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ABSTRACT. We consider identification of parameters in a
Volterra integrodifferential system with a weakly singular ker-
nel. Such kernels arise in fractional derivative damping models
of viscoelastic materials. The Volterra equation is cast in a
semigroup setting to establish results on the differentiability
of the solution with respect to a parameter. These results are
needed for convergence of the identification algorithm. Nu-
merical results are presented.

1. Introduction. In this paper we consider the identification of
parameters in a Volterra integrodifferential equation with a singular
kernel. The equation of interest has the form

(1.1)
{
ẇ(t) = Mw(T ) +

∫ t

−∞K(t− s, p)w(s) ds+ F (t), t ≥ 0,
w(0) = η, w(s) = φ(s), s < 0,

where M is an n× n constant matrix, η ∈ Rn, φ ∈ L1(−∞, 0;Rn)
and K(·, p) is an n× n singular kernel depending on a parameter
p contained in an admissible parameter set. We are particularly
interested in a kernel function of the form

g(s, p) =
γe−βs

Γ(1 − α)sα
, s > 0,

where Γ(·) denotes the gamma function, p = (α, β, γ) ∈ R3 with
0 ≤ α < 1 and β, γ > 0. Such kernels arise in the study of fractional
derivative models of viscoelastic structures. For a more complete
discussion of the origins of this kernel and the viscoelastic models, we
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refer the reader to [12, 18, 13, 15], and, in particular, to [17] and the
extensive bibliography therein.

Banks, et al. [2] have identified parameters corresponding to β and
γ in a similar (but different) model, but assumed that α was known.
Torvik and Bagley [1, 18] have estimated the parameter α, but in
the Laplace transform domain. In this paper we restrict ourselves to
identifying α only, though the theory may be modified to include β and
γ as well.

In order to relate equation (1.1) to a (idealized) physical model,
consider the longitudinal motions of a uniform bar fixed at both ends
with Boltzmann type damping. The governing equation is [9, 14]

(1.2)
ρutt(x, t) =

∂

∂x

{
Eux(x, t) +

∂

∂t

∫ t

0

g(t− s)ux(x, s) ds
}

+ f(x, t), 0 < x < 1, t > 0,

with boundary conditions u(0, t) = 0, u(1, t) = 0,
and initial conditions u(x, 0) = d(x), ut(x, 0) = v(x).

Here, u(x, t) represents the axial displacement of position x at time t, ρ
is the density of the material, E a stiffness parameter, f(x, t) a forcing
function, and

g(s) =
γe−βs

Γ(1 − α)sα

represents a fractional derivative damping term modified to have expo-
nential decay [12].

A common approach to the parameter identification problem [4] is
to apply a Galerkin-type approximation scheme to the beam equation
and then incorporate some type of identification algorithm to the
approximating system of integrodifferential equations. If one applies
a Galerkin scheme to equation (1.2) (e.g., using linear splines), one
obtains a system of equations of the form

(1.3) Â
d2v

dt2
(t) = B̂v(t) + Ĉ

d

dt

∫ t

0

g(t− s)v(s) ds+ F̂ (t).

In this equation Â, B̂, and Ĉ represent constant matrices and v(t) and
F̂ (t) are vectors of appropriate dimension.
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In order to retain the salient features but simplify the analysis in
the following sections, we shall consider the following scalar version of
(1.3):

(1.4)

{
d2x
dt2 (t) = ax(t) + d

dt

∫ t

0
g(t− s)x(s) ds+ f̂(t),

x(0) = x0, ẋ(0) = x1.

Integrating (1.4) we obtain

(1.5)
{
ẋ(t) = a

∫ t

0
x(s) ds+

∫ t

0
g(t− s)x(s) ds+ f(t),

x(0) = x0,

where

f(t) = x1 +
∫ t

0

f̂(s) ds.

Define z(t) =
∫ t

0
x(s) ds; then ż(t) = x(t) and we obtain the system of

integrodifferential equations

(1.6)
{
ẋ(t) = az(t) +

∫ t

0
g(t− s)x(s) ds+ f(t)

ż(t) = x(t),

with x(0) = x0, z(0) = 0.

A standard assumption in viscoelasticity [13] is that the material
is in an unstrained state for time t < 0. This would correspond to
u(x, s) = 0 for s < 0 in equation (1.2). It follows then that x(s) = 0
and z(s) = 0 for s < 0 in (1.6). If we define w(t) = col (x(t), z(t)), then
w(t) satisfies

(1.7)

⎧⎪⎨
⎪⎩
ẇ(t) = Mw(t) +

∫ t

0
K(t− s)w(s) ds+ F (t),

w(0) =
(
x0

0

)
,

where M =
(

0 a

1 0

)
, K(s) =

(
g(s) 0

0 0

)
, and F (t) =

(
f(t)

0

)
.

Since w(s) = col (0, 0), for s < 0, we may rewrite (1.7) as

ẇ(t) = Mw(t) +
∫ t

−∞
K(t− s)w(s) ds+ F (t),

w(0) =
(
x0

0

)
, w(s) =

(
0
0

)
, s < 0,

which is in the form of equation (1.1).
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The remainder of the paper is outlined as follows. In Section 2 we
review previous results that place equation (1.1) in a semigroup setting
in order to establish existence of solutions. Differentiability results
needed for the parameter estimation algorithm are then proved. In
Section 3 the quasilinearization algorithm used for the identification
procedure is discussed along with convergence results. Numerical
examples are given in Section 4.

2. The abstract setting. In this section we develop an abstract
framework for the Volterra integral equation discussed in the previous
section. Namely, we will consider equation (1.1) in the form

(2.1)
{
ẇ(t) = Mw(t) +

∫ 0

−∞K(−s, α)w(t+ s) ds+ F (t), t > 0,
w(0) = η, w(s) = ϕ(s), s < 0,

where η =
( x0

0

) ∈ R2, M =
(

0 a

1 0

)
, F (t) =

(
f(t)

0

)
, and

(2.2) K(s, α) =
γe−βs

Γ(1 − α)sα

(
1 0
0 0

)
, s > 0.

We assume β and γ are positive constants and 0 ≤ α < 1. By a
solution of (2.1) we mean a function w : (−∞,∞) → R2 such that
w is absolutely continuous (A.C.) on [0,∞) and satisfies the integral
equation a.e. on [0,∞), w(0) = η, and w(s) = ϕ(s) a.e. on (−∞, 0].

Our semigroup formulation follows the construction in [5] as further
developed in [10] and [11]. Define the product space X = R2 ×
L1(−∞, 0) with norm ‖(η, ϕ)‖X = |η| + ‖ϕ‖L1(−∞,0). Consider the
homogeneous equation

(2.3)
{
ẏ(t) = My(t) +

∫ 0

−∞K(−s, α)y(t+ s) ds, t > 0
y(0) = η, y(s) = ϕ(s), s < 0.

Then, for each pair (η, ϕ) ∈ X, (2.3) has a unique solution, and, more-
over, the mapping S(t, α)(η, ϕ) = (y(t), yt(·)) defines a C0-semigroup
on X. Here we have used the notation yt(s) = y(t+ s), t ≥ 0, s < 0.

Fix ε ∈ (0, 1) and define the parameter set P = [0, 1 − ε]. Then it is
readily seen from (2.2) that there is a constant C, independent of α,
such that

(2.4)
∫ ∞

0

|K(s, α)| ds ≤ C for all α ∈ P.
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Under this condition it is shown in [10] and [11] that the semigroup
S(t, α) is generated by a closed and densely-defined operator A(α)
defined by

Dom(A(α)) ≡ D = {(η, ϕ) ∈ X : ϕ is A.C. on compact subsets
of (−∞, 0], ϕ̇ ∈ L1(−∞, 0), ϕ(0) = η}

and

A(α)(η, ϕ) =
(
Mη +

∫ 0

−∞
K(−s, α)ϕ(s) ds, ϕ̇

)
for (η, ϕ) ∈ D.

Our task is to show that the solution w(t, α) ≡ w(t) of (2.1) is
differentiable with respect to α and that this derivative is sufficiently
smooth to establish the local convergence of the algorithm defined in
Section 3. This involves verifying the conditions in the semigroup
setting established in [6] and [ 8]. We, therefore, assume in what follows
that the reader has these papers in hand.

Since we are interested in dependence on α, we write A(α) =
A + B(α), where A is independent of α and

(2.5) B(α)(η, ϕ) =
〈∫ 0

−∞
K(−s, α)ϕ(s) ds, 0

〉
, (η, ϕ) ∈ D.

Note that the range of B(α) is the finite-dimensional space Y =
R2 × {0}.

Fix y0 ∈ X, α0 ∈ P , and T > 0. Then the differentiability with
respect to α at α0 of the solution y(t, α) of (2.3) is a consequence of
the following theorem.

THEOREM 2.1. For every t ∈ [0, T ], S(t, α)y0 as defined above is
Frechét differentiable with respect to α at α0, and its derivative is given
by

DαS(t, α0)y0 =
∫ t

0

S(t− s, α0)[DαF(α0)y0](s) ds, 0 ≤ t ≤ T,

where F(α) is, for each α ∈ P , a mapping from X into L1(0, T ;X)
defined by

(2.6) [F(α)y0](t) =
(∫ 0

−∞
K(−s, α)y(t+ s) ds, 0

)
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for y0 ∈ X, 0 ≤ t ≤ T . Recall that y is the solution of (2.3) with
(η, ϕ) = y0.

PROOF. This result is proved in [7] for a general Volterra kernel
K(s, α) satisfying condition (2.4) under the following hypothesis:

(2.7)
the mapping α→ K(·, α) from P into L1(0,∞) is Frechét
differentiable with respect to α at α0.

Recall that K(s, α) = g(s, α)
(

1 0

0 0

)
, where

g(s, α) =
γe−βs

Γ(1 − α)sα
, s > 0, α ∈ P.

Let ′ denote differentiation with respect to α. Then computation shows
that g′ and g′′ are of the form

g′(s, α) = g1(α)(ln s)e−βss−α + g2(α)e−βss−α

and

g′′(s, α) = g3(α)(ln s)2e−βss−α + g4(α)(ln s)e−βss−α

+ g5(α)e−βss−α,

where g1, . . . , g5 are continuous functions of α on P which can be
explicitly calculated in terms of the gamma function and its derivatives.
Important properties of g′ and g′′ for our purposes are that there are
functions ψ1, ψ2 ∈ L1(0,∞) such that

(2.8) |g′(s, α)| ≤ ψ1(s) for s > 0, α ∈ P,

and

(2.9) |g′′(s, α)| ≤ ψ2(s) for s > 0, α ∈ P.

For example, one can take

ψ1(s) =
{

(M1| ln s|e−βs +M2e
−βs)/s1−ε, for 0 < s < 1

M1| ln s|e−βs +M2e
−βs, for s ≥ 1,
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where M1 and M2 are upper bounds on P of |g1(α)| and |g2(α)|,
respectively. There is an analogous expression for ψ2(s). Therefore,
by Taylor’s theorem with remainder, we obtain

|K(s, α+ h) −K(s, α) −K ′(s, α)h|
= |g(s, α+ h) − g(s, α) − g′(s, α)h|
= |g′′(s, ξ1(s))h2/2|
≤ ψ2(s)|h|2/2

for s > 0, α, α + h ∈ P , and ξ1(s) between α and α + h. Integrating
this inequality over (0,∞) and using ψ2 ∈ L1(0,∞) yields (2.7) and
completes the proof of Theorem 2.1.

A sufficient smoothness property for the local convergence of the
parameter estimation algorithm is established in the following theorem.

THEOREM 2.2. For every t ∈ [0, T ], α∗ ∈ P and y0 ∈ X, DαS(t, α)y0
is strongly locally Lipschitz continuous with respect to α at α∗.

PROOF. The proof relies on Lemma 3.3 of [8]. We must show that
hypotheses (H11) and (H12) of that paper hold in this application. By
definition (2.6), (H11) requires that there exist constants K1, δ1 > 0
such that

(2.10)
∫ T

0

∣∣∣∣
∫ 0

−∞
(K(−s, α+ h) −K(−s, α))y(t+ s) ds

∣∣∣∣ dt ≤ K1|h||η|

for |h| ≤ δ1, where y is the solution of (2.3) with α = α∗ and ϕ ≡ 0.
Note that, since (y(t), yt) = S(t, α0)(η, 0), we have |y(t)| ≤ M1e

ωt|η|
for t ≥ 0, and y(t) = ϕ(t) = 0 for t < 0. It is shown in [7] that the
constants M1 and ω may be taken independently of α ∈ P . Therefore,



360 D.W. BREWER AND R.K. POWERS

by Fubini’s theorem and the mean value theorem, we obtain∫ T

0

∫ 0

−∞
|(K(−s, α+ h) −K(−s, α))y(t+ s)| ds dt

=
∫ 0

−∞
|K(−s, α+ h) −K(−s, α)|

∫ T+s

s

|y(t)| dt ds

≤
∫ 0

−∞
|K(−s, α+ h) −K(−s, α)|

∫ T

0

|y(t)| dt ds

≤M1Te
ωT |η|

∫ 0

−∞
|K(−s, α+ h) −K(−s, α)| ds

≤M1Te
ωT |η||h|

∫ 0

−∞
ψ1(−s) ds

for α, α+ h ∈ P . Here we have used (2.8) in the last inequality. Since
ψ1 ∈ L1(0,∞), this establishes (2.10).

Hypothesis (H12) of [8] requires the Lipschitz continuity of the
derivative with respect to α of the mapping F(α) defined by (2.6).
For brevity, we denote the value of this derivative at α ∈ P by DF(α).
The existence of DF(α) was shown in Theorem 2.1, and from the proof
of that theorem we have the formula

[DF(α)h](t) =
(∫ 0

−∞
[K ′(−s, α)h]y(t+ s) ds, 0

)

for 0 ≤ t ≤ T , h ∈ R, α ∈ P , where y is the solution of (2.3) with
α = α0 and (η, ϕ) = y0. Recall that ′ denotes differentiation with
respect to α. The local Lipschitz continuity of DF(α) at a point
α = α∗ ∈ P now follows from estimates similar to those used to
establish (H11) but with ψ2 in place of ψ1. This completes the proof
of Theorem 2.2.

We now turn our attention to solutions of the nonhomogeneous
equation (2.1). It is well known that a mild solution to this equation
is given by the variation of constants formula

(w(t), wt) = S(t, α)(η, ϕ) +Q(t, α),

where

(2.11) Q(t, α) =
∫ t

0

S(t− s, α)(F (s), 0) ds.
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It remains, therefore, to consider the existence and smoothness of the
derivative of Q(t, α) with respect to α. We again appeal to [8] where
these properties of Q(t, α) are demonstrated by considering similar
properties of the mapping G(α) : L1(0, T ;X) → L1(0, T ;X) defined
by

[G(α)v](t) =
∫ t

0

B(α)S(t− s, α0)v(s) ds

for v ∈ L1(0, T ;X), α ∈ P , α0 fixed. Note that if v(t) = (F (t), 0) for
some F ∈ L1(0, T ), then

(w(t), wt) =
∫ t

0

S(t− s, α0)v(s) ds,

where w is a mild solution of (2.1) with (η, ϕ) = (0, 0). Since B(α) is a
difference of closed operators,

[G(α)v](t) = B(α)(w(t), wt).

Therefore, using definition (2.5), we obtain in this setting that

(2.12) [G(α)v](t) =
(∫ 0

−∞
K(−s, α)w(t+ s) ds, 0

)

where v(t) = (F (t), 0) and w is the solution of (2.1) with α = α0 and
(η, ϕ) = (0, 0). Here we assume F is sufficiently smooth for the solution
w to exist in the strong sense defined earlier.

Comparing definitions (2.6) and (2.12), we see that properties of G(α)
with respect to α can be proven in the same way as the corresponding
properties of F(α) using the solution of (2.1) in the place of the solution
of (2.3) at a fixed α0 ∈ P . For this reason the following theorems, which
are consequences of Lemmas 3.2 and 3.4 of [8], are stated without proof.

THEOREM 2.3. For F ∈ L1(0,∞), let Q(t, α) be defined by (2.11).
Then, for every t ∈ [0, T ] and α0 ∈ P , Q(t, α) is Frechét differentiable
with respect to α at α0, and this derivative is given by the formula

DαQ(t, α0) =
∫ t

0

S(t− s, α0)[DαG(α0)v](s) ds,

where v(t) = (F (t), 0) and G(α) is defined by (2.12).
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THEOREM 2.4. Suppose the hypotheses of Theorem 2.3 hold. Then
the mapping DαQ(t, α) is locally Lipschitz continuous with respect to α
at every α∗ ∈ P .

3. The algorithm. In this section we define a parameter estimation
algorithm based on quasilinearization and state some local convergence
results. For later adaptation we develop the algorithm for the case
α ∈ P ⊂ Rn with canonical basis ei, i = 1, 2, . . . , n. In Section
4 the algorithm is applied in the case n = 1. The definitions and
theorems stated here may also be found in [8] but are included here for
completeness.

Using the notation of the previous section, let y0 = (η, ϕ) ∈ X and
α ∈ P . Let C be a bounded linear mapping from X into a finite-
dimensional space Rl, and define

w(t, α) = C[S(t, α)y0 +Q(t, α)].

The parameter estimation algorithm is related to the following opti-
mization problem.

PROBLEM 3.1. Let wj ∈ Rl, j = 1, 2, . . . ,m, be data values taken at
times tj ∈ [0, T ], j = 1, 2, . . . ,m, respectively. For α ∈ P , define the
quadratic cost function

J(α) =
m∑

j=1

|w(tj , α) − wj |2.

Find α∗ ∈ P such that J(α∗) ≤ J(α) for all α ∈ P .

The quasilinearization algorithm method defines a recursive algo-
rithm whose fixed point is a local solution of Problem 3.1. A more
complete exposition is given in [3]. Given an initial guess α0 ∈ P ,
define

αk+1 = f(αk), k = 0, 1, 2, . . . ,
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where

f(α) = α− [D(α)]−1b(α)

D(α) =
m∑

j=1

MT (tj , α)M(tj, α)

b(α) =
m∑

j=1

MT (tj , α)[w(tj , α) − wj ]

and the matrix M(t, α) has its ith column M i(t, α) given by

M i(t, α) = CDα[S(t, α)y0 +Q(t, α)]ei, i = 1, 2, . . . , n.

The following theorems are typical of quasilinearization methods.
Their proofs may be found in [8]. We obtain superlinear convergence
when there is an exact fit to data (Theorem 3.1) and linear convergence
in the presence of error (Theorem 3.2).

THEOREM 3.1. Suppose the conditions of the previous section are
satisfied. Moreover, assume [D(α)]−1 exists, f(α∗) = α∗, and J(α∗) =
0. Then, for every ε > 0, there exists δ > 0 such that

|f(α) − f(α∗)| ≤ ε|α− α∗|
for |α − α∗| ≤ δ. In particular, there is a neighborhood U of α∗ such
that αk → α∗ as k → ∞ whenever α0 ∈ U .

The following theorem does not require an exact fit to data but does
place some technical restrictions on the behavior of the matrix M(t, α)
near α∗. Note that, under the conditions of Theorem 2.2, there exists
a number δ̄ > 0 such that, for 0 < δ < δ̄, there exists a constant K(δ)
such that

m∑
j=1

|MT (tj , α) −MT (tj , α∗)| ≤ K(δ)|α− α∗|

for |α− α∗| ≤ δ. Let K∗ = lim supδ↓0K(δ), and define

λ∗ = K∗|D(α∗)−1|max
j

|w(tj , α∗) − wj |.
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THEOREM 3.2. Suppose the conditions of the previous section are
satisfied. Moreover, assume [D(α∗)]−1 exists and f(α∗) = α∗. Let λ∗

be defined as above and assume λ∗ < 1. Then there exists δ∗ > 0 such
that

|f(α) − f(α∗)| ≤ λ∗|α− α∗|
for |α − α∗| ≤ δ∗. In particular, αk → α∗ as k → ∞ whenever
|α0 − α∗| ≤ δ∗.

4. Numerical results. In this section we present several examples
that illustrate the ideas discussed in the previous sections. Recall
the identification problem: given observations wj at times tj , j =
1, 2, . . . ,m, determine α ∈ [0, 1) that minimizes the cost functional

J(α) =
m∑

j=1

(x(tj) − wj)2,

where x(t) satisfies

(4.1)

{
ẋ(t) = a

∫ t

0
x(s) ds+ γ

Γ(1−α)

∫ t

0
e−β(t−s)

(t−s)α x(s) ds+ f(t),

x(0) = x0.

The quasilinearization algorithm requires that we solve (4.1) along with
its sensitivity equation which has the form

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋα(t) = a

∫ t

0

xα(s) ds+
γ

Γ(1−α)

∫ t

0

e−β(t−s)

(t− s)α
xα(s) ds

+
γΓ′(1−α)
Γ(1−α)2

∫ t

0

e−β(t−s)

(t− s)α
x(s) ds

− γ

Γ(1−α)

∫ t

0

ln(t− s)e−β(t−s)

(t− s)α
x(s) ds,

xα(0) = 0,

where xα(t) = (∂x/∂α)(t). The zero initial condition reflects the fact
that the value x(0) = x0 is independent of the parameter α.

The implementation of the identification scheme begins with an initial
guess for α. Equations (4.1) and (4.2) are integrated using this initial
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value, then x(t) and xα(t) are used to give an updated estimate of the
parameter. For this particular problem the quasilinearization algorithm
updates the current estimate αk according to

αk+1 = αk −
∑m

j=1(x(tj) − wj)xα(tj)∑m
j=1(xα(tj))2

,

where x(t) and xα(t) are the solutions of (4.1) (4.2) computed for
α = αk. In order to numerically integrate the state and sensitivity
equations, we first convert (4.1) (4.2) to integral equations via the
substitution z(t) = ẋ(t) and zα(t) = ẋα(t). Then one has the 4 × 4
system of integral equations consisting of (4.1) (4.2) with the above
substitutions coupled with

(4.3)

⎧⎨
⎩
x(t) = x(tp) +

∫ t

tp
z(s) ds,

xα(t) = xα(tp) +
∫ t

tp
zα(s) ds,

where tp ∈ [0, t) is determined by the approximation scheme. The
solution of the system of the integral equations is then approximated
by applying a product integration method based on Simpson’s rule to
the singular integral terms, and Simpson’s rule to all other integrals.
For a description of product integration methods, we refer the interested
reader to [16].

In each of the following examples, we numerically solve (4.1) (4.3)
in time on the interval [0, 1]. Define tj = j/N , j = 0, 1, . . . , N . The
numerical integration scheme then computes values for x(tj). Examples
(4.1) and (4.2) presented here are computed using a value of N = 50,
and Example (4.3) is computed using N = 200. In each case, 5 data
points located at t = .2, .4, .6, .8, and 1.0 are used in the identification
procedure. The true values of x(t) in all of the Figures (4.1) (4.5) are
denoted by X.

Example 4.1. In this example we set the values of a, β, and γ to
1., 1., and 5., respectively. The parameter value to be identified is
α = 1/2, and the nonhomogeneous term f(t) is

f(t) = e−t(1024t3 + 2176t+ 1792) − 1825

− e−tt.5

Γ(.5)

(
32768
315

t4 − 8192
35

t3 +
512
3
t2 − 128

3
t+ 2

)
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The true solution is x(t) = e−tT4(2t−1), where T4(s) is the Chebyshev
polynomial of degree 4 on −1 ≤ s ≤ 1. Tables (4.1) and (4.2) contain
the results for two computer runs, one for an initial α of α0 = .9, and
the other for α0 = .2. The sequence of αk values, their corresponding
costs J(αk), and the values of the state x(t) at time t = 1 are included
to illustrate the convergence. The true value of x(1) is .3678794. Note
that, in each case, once an estimate of α is greater than .5, then the
sequence of iterates converges monotonically down to the true value.
This is a characteristic of all of our computer simulations and seems
to indicate that it is better to choose an initial value of α that is high
instead of low. In fact, for all simulations, another characteristic is that
if the initial choice is excessively low, then the next estimate of α is
greater than 1, and the integral becomes undefined. For this particular
example, α0 = .1 resulted in a value greater than 1 for the next iterate
and the integration scheme broke down. However, though not shown
here, some examples ran successfully even with a negative initial value
for α. Figures (4.1) (4.2) show the convergence of the state x(t) for
the initial values of α0 = .9, and .2, respectively.

TABLE 4.1.

a = 1, γ = 5, β = 1, true α = .5, initial α = .9
Iteration α J(α) x(1)

0 .9 78.9130445 -7.7572184
1 .8061489 11.8804011 -2.7175508
2 .7036760 1.6122215 -.7432785
3 .6046577 .1689001 .0158974
4 .5327346 .0090401 .2877378
5 .5034419 .0000834 .3602260
6 .5000500 .0000000 .3677829
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TABLE 4.2.

a = 1, γ = 5, β = 1, true α = .5, initial α = .2
Iteration α J(α) x(1)

0 .2 .1205106 .637832
1 .8835656 55.8792983 -6.443195
2 .7876713 8.3050417 -2.201167
3 .6845883 1.0919149 -.542773
4 .5884893 .1055430 .090622
5 .5236488 .0045683 .311016
6 .5018820 .0000246 .363724
7 .5000214 .0000000 .367845

FIGURE 4.1
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FIGURE 4.2

Example 4.2. Here we set a = 1, β = 1, γ = 4, and α = .9. The
nonhomogeneous term is

f(t) = −1 − γ
10e−t

Γ(.1)
t·1.

In this case, the true solution is e−t.

This example contains a kernel that is more singular than that of
Example 1. The results for initial values of α0 = .999 and α0 = .8 are
given in Tables (4.3) and (4.4), respectively. For comparison, the true
value of x(1) is x(1) = .3678794. Note, again, it appears that a high
initial guess of α is preferable to a low one. Moreover, for an initial
guess of α0 = .75, the algorithm updates the parameter to a value
greater than 1 and the program stops. The convergence of the states
is shown in Figures (4.3) and (4.4).
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TABLE 4.3.

a = 1, γ = 4, β = 1, true α = .9, initial α = .999
Iteration α J(α) x(1)

0 .999 56.1016515 7.127846
1 .9400160 4.37204423 2.223429
2 .9075174 .1077531 .656523
3 .9002876 .0001462 .378490
4 .9000004 .0000000 .367895

TABLE 4.4.

a = 1, γ = 4, β = 1, true α = .9, initial α = .8
Iteration α J(α) x(1)

0 .8 7.0279032 -1.895701
1 .9676194 17.3817062 4.096880
2 .9200856 .8805865 1.195951
3 .9019895 .0071213 .441968
4 .9000204 .0000007 .368632
5 .9000000 .0000000 .367879

Example 4.3. This example has two features that are different than
the previous examples. In Section 2 we assumed that β > 0, ensuring
that the integral in equation (2.4) exists. This example illustrates that
it may be possible to lift this restriction to include β = 0, which results
in a true fractional derivative model. Also, for this example, x(t) = t1.5.
Thus, the true solution has an unbounded second derivative at t = 0.
Because integration methods based on Simpson’s rule converge slowly
for functions that do not have four continuous derivatives, it was
necessary to increase N to 200 for this example to gain accuracy.

Here we set the values a = 1, β = 0, γ = 4, and α = .5. The function
f(t) is, in this case,

f(t) =
3t·5

2
− 2t2·5

5
− Γ(.5)γ

3t2

8
.

The results of the quasilinearization algorithm are given in Table (4.5)
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FIGURE 4.3

FIGURE 4.4
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for the initial value of α0 = .9. The fact that we could only obtain α
to 3 correct digits is due to the inaccuracy of the integration scheme
used. Figure (4.5) illustrates the convergence of the states to the true
solution.

TABLE 4.5.

a = 1, γ = 4, β = 0, true α = .5, initial α = .9
Iteration α J(α) x(1)

0 .9 24.1608906 5.563632
1 .7641130 3.5153401 2.711820
2 .6246967 .3481690 1.531838
3 .5298167 .0127381 1.101062
4 .5019498 .0000392 1.005624
5 .5002170 .0000000 1.000050
6 .5002110 .0000000 1.000030

FIGURE 4.5
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systems, Birkhäuser, Boston, 1989.

5. V. Barbu and S.I. Grossman, Asymptotic behaviour of linear integrodifferential
systems, Trans. Amer. Math. Soc. 173 (1972), 277 288.

6. D.W. Brewer, The differentiability with respect to a parameter of the solution
of a linear abstract Cauchy problem, SIAM J. Math. Anal. 13 (1982), 607 620.

7. , A parameter dependence problem in functional differential equations,
Lecture Notes in Pure and Appl. Math., vol. 81, 1982, Marcel Dekker, New York,
pp. 187 195.

8. D.W. Brewer, J.A. Burns and E.M. Cliff, Parameter identification for an
abstract Cauchy problem by quasilinearization, ICASE Report No. 89-75, 1989.

9. J.A. Burns and R.H. Fabiano, Modelling and approximation for a viscoelastic
control problem, Proc. Third Internat. Conf. on Control and Identification of
Distributed Systems (Vorau, July 1986), pp. 23 39.

10. J.A. Burns and T.L. Herdman, Adjoint semigroup theory for a Volterra
integrodifferential system, Bull. Amer. Math. Soc. 81 (1975), 1099 1102.

11. , Adjoint semigroup theory for a class of functional differential equa-
tions, SIAM J. Math. Anal. 7 (1976), 729 745.

12. W. Desch and R.K. Miller, Exponential stabilization of Volterra integral
equations with singular kernels, J. Integral Equations Appl. 1 (1988), 397 433.

13. Y.C. Fung, Foundations of solid mechanics, Prentice-Hall, New York, 1965.

14. K.B. Hannsgen and R.L. Wheeler, Time delays and boundary feedback
stabilization in one-dimensional viscoelasticity, Proc. Third Internat. Conf. on
Control and Identification of Distributed Parameter Systems (Vorau, July 1986),
pp. 136 152.

15. W.J. Hrusa, J. A. Nohel, and M. Renardy, Initial value problems in viscoelas-
ticity, Appl. Mech. Rev. 41 (1988), 371 378.

16. P. Linz, Analytical and numerical methods for Volterra equations, SIAM
Stud. in Appl. Math., SIAM, Philadelphia, 1985.

17. M. Renardy, W.J. Hrusa, and J.A. Nohel, Mathematical problems in vis-
coelasticity, Pitman Monographs Surveys Pure Appl. Math. 35, Longman Sci. and
Tech., Burnt Mill, 1987.



PARAMETER IDENTIFICATION 373

18. P.J. Torvik and R.L. Bagley, On the appearance of the fractional derivative
in the behaviour of real materials, J. Appl. Mech. 51 (1984), 294 298.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ARKANSAS,

FAYETTEVILLE, AR 72701


