Q
1
2 (ϕx, s, ak),

‖w3xx‖2 ≤ C sup
s∈[0,T0k)

Q
1
2 (ϕxx, s, ak).

In (4.14), use (4.15), (4.16) and (2.5), (2.7) (2.9). This yields

‖utxx‖2
2 + ‖uxxx‖2

2

≤ C‖uxxx‖∞ sup
s∈[0,T0k)

Q
1
2 (ϕx, s, ak)

+ C(‖uxx‖∞ + ‖uxx‖2 + ‖utxx‖2) sup
s∈[0,T0k)

Q
1
2 (ϕxx, s, ak)

+ Cμ‖uxx‖2‖uxxx‖2 + γ‖uxxx‖∞ + γ.

Employ (4.9) to estimate the quantities ‖uxx‖2, ‖uxx‖∞, Q(ϕx, s, ak).
There results, provided we choose μ sufficiently small,
(4.17)
‖utxx‖2

2+‖uxxx‖2
2 ≤C(γ+‖utxx‖2) sup

s∈[0,T0k)

Q
1
2 (ϕxx,s,ak)+γ‖uxxx‖2

∞+γ,

or, after applying (2.19),

(4.18) ‖utxx‖2
2 + ‖uxxx‖2

2 ≤ γ‖uxxx‖2
∞ + C sup

s∈[0,T0k)

Q(ϕxx, s, ak) + γ.

Divide (4.18) by a sufficiently large constant, add the result to (4.11)
and select μ sufficiently small. This gives

(4.19) ‖uxxx‖∞ + ‖utxx‖2 + ‖uxxx‖2 + sup
s∈[0,T0k)

Q(ϕxx, s, ak) ≤ γ.

By (4.9) and (4.19) one has

(4.20) ‖utx‖2 + ‖uxx‖2 + ‖uxx‖∞ + sup
s∈[0,T0k)

Q(ϕx, s, ak) ≤ γ,

and, by (4.6),

(4.21) ‖uxx‖∞ ≤ γ.
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To obtain
‖ut‖∞ + ‖utx‖∞ + ‖utxx‖∞ ≤ γ,

one uses (Vk), Lemmas 3.1 and 3.4, the assumption on f , (4.5), (4.19)
and (4.20).

Since the controllably small constant γ is independent of k, (4.1) and
(4.2) have been established. In particular, these bounds imply that
T0k = ∞ for all k. Moreover, note that (4.1) and (4.2) remain valid
even if σ is not smoother than what is required by (2.4).

Before we let k → ∞, a bound on utt must be obtained. Differentiate
(Vk) to get

(utt − ft)(t, x) = −ak(0)ϕ(t, x)−
∫ t

0

a′k(t− s)ϕ(s, x) ds.

By (4.2), (4.3), (4.4), and since supk ‖a′k‖L1(R+) <∞, we have

(4.22) sup
k

‖utt − ft‖2 ≤ γ.

Fix T > 0, N > 0 and let Ω = [0, T ] × [−N,N ]. From (2.5), (4.1),
(4.22), and by the assumption on f ,

sup
k

∥∥∥∥uk(t, x) −
∫ t

0

f(s, x) ds
∥∥∥∥

W 2,2(Ω)

<∞.

Therefore, by the compact imbedding, there exists g ∈ W 1,2(Ω) such
that uk −

∫ t

0
f ds converges to g in W 1,2(Ω). Define u = g+

∫ t

0
f . Then

ukx → ux, ukt → ut a.e. on Ω. By a simple diagonalization argument
we have

(4.23) ukx → ux, ukt → ut a.e. on R+ × R.

From the weak compactness it follows that u satisfies (2.10), (2.11). A
simple use of (3.8), (4.3), (4.23) and Lebesgue’s dominated convergence
theorem shows that u satisfies (V) (in the distribution sense).

Using (2.10), (2.11), (4.4), and the hypothesis on a and σ, one easily
gets (2.12).
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5. Proof of Theorem 2.2. Let {ak}∞k=1 be a sequence of the type
given by Lemma 3.2 and again consider (Vk). By [19, Theorem 1], this
equation has a unique local solution uk defined on the maximal interval
[0, T0k) that satisfies (2.17), (2.18).

Our first purpose is to show that there exists T > 0 such that T ≤ T0k

for all k, and such that
(5.1)
sup

k
[‖ukt‖B+‖ukx‖B +‖uktx‖B+‖ukxx‖B+‖uktxx‖B +‖ukxxx‖B] <∞.

Here, B = L∞((0, T );L2). We then let k → ∞ and obtain uk → u,
where u is a solution of (V) on [0, T ]. Finally we observe that if the
maximal interval of existence of u is finite, and (2.18) and the additional
regularity condition hold, then u may be continued.

To begin, note that, by the hypothesis on f and u0,

(5.2) θ
def= sup

x∈R
|ukx(0, x)| + sup

x∈R
|uktx(0, x)| + sup

x∈R
|ukxx(0, x)|

is finite and independent of k. Let

T1k
def= sup{t | sup

x∈R
|ukx(s, x)| + sup

x∈R
|uktx(s, x)|

+ sup
x∈R

|ukxx(s, x)| ≤ 2θ, 0 ≤ s ≤ t}.(5.3)

Without loss of generality, assume that, for each t, the functions f ,
u0 have compact support on R. As in the proof of Theorem 2.1, we
write u = uk, ϕ = −σ(ux)x and denote constants that depend only on
the given functions a, f, σ and u0 by C. In particular, the constants C
are independent of k. For the moment, take σ sufficiently smooth for
Q(ϕxx, t, ak) to make sense.

The estimates below, although only local in time, are formally entirely
analogous to those in the proof of Theorem 2.1; hence, we do not repeat
all the details.

Multiply (Vk) by ϕ and integrate over [0, s] × R, s ∈ [0, Tk), where

(5.4) Tk = min(1, T0k, T1k),

to get, by (2.5), (2.13),

(5.5)
p0

2
‖ux(s, ·)‖2

L2(R) +Q(ϕ, s, ak) ≤ C +
∫ s

0

∫
R

ϕf dx dt.
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As in the proof of Theorem 2.1, this gives

(5.6) ‖ux‖∞ + sup
s∈[0,Tk)

Q(ϕ, s, ak) ≤ C,

i.e., (4.5) with γ replaced by C. (In this section, ‖·‖p = ‖·‖Lp((0,Tk);L2).)

Next, multiply (Vk) by ϕx
∂
∂x and integrate over [0, s]×R, s ∈ [0, Tk).

Perform the same estimates that gave (4.6), use the trivial inequality
‖·‖2 ≤ T

1
2

k ‖·‖∞ and the fact that s ≤ T1k implies |σ′′(ux)utx| ≤ C, and
finally, if necessary, decrease Tk. (This possible decrease is independent
of k.) One arrives at

(5.7) ‖uxx‖∞ + sup
s∈[0,Tk)

Q(ϕx, s, ak) ≤ C.

By (Vk), the hypothesis on f , Lemma 3.4 and (5.7),

(5.8) ‖utx‖∞ ≤ C.

Thus we may proceed to the third order derivatives and need not repeat
the steps contained in (4.7) (4.9).

To estimate the integrals in (4.10), where s ∈ [0, Tk), we make use
of the fact that |σ′′(ux)|, |σ′′′(ux)|, |uxt|, |uxx| ≤ C for s ≤ Tk. The
first term on the right side of (4.10) is obviously bounded by a constant
C. The second, third and fourth terms are bounded by, respectively,
C‖uxxx‖2

2, C‖utxx‖2, C‖uxxx‖2‖utxx‖2. Then note that

(5.9)

∣∣∣∣
∫ s

0

∫
R

ϕxxf1xx dx dt

∣∣∣∣ ≤
∣∣∣∣
∫ s

0

∫
R

σ′′(ux)u2
xxf1xxx dx dt

∣∣∣∣
+

∣∣∣∣
∫ s

0

∫
R

σ′(ux)uxxxf1xxx dx dt

∣∣∣∣
≤ C + C‖uxxx‖2.

By Lemma 3.6 and (2.15),

(5.10)
∣∣∣∣
∫ s

0

∫
R

ϕxxf2xx dx dt

∣∣∣∣ ≤ C sup
s∈[0,Tk)

Q
1
2 (ϕxx, s, ak),
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and, by Lemma 3.7 and (2.16),

(5.11)
∣∣∣∣
∫ s

0

∫
R

ϕxxf3xx dx dt

∣∣∣∣ ≤ C sup
s∈[0,Tk)

Q
1
2 (ϕxx, s, ak).

Consequently, (4.10) implies

‖uxxx‖2
∞+ sup

s∈[0,Tk)

Q(ϕxx, s, ak)

≤ C(1 + ‖uxxx‖2
2 + ‖utxx‖2 + ‖uxxx‖2‖utxx‖2).

Since ‖·‖2 ≤ T
1
2

k ‖·‖∞, we obviously get, after decreasing Tk if necessary,

(5.12) ‖uxxx‖2
∞ + sup

s∈[0,Tk)

Q(ϕxx, s, ak) ≤ C + C‖utxx‖2
2.

We are left with the task of estimating the terms in (4.14), where
s ∈ [0, Tk). Let F denote an a priori function satisfying F (x) ↓ 0 for
x ↓ 0. Then, by Lemma 3.3 and (5.7) (cf. (4.15))

∣∣∣∣
∫ s

0

∫
R

uxxxw2x dx dt

∣∣∣∣ ≤ F (Tk)(‖utxx‖2 + 1) sup
s∈[0,Tk)

Q
1
2 (ϕxx, s, ak).

Next observe that by Lemma 3.4

‖w3xx‖2 ≤ F (Tk) sup
s∈[0,Tk)

Q
1
2 (ϕxx, s, ak).

To estimate ‖w1x‖∞, recall (4.16) and (5.7). Finally, invoke the
assumption on u0 and f to realize that (4.14) implies
(5.13)
‖utxx‖2

2 + ‖uxxx‖2
2 ≤ C + C‖uxxx‖∞ + F (Tk) sup

s∈[0,Tk)

Q(ϕxx, s, ak).

Divide (5.12) by a sufficiently large constant, add the result to (5.13)
and, if necessary, take Tk sufficiently small. One obtains

(5.14) ‖uxxx‖∞ + ‖utxx‖2 + sup
s∈[0,Tk)

Q(ϕxx, s, ak) ≤ C.

By (Vk), the assumption on f , Lemma 3.4, (5.6), and (5.14), we have

(5.15) ‖ut‖∞ ≤ C, ‖utxx‖∞ ≤ C.
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From (5.6) (5.8), (5.14), (5.15), it follows that we have (5.1) but only
with the space B = L∞((0, Tk);L2). Obviously, this conclusion remains
valid for σ only in C3.

To conclude that the values Tk are, in fact, bounded away from zero,
we first differentiate (Vk) with respect to t and x, use the assumption
on f , and (2.4), (3.8), (3.17), (5.3), and (5.14) to get

(5.16) ‖uttx‖1 ≤ C.

Then observe that it is a consequence of (5.1) withB = L∞((0, Tk);L2),
(5.2), (5.3) and (5.16) that T1k < T0k with T1k ↓ 0 as k → ∞ cannot
possibly hold. (If the solution uk exists, then, by (5.1) and (5.16),
the time required for the derivatives in (5.2) to grow from θ to 2θ is
bounded away from zero.) Then note that it follows from (2.17), (2.18)
with u = uk and T0 = T0k, and from (5.1) with B = L∞((0, Tk);L2),
that T0k ≤ T1k, with T0k ↓ 0 as k → ∞, is excluded.

Thus, there exists T > 0 such that the solutions uk exist on [0, T ]
and satisfy (5.1).

To obtain a solution u of (V) on [0, T ] that satisfies ut, ux, utx, uxx,
utxx, uxxx ∈ L∞((0, T );L2), one argues as in the proof of Theorem 2.1.

Let T0 ≤ ∞ be the length of the maximal interval of existence of a
solution u of (V) that satisfies (2.17). Suppose that (2.18) holds and
that T0 < ∞. We claim that, in this case, and provided the regularity
condition uxxxx ∈ L1

loc ([0, T0);L2) is satisfied, the solution may be
continued.

Clearly we may extend u to [0, T0]×R. Consider the approximating
equation

(5.17)
ukt(t, x) −

∫ t

T0

ak(t− s)σ(ukx(s, x))x ds

= f(t, x) +
∫ T0

0

ak(t− s)σ(ux(s, x))x ds,

for t ≥ T0 and x ∈ R, with uk(T0, x) = u(T0, x). By (2.18), there
exists θ < ∞ such that |ux|, |utx|, |uxx| ≤ θ for t ∈ [0, T0], x ∈ R.
Without loss of generality, ux(T0, ·), uxx(T0, ·), uxxx(T0, ·) ∈ L2(R).
Write gk(t, x) =

∫ T0

0
ak(t− s)σ(ux(s, x))x ds. Clearly,

(f + g)t, (f + g)tx ∈ L1
loc ((T0,∞);L2).
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In addition, gkttx ∈ L1
loc (L2).

Using uxxxx ∈ L1
loc ([0, T0);L2), it is straightforward to show that one

does have sup0≤s≤T0
Q(ϕxx, s, a) < ∞. Thus, since a − ak is a kernel

of positive type,

(5.18) sup
k

sup
s∈[0,T0]

Q(ϕxx, s, ak) <∞.

Moreover, without loss of generality, gk(T0, ·), gkx(T0, ·), gkxx(T0, ·) ∈
L2(R).

Thus, [19, Theorem 1] may be applied to show that (5.17) has a
solution uk existing on some interval [T0, T̃k) and satisfying

ukt, ukx, uktx, ukxx, uktxx, ukxxx ∈ L∞
loc ([T0, T̃k);L2).

We claim that infk T̃k > 0. To prove this claim, one simply repeats
the proof above, including gk in f2. Of course, for this repetition to
succeed, we must show that gk can in fact be handled in the same
way as f2 was. (The argument below may be simplified if one uses
uxxxx ∈ L1

loc ([0, T0);L2) once more.)

It is straightforward to show that, by (2.18),

sup
k

(‖gk‖B + ‖gkt‖B + ‖gkx‖B + ‖gktx‖B) <∞,

where B = L2((T0, T0 + 1);L2). Then observe that an examination of
the proof above reveals that the conditions f2xx, f2txx ∈ L2(L2) were
needed only to estimate

∫ s

0

∫
R
ϕkxxf2xx dx dt. The part of this double

integral that interests us is now (ϕk = −σ(ukx)x, ϕ = −σ(ux)x)

Ik =
∫ s

T0

∫
R

ϕkxx(t, x)
∫ T0

0

ak(t−τ )ϕxx(τ, x) dτ dx dt, s ∈ [T0, T0+1].

But Ik has the upper bound
(

sup
s∈[T0,T0+1]

Q
1
2
0 (ϕkxx, s, ak)

)
Q

1
2 (ϕxx, T0, ak),

where Q0(ϕ, s, ak) =
∫ s

T0

∫
R
ϕ(t, x)

∫ t

T0
ak(t − τ )ϕ(τ, x) dτ dx dt. Thus,

by (5.18), we obtain the relation corresponding to (5.11).
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With infk T̃k > T0 and bounds corresponding to (5.1) established, one
may let k → ∞. Then gk → g =

∫ T0

0
a(t− τ )σ(ux(τ, x))x dτ uniformly

on t ≥ T0, x ∈ R, and one obtains uk → ũ, where ũ solves

ũt(t, x) −
∫ t

T0

a(t− s)σ(ũx(s, x))x ds = f(t, x) + g(t, x)

on [T0, T0 + T ]×R for some T > 0. Clearly ũ is an extension of u. By
this contradiction, T0 = ∞.
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