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ON THE ANALYTICAL SOLUTIONS OF
TWO SINGULAR INTEGRAL EQUATIONS

WITH HILBERT KERNELS

G. MONEGATO AND A. STROZZI

ABSTRACT. The analytical solution of two singular inte-
gral equations with Hilbert kernel of the first and second kind,
respectively, is derived from the known solution of the corre-
sponding singular integral equations with Cauchy kernel of
the first and second kind by introducing a proper change of
variables.

1. Introduction. The representation of all solutions of the singular
integral equations

∫ +1

−1

f̃ (x)
y − x

dx = g̃ (y) , −1 < y < 1(1.1)

f̃ (y) − iλ

π

∫ +1

−1

f̃ (x)
y − x

dx = g̃ (y) , −1 < y < 1(1.2)

where λ is real and the integrals are defined in the Cauchy principal
value sense, is of key importance in many applications. Among the
several authors who have examined this problem, Söhngen, [13, 14],
and Tricomi, [7, 16, 17], appear to be the first to have obtained
fundamental results on this topic. Here we recall some of them.

Theorem 1 (see [13, 14, 16]). If in (1.1) g̃ ∈ Lp, p > 1, then
f̃ ∈ Lq for some q > 1 and necessarily has the form

(1.3) f̃ (y) = − 1
π2

1√
1 − y2

∫ +1

−1

g̃ (x)
√

1 − x2

y − x
dx +

C√
1 − y2

where C is an arbitrary constant.
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Theorem 2 (see [14, p. 43]). If in (1.2) g̃ ∈ Lp, p > 1 and λ is a
real number with λ �= ±1, then f̃ ∈ Lq for some q > 1 and necessarily
has the form

(1.4) f̃(y) =

1
1−λ2

[
g̃ (y) +

iλ

π
√

1−y2

(
1+y

1−y

)iγ∫ +1

−1

g̃ (x)
√

1−x2

y − x

(
1−x

1+x

)iγ

dx

]

+
C√
1−y2

(
1+y

1−y

)iγ

where γ = (arccothλ)/π and C is an arbitrary constant, if |λ| > 1,
while

(1.5) f̃(y) =

1
1−λ2

[
g̃ (y) +

iλ

π(1−y)

(
1+y

1−y

)iγ∫ +1

−1

g̃ (x)
y−x

(1−x)
(

1−x

1+x

)iγ

dx

]

− i
sinh 2πγ

2π(1−y)

(
1+y

1−y

)iγ∫ +1

−1

(
1−x

1+x

)iγ

g̃(x) dx

where γ = (arctanhλ)/π, if |λ| < 1. If λ = ±1, equation (1.2) is in
general not solvable in Lq, q > 1.

Here and in the following, for notational convenience we use the same
symbol C to denote arbitrary complex constants which in general do
not coincide.

Comparatively lower attention seems to have been paid to the twin
integral equations

∫ +α

−α

f (ω)
tan (θ − ω)

dω = g (θ) , −α < θ < α(1.6)

f (θ) − iλ

π

∫ +α

−α

f (ω)
tan (θ − ω)

dω = g (θ) , −α < θ < α

(1.7)

when 0 < α < π/2, which are of interest in contact problems, see for
example [8], where the support is given by two symmetric circular arcs,
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each of length 2α < π. Indeed, to our knowledge, only the solution of
(1.6) has been given, although a proof of it could not be traced in the
references quoted in this work and in classical textbooks on singular
integral equations. We also notice that for the case α = π/2 the singular
operator defined in (1.6) is discussed in [11].

The purpose of this note is to prove for (1.6) and (1.7) the analogous
results of Theorems 1 and 2 above. This study has been motivated by
the circumstance that the equations here examined are not covered in
standard textbooks on integral equations, e.g., [1, 10], although such
equations, or closely related formulations, are encountered in periodic
problems of the theory of elasticity, e.g., [8, 9].

In Section 2 we will characterize the solutions of equation (1.6), while
in Section 3 we will obtain the analogous result for equation (1.7).

In the following, kernels of the type 1/(x − y) and 1/ tan(θ − ω) will
be referred to as Cauchy and Hilbert kernels, respectively, and the
corresponding integrals will be defined in the Cauchy principal value
sense.

2. The integral equation of the first kind. The singular integral
equation of the first kind with Hilbert kernel examined in this paper is

(2.1)
∫ +α

−α

f (ω)
tan (θ − ω)

dω = g (θ)

where g ∈ Lp, p > 1, 0 < α < π/2, and f and g are real unknown and
known functions, respectively. The solution of equation (2.1) is known
in analytical form, e.g., [2, 3, 18]

(2.2)

f (θ) =
C cos θ√

sin2 α − sin2 θ
− 1

π2
√

sin2 α − sin2 θ

×
∫ +α

−α

√
sin2 α − sin2 ω

g (ω)
sin (θ − ω)

dω

where C is an arbitrary constant. The solution reported in [5, p. 365],
is unfortunately affected by a misprint.

Although solution (2.2) of equation (2.1) is available, a method for
its derivation is briefly presented in order to illustrate the solution pro-
cedure also employed for solving the singular integral equation of the
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second kind with Hilbert kernel described in the next section. The solu-
tion of the singular integral equation with Hilbert kernel is here derived
from the known solution of the parallel singular integral equation with
Cauchy kernel, by employing a suitable change of variables.

Consider the singular integral equation of the first kind with Cauchy
kernel

(2.3)
∫ +1

−1

f̃ (x)
y − x

dx = g̃ (y)

where f̃ and g̃ are real unknown and known functions, respectively.
Then introduce the following change of variables [3, p. 316], [8],

(2.4)
x =

tan ω

tan α
; y =

tan θ

tan α
; dx =

dω

cos2 ω tan α
;

cos2 ω =
1

1 + x2 tan2 α
.

The integral equation (2.3) with Cauchy kernel thus becomes

(2.5)
∫ +α

−α

f (ω)
(tan θ − tanω) cos2 ω

dω = g (θ)

where

f(ω) = f̃

(
tan ω

tan α

)
, g(θ) = g̃

(
tan θ

tanα

)
.

By employing the trigonometric identity (5.1), the integral equation
(2.5) is converted into

(2.6)
∫ +α

−α

f (ω)
tan (θ − ω)

dω −
∫ +α

−α

f (ω) tanω dω = g (θ)

or, according to the above change of variables (2.4),

(2.7)
∫ +α

−α

f (ω)
tan (θ − ω)

dω − tan2 α

∫ +1

−1

f̃ (x)
x

1 + x2 tan2 α
dx = g (θ)
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By comparing equations (2.1), (2.3) and (2.7), it emerges that it
is convenient to abandon equation (2.3) and, instead, to refer to the
following singular integral equation with Cauchy kernel

(2.8)
∫ +1

−1

f̃ (x)
y − x

dx + tan2 α

∫ +1

−1

f̃ (x)
x

1 + x2 tan2 α
dx = g̃ (y)

since its whole lefthand side is transformed by expressions (2.4) exactly
into the lefthand side of equation (2.1), possessing a Hilbert kernel. The
solution of the singular integral equation (2.1) with Hilbert kernel will
thus be derived from the solution of the singular integral equation (2.8)
with Cauchy kernel. By putting

(2.9) A =
∫ +α

−α

f (ω) tan ω dω = tan2 α

∫ +1

−1

f̃ (x)
x

1 + x2 tan2 α
dx

where A is an unknown constant depending upon the unknown function
f , the integral equation (2.8) becomes

(2.10)
∫ +1

−1

f̃ (x)
y − x

dx = g̃ (y) − A

whose solution is, according to expression (1.3),

(2.11)

f̃ (y) = − 1
π2

1√
1−y2

∫ +1

−1

g̃ (x)
√

1−x2

y − x
dx

+
C√
1−y2

+
1
π2

A√
1−y2

∫ +1

−1

√
1−x2

y − x
dx

With the aid of integral (5.5), solution (2.11) becomes
(2.12)

f̃ (y) = − 1
π2

1√
1−y2

∫ +1

−1

g̃ (x)
√

1−x2

y − x
dx +

C√
1−y2

+
1
π

A y√
1−y2

.

To derive the explicit expression of the solution of the integral
equation with Hilbert kernel (2.1), it is necessary to evaluate with
expression (2.9) the constant A appearing in (2.12). Noting that

(2.13)

∫ +1

−1

1√
1−x2

x

1+x2 tan2 α
dx

∫ +1

−1

g̃ (y)
√

1−y2

y − x
dy

=
∫ +1

−1

g̃ (y)
√

1−y2 dy

∫ +1

−1

1√
1−x2

x

1+x2 tan2 α

1
y−x

dx
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where the change of the order of integration in this particular case is
licit for a function g̃ belonging to Lp, p > 1, see [6, Theorem 4.4], and
by exploiting integral (5.6), one obtains

(2.14)
∫ +1

−1

1√
1−x2

x

1 + x2 tan2 α
dx

∫ +1

−1

g̃ (y)
√

1−y2

y − x
dy

= −π cos α

∫ +1

−1

g̃ (x)
√

1−x2

1 + x2 tan2 α
dx

By introducing representation (2.12) into (2.9), and taking advantage
of integral (5.7) and formula (2.14), the expression of the constant A
becomes, after some straightforward manipulations

(2.15) A = − tan2 α

π

∫ +1

−1

g̃ (x)
√

1 − x2

1 + x2 tan2 α
dx

The explicit form of solution (2.12) of the integral equation with Cauchy
kernel (2.8) thus becomes

(2.16)

f̃ (y) = − 1
π2

1√
1−y2

∫ +1

−1

g̃ (x)
√

1−x2

y − x
dx

− tan2 α

π2

y√
1−y2

∫ +1

−1

g̃ (x)
√

1−x2

1 + x2 tan2 α
dx +

C√
1−y2

It has already been noted that the change of variables (2.4) transforms
the integral equation with Cauchy kernel (2.8) into the integral equation
with Hilbert kernel (2.1). Consequently, by applying the same change
of variables (2.4) to the solution (2.16) of the integral equation with
Cauchy kernel (2.8), the solution of the integral equation with Hilbert
kernel (2.1) is obtained

(2.17)

f (θ) =
C tanα√

tan2 α−tan2 θ
− 1

π2
√

tan2 α−tan2 θ

×
∫ +α

−α

g (ω)
√

tan2 α−tan2 ω

[
1

(tan θ−tan ω) cos2 ω
+ tan θ

]
dω.

By exploiting the trigonometric identities (5.2) and (5.3), the more
compact expression (2.2) is finally achieved.
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The statement below then follows.

Theorem 3. If in (2.1) we have g ∈ Lp and p > 1, then f ∈ Lq for
some q > 1 and necessarily has the form (2.17), where C is an arbitrary
constant.

3. The integral equation of the second kind. The singular
integral equation of the second kind with Hilbert kernel examined in
this paper is

(3.1) f (θ) − iλ

π

∫ +α

−α

f (ω)
tan (θ − ω)

dω = g (θ) .

For simplicity we only consider the case |λ| > 1, which is of interest in
contact problems. The case |λ| < 1 can be treated in the same way,
but it requires the analytic evaluation of further integrals like those we
have listed in the Appendix.

From an attentive review of the pertinent literature it emerges that
an analytical solution may be derived of the integral equation (3.1). In
fact, in [15] it is noted that in [9] an equation analogous to (3.1) “has
a closed form solution.” It is further observed that, to obtain the exact
solution, “the whole procedure seems quite complicated and even in
this case, where a closed-form solution exists, the numerical solution
proposed here seems to be of some value.” In [12] a numerical solution
of an equation similar to (3.1) is compared to the “exact solution,” but
an explicit expression for this is not provided. Being the present authors
unaware of the availability of the expression of the exact solution for
the singular integral equation of the second kind with Hilbert kernel
(3.1), the aim of this section is to derive such analytical solution.

As for the first kind analogue, we obtain the explicit solution of
the singular integral equation of the second kind with Hilbert kernel
(3.1) from the known solution (1.4) of the parallel singular integral
equation with Cauchy kernel, by introducing into this latter the change
of variables (2.4). One obtains

(3.2) f (θ) − iλ

π

∫ +α

−α

f (ω)
(tan θ − tan ω) cos2 ω

dω = g (θ)
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or, with the aid of identity (5.1)

(3.3)
f (θ) − iλ

π

∫ +α

−α

f (ω)
tan (θ − ω)

dω

+
iλ

π
tan2 α

∫ +1

−1

f̃ (x)
x

1 + x2 tan2 α
dx = g (θ) .

By comparing equations (3.1), (1.2) and (3.3), it appears that it
is convenient to dismiss equation (1.2) and, instead, to consider the
following singular integral equation with Cauchy kernel
(3.4)

f̃ (y) − iλ

π

∫ +1

−1

f̃ (x)
y−x

dx − iλ

π
tan2 α

∫ +1

−1

f̃ (x)
x

1+x2 tan2 α
dx = g̃ (y)

since its whole lefthand side is transformed by the change of variables
(2.4) into the lefthand side of equation (3.1) having a Hilbert kernel.
By introducing the constant A already defined in (2.9), the integral
equation (3.4) becomes

(3.5) f̃ (y) − iλ

π

∫ +1

−1

f̃ (x)
y − x

dx = g̃ (y) +
iλ

π
A

whose solution according to (1.4) is

(3.6) f̃(y) =
1

1−λ2

[
g̃ (y) +

iλ

π
A +

iλ

π
√

1−y2

(
1+y

1−y

)iγ

×
∫ +1

−1

g̃ (x)
√

1−x2

y−x

(
1−x

1+x

)iγ

dx

− λ2A

π2
√

1−y2

(
1+y

1−y

)iγ ∫ +1

−1

√
1−x2

y−x

(
1−x

1+x

)iγ

dx

]

+
C√
1−y2

(
1+y

1−y

)iγ

,

where C is an arbitrary constant.
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By employing (5.8), solution (3.6) becomes

(3.7) f̃ (y) =
1

1−λ2

[
g̃ (y) − λ2A

π cosh πγ

y√
1−y2

(
1+y

1−y

)iγ

+
iλ

π
√

1−y2

(
1+y

1−y

)iγ∫ +1

−1

g̃ (x)
√

1−x2

y−x

(
1−x

1+x

)iγ

dx

]

+
C√
1−y2

(
1+y

1−y

)iγ

,

where the new arbitrary constant C is different from the one in (3.6).

To obtain the explicit expression of the solution to the integral
equation with Hilbert kernel (3.1), it is necessary to evaluate with
expression (2.9) the constant A appearing in (3.7). Noting that

(3.8)∫ +1

−1

1√
1−y2

(
1+y

1−y

)iγ
y

1+y2 tan2 α
dy

∫ +1

−1

g̃ (x)
√

1−x2

y − x

(
1−x

1+x

)iγ

dx

= −
∫ +1

−1

g̃ (x)
√

1−x2

(
1−x

1+x

)iγ

dx

×
∫ +1

−1

1√
1−y2

(
1+y

1−y

)iγ
y

1+y2 tan2 α

1
x−y

dy

where the applicability of the change of the order of integration follows
from Theorem 4.4 in [6], upon exploitation of integral (5.9), expression
(3.8) becomes

(3.9)∫ +1

−1

1√
1−y2

(
1+y

1−y

)iγ
y

1+y2 tan2 α
dy

∫ +1

−1

g̃ (x)
√

1−x2

y − x

(
1−x

1+x

)iγ

dx

=
π

cosh πγ

[
i sinh πγ

∫ +1

−1

g̃ (x)
x

1+x2 tan2 α
dx

+ cos α cosh 2αγ

∫ +1

−1

g̃ (x)
√

1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx

− i sin α sinh 2αγ

∫ +1

−1

g̃ (x)x
√

1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx

]
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By introducing formulae (3.7),(3.9) and integrals (5.10) and (5.11) into
expression (2.9), the value of the constant A becomes, after tedious but
routine calculations,

(3.10) A = − tan2 α sinh πγ

×
[

tan α tanh 2αγ

∫ +1

−1

g̃ (x) x
√

1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx

+ i

∫ +1

−1

g̃ (x)
√

1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx

]
+C

iπ tan α tanh 2αγ

cosh πγ

Upon application of the change of variables (2.4) and of the trigono-
metric identity (5.4), expression (3.10) of the constant A may be ex-
pressed as
(3.11)
A = − sinh πγ

×
[

tanh 2αγ

∫ +α

−α

g (ω) tanω
√

tan2 α − tan2 ω

(
sin (α− ω)
sin (α+ ω)

)iγ

dω

+ i

∫ +α

−α

g (ω)
√

tan2 α − tan2 ω

(
sin (α− ω)
sin (α+ ω)

)iγ

dω

]

+ C
iπ tanα tanh 2αγ

cosh πγ
.

By applying the change of variables (2.4) to formula (3.7), the
analytical expression of the solution to the integral equation (3.1) of the
second kind with Hilbert kernel for the case |λ| > 1 is finally achieved

(3.12) f (θ) = − sinh2 πγ g (θ) +
A cosh πγ tan θ

π
√

tan2 α − tan2 θ

(
sin (α+θ)
sin (α−θ)

)iγ

+ C
tan α√

tan2 α − tan2 θ

(
sin (α+θ)
sin (α−θ)

)iγ

− i
sinh πγ cosh πγ

π
√

tan2 α − tan2 θ

(
sin (α+θ)
sin (α−θ)

)iγ

×
[ ∫ +α

−α

g (ω)
√

tan2 α − tan2 ω

tan (θ − ω)

(
sin (α− ω)
sin (α+ ω)

)iγ

dω

−
∫ +α

−α

g (ω) tanω
√

tan2 α − tan2 ω

(
sin (α−ω)
sin (α+ω)

)iγ

dω

]
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where the constant A is given by expression (3.11).

The following statement then follows.

Theorem 4. If in (3.1), with |λ| > 1, we have g ∈ Lp, p > 1, then
f ∈ Lq for some q > 1 and has necessarily the form (3.12), where the
constant C is arbitrary.

4. Some examples. Three examples are presented, where we
assume |λ| > 1. The first example addresses the following homogeneous
singular integral equation of the second kind with Hilbert kernel

(4.1) f (θ) − iλ

π

∫ +α

−α

f (ω)
tan (θ − ω)

dω = 0.

From equation (3.11) the expression of A becomes

(4.2) A = C
iπ tanα tanh 2αγ

cosh πγ

From (3.7) the solution is

(4.3)

f̃ (y) = C

[
1√

1−y2

(
1+y

1−y

)iγ

+ i tanα tanh 2αγ
y√

1−y2

(
1+y

1−y

)iγ ]

which, by exploiting the trigonometric identities (5.2) and (5.4), may
be rewritten in terms of trigonometric functions as

f (θ) = C
sin α cos θ√

sin2 α − sin2 θ

(
sin (α + θ)
sin (α − θ)

)iγ [
1 + i tan θ tanh 2αγ

]

By employing integral (5.9) in which α = 0 is set, and integrals (5.10),
(5.11) and (5.14), it may be shown that solution (4.3) fulfills equation
(3.4) with g̃=0 and, therefore, it satisfies the equation with Hilbert
kernel (4.1).

The second example considers the following singular integral equation
of the second kind with Hilbert kernel

(4.4) f (θ) − iλ

π

∫ +α

−α

f (ω)
tan (θ − ω)

dω = 1.



152 G. MONEGATO AND A. STROZZI

From (3.10) and integrals (5.12) and (5.13), the expression of A
becomes

(4.5)
A = iπ tanh πγ

(
1 − 1

cos α cosh 2αγ
− 2γ tan α tanh 2αγ

)

+ C
iπ tanα tanh 2αγ

cosh πγ
.

From representation (3.7) and integral (5.8), the analytical expression
of the solution may be written as
(4.6)

f̃ (y) = −2γ sinh πγ
1√

1−y2

(
1+y

1−y

)iγ

+ sinhπγ

(
A cothπγ

π
− i

)

× y√
1−y2

(
1+y

1−y

)iγ

+
C√

1 − y2

(
1+y

1−y

)iγ

,

from which it follows

(4.7)
f(θ) =

tan α√
tan2 α − tan2 θ

(
sin(α+θ)
sin(α−θ)

)iγ

×
[
− 2γ sinh πγ +

tan θ

tanα
sinh πγ

(
A cothπγ

π
− i

)
+ C

]
.

By employing integral (5.9) in which α = 0 is set, and integrals (5.10),
(5.11) and (5.14), it may be verified that expression (4.6), where A is
defined by (4.5), fulfills the integral equation (3.4) in which g̃=1 is set
and, therefore, f(θ) satisfies the equation with Hilbert kernel (4.4).

The third example examines the following Fredholm integral equation
of the second kind with Hilbert kernel

(4.8) f (θ) − iλ

π

∫ +α

−α

f (ω)
tan (θ − ω)

dω = i
tan θ

tan α
.

From (3.10) and integrals (5.12) and (5.15), the expression of A
becomes
(4.9)

A = −iπ tanα tanh πγ

[
tanh 2αγ

2

(
1 + 4γ2 +

2
tan2 α

)
− 2γ

tanα

]

+ C
iπ tan α tanh 2αγ

cosh πγ
.
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The analytical expression of the solution may be finally derived from
(3.7) and integral (5.16):

(4.10)

f̃(y) = sinh π γ
1√

1−y2

(
1+y

1−y

)iγ

×
[
−

(
1
2

+ 2 γ2

)
+

(
A cothπγ

π
− 2 i γ

)
y + y2

]

+
C√
1−y2

(
1+y

1−y

)iγ

that is,
(4.11)

f(θ) =
tanα√

tan2 α − tan2 θ

(
sin(α+θ)
sin(α−θ)

)iγ

×
{

sinh πγ

[
−

(
1
2

+2γ2

)
+

(
A cothπγ

π
− 2i γ

)
tan θ

tanα
+

tan2 θ

tan2 α

]
+ C

}

By employing integral (5.9) in which α = 0 is set, and integrals (5.10),
(5.11), (5.14), (5.17) and (5.18), it may be verified that expression
(4.10), where A is defined by (4.9), fulfills the integral equation (3.4)
in which g̃(y) = iy is set and, therefore, it satisfies the equation with
Hilbert kernel (4.8).
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Appendix

5. Some useful trigonometric identities are listed below.

(5.1)
1

(tan θ − tan ω) cos2 ω
=

1
tan (θ − ω)

− tanω

(5.2)
1

tan2 α − tan2 ω
=

cos2 α cos2 ω

sin2 α − sin2 ω
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(5.3)
1

sin (θ − ω)
− cos θ

cos ω

(
1

tan (θ − ω)
+ tan θ − tanω

)
=

tan ω cos θ

cos ω

(5.4)
tan α + tan θ

tan α − tan θ
=

sin (α + θ)
sin (α − θ)

.

Some useful integrals are reported below. The integrals whose inte-
grands are complex functions have been evaluated with the aid of the
Plemelj formulae, e.g., [1]. They have been derived assuming |α| < π/2
and γ real. Details are omitted for brevity.

(5.5)
∫ +1

−1

√
1−x2

y − x
dx = πy

(5.6)
∫ +1

−1

1√
1−x2

x

1+x2 tan2 α

1
y−x

dx = − π cos α

1 + y2 tan2 α

(5.7)
∫ +1

−1

1√
1−x2

x2

1+x2 tan2 α
dx =

π

tan2 α
(1 − cos α) =

π cos2 α

1 + cos α

(5.8)
∫ +1

−1

√
1−x2

y − x

(
1−x

1+x

)iγ

dx

= iπ
√

1−y2

(
1−y

1+y

)iγ

tanh π γ − π
2i γ − y

cosh π γ

(5.9)
∫ +1

−1

1√
1−x2

x

1 + x2 tan2 α

(
1+x

1−x

)iγ 1
y−x

dx

= − iπ√
1 − y2

y

1+y2 tan2 α

(
1+y

1−y

)iγ

tanh π γ

− π cos α cosh 2αγ

cosh π γ
(
1+y2 tan2 α

) +
iπy sin α sinh 2αγ

cosh π γ
(
1+y2 tan2 α

)
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(5.10)
∫ +1

−1

1√
1−x2

x

1+x2 tan2 α

(
1+x

1−x

)iγ

dx =
iπ cos α sinh 2αγ

tanα cosh π γ

(5.11)
∫ +1

−1

1√
1−x2

x2

1+x2 tan2 α

(
1+x

1−x

)iγ

dx

=
π (1 − cos α cosh 2αγ)

tan2 α cosh π γ

(5.12)
∫ +1

−1

x
√

1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx

=
iπ

tan2 α cosh π γ

(
2γ − sinh 2αγ

sin α

)

(5.13)
∫ +1

−1

√
1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx =
π (cosh 2αγ − cos α)
cos α tan2 α cosh π γ

(5.14)∫ +1

−1

1√
1−x2

(
1+x

1−x

)iγ 1
y−x

dx = − iπ√
1−y2

(
1+y

1−y

)iγ

tanh π γ

(5.15)
∫ +1

−1

x2
√

1−x2

1+x2 tan2 α

(
1−x

1+x

)iγ

dx

=
π

2 tan2 α cosh π γ

(
1+4γ2 +

2
tan2 α

− 2
cosh 2αγ

sin α tan α

)

(5.16)
∫ +1

−1

x
√

1−x2

(
1−x

1+x

)iγ 1
y−x

dx

= iπy
√

1−y2

(
1−y

1+y

)iγ

tanh πγ +
π

cosh π γ

(
y2 − 2 i γ y − 1+4γ2

2

)

(5.17)
∫ +1

−1

x2

√
1−x2

(
1+x

1−x

)iγ 1
y−x

dx

= − iπy2√
1−y2

(
1+y

1−y

)iγ

tanh π γ − π

cosh π γ
(2i γ + y)
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(5.18)
∫ +1

−1

1√
1−x2

x3

1+x2 tan2 α

(
1+x

1−x

)iγ

dx

=
iπ

tan2 α cosh π γ

(
2γ − cos α sinh 2αγ

tan α

)
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13. H. Söhngen, Die Lösugen der Integralgleichung g(x)=(1/2π)
∫

f(ξ)/(x-ξ)dξ
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