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ABSTRACT. The authors study the conditioning of lin-
ear systems arising from the numerical solution of Fredholm
integral equations of the second kind. Convergent and stable
numerical procedures to compute polynomial approximate so-
lutions are proposed.

1. Introduction. The paper deals with the condition numbers of
linear systems arising from the numerical solution of Fredholm integral
equations of the second kind. The problem is well known. Let

(1.1) (I −A)f = g

with A a linear and compact operator on a weighted space Lp
u. If we

look for a polynomial sequence {fn} converging in Lp
u to the solution

of (1.1), then we are led to consider a finite dimensional equation of
the type

(1.2) (I −An) fn = gn,

where An : Lp
u −→ Pn−1 is some approximation of A, and fn,

gn ∈ Pn−1. This procedure includes projection methods and their
discretized versions. If suitable consistency conditions are fulfilled (for
instance, (2.3), (2.4), then I − An is invertible if (I − A)−1 exists, the
condition number of I − An is a good approximation of the condition
number of I −A and fn converges to f in Lp

u.
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The numerical problem consists in the accurate computation of the
solution of (1.2). If we represent fn and gn by a pair of arbitrary
bases B and B′ of Pn−1 we obtain a linear system Mnan = bn

equivalent to (1.2). Yet the numerical solution of that system can
give an unsatisfactory solution if the condition number of the matrix
Mn is very large.

In this paper we prove that, for special bases B and B′, the condition
number of Mn is independent of the dimension of the system. Then,
if the weight u of the space Lp

u is a generalized Jacobi weight, we
characterize the previous bases. These results, established in Section
2, are used in the Section 3 to study some integral equations with
special kernels. In Theorem 3.1 the mapping properties of a particular
Fredholm operator are established. In Section 3 some numerical tests
are given and Section 4 contains the proofs of some theorems.

2. Main results. For X ⊂ [−1, 1] and 1 ≤ p < ∞, let Lp(X) be
the space of all measurable functions f such that

‖f‖pLp(X) =
∫
X

|f(x)|p dx <∞.

If X = [−1, 1] then we use the notation ‖f‖Lp([−1,1]) ≡ ‖f‖p,
Lp([−1, 1]) ≡ Lp. If u is a weight function on [−1, 1], then Lp

u is the
set of all functions f for which fu ∈ Lp. The set Lp

u with the norm
‖f‖Lp

u
= ‖fu‖p is a Banach space. In the sequel we shall assume u is a

generalized Jacobi weight, u ∈ GJ , i.e., u(x) = vα,β(x)
∏r

k=1 |tk − x|γk

where vα,β(x) = (1−x)α(1+x)β, −1 < t1 < . . . < tr < 1, α, β, γk > −1.
The symbol C will denote a positive constant which may take different
values in different formulae. Sometimes we shall write C = C(a, b, . . . )
if C is a constant independent of the parameters a, b, . . . , and A ∼ B

if there exists a positive constant M, such that
(
A
B

)±1 ≤M .

Let us consider the following operator equation

(2.1) (I −A)f = g

where A denotes a compact operator on the space Lp
u and I the identity

operator. By the Fredholm alternative theorem the equation (2.1) has
a unique solution f ∈ Lp

u for any g ∈ Lp
u if and only if the homogeneous
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equation (I − A)h = 0 has only the trivial solution. We shall assume
the existence and uniqueness of the solution of (2.1).

In order to construct a polynomial approximation of the solution f
of (2.1), we consider the finite dimensional problem

(2.2) (I −An) fn = gn

where fn and gn belong to the subspace Pn−1 of all polynomials of
degree at most n− 1 and An : Lp

u −→ Pn−1 is a linear operator.

Let
‖T‖ = ‖T‖Lp

u→Lp
u
= sup

‖f‖L
p
u=1

‖(Tf)u‖p

denote the norm of a linear operator T : Lp
u → Lp

u. If we assume that

‖A− An‖ −→ 0, n→ ∞(2.3)

and

‖g − gn‖Lp
u
−→ 0, n→ ∞,(2.4)

then, by a standard argument, we derive the following result.

Theorem 2.1. Assume that ker(I −A) = {0} in Lp
u and conditions

(2.3) and (2.4) are fulfilled. Then, for all sufficiently large n, the
equation (2.2) has a unique solution fn ∈ Pn−1. Moreover

(2.5) ‖f − fn‖Lp
u
≤ C

(
‖g − gn‖Lp

u
+ ‖A−An‖ · ‖g‖Lp

u

)

with C independent of f and n, and

(2.6) |cond (I −A)− cond (I −An)| = O(‖A−An‖)

where cond(T ) = ‖T‖ · ∥∥T−1
∥∥ denotes the condition number of an

invertible operator T .

For completeness we shall give the proof of the previous theorem
in Section 4. For the time being we observe that, if g ∈ Lp

u and
A : Lp

u −→ Lp
u, 1 < p < ∞, is a compact operator, then there

exist an operator An : Lp
u −→ Pm−1 and a polynomial gn that
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satisfy (2.3) and (2.4). In fact, for u ∈ GJ , we can find a sequence
{Sm(w)} of Fourier projectors uniformly bounded in Lp

u, see the proof
of Theorem 2.3. Therefore, with gn = Sn(w, g), (2.4) is satisfied.
Setting Anf = Sn(w,Af), we also have:

‖[Af − Sn(w,Af)]u‖p ≤ C inf
P∈Pn−1

‖[Af − P ]u‖p =: En−1(Af)u,p.

Then (2.3) follows, since the compactness of A is equivalent to

lim
n→∞ sup

f∈Lp
u

En−1(Af)u,p
‖fu‖p = 0

(see [25]).

At this point, from a theoretical point of view, we can obtain the
solution fn of equation (2.2), by solving a system of linear equations
equivalent to (2.2). The procedure is well known. Consider the
restriction (I −An) |Pn−1 of the operator I−An to the subspace Pn−1

of Lp
u. If B = {ϕi : i = 1, . . . , n} and B′ = {ϕ′

i : i = 1, . . . , n} are two
arbitrary bases of Pn−1, then we can represent the functions fn and gn
as

(2.7) fn =
n∑

i=1

aniϕi, gn =
n∑

i=1

bniϕ
′
i.

Thus we can write the matrix Mn = (mij)i,j=1,... ,n of the isomorphism
(I − An) |Pn−1 with respect to the pair of bases (B,B′) and the
following system

(2.8) Mnan = bn

where

an = (an1, an2, . . . , ann)
T and bn = (bn1, bn2, . . . , bnn)

T
.

It is well known that the polynomial fn ∈ Pn−1 given in (2.7) is the
solution of the equation (2.2) if and only if the vector an is the solution
of (2.8).
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Now define by

‖vn‖lp =
( n∑

k=1

|vnk|p
)1/p

, 1 < p <∞,

the lp-norm of a vector vn = (vn1, . . . , vnn) ∈
◦
R

n
and by

‖Ln‖ = sup
‖vn‖lp=1

‖Lvn‖lp

the related lp-norm of a matrix Ln. Let δMn and δbn be the pertur-
bations of the matrix Mn and bn in the system (2.8), generated by the
finite accuracy of the computer and denote by an + δan the solution of
the system

(2.9) (Mn + δMn) (an + δan) = bn + δbn.

Then, for ‖δMn‖ ≤ ‖Mn‖ /2, we have

(2.10)
‖δan‖lp
‖an‖lp

≤ 2 cond (Mn)
(‖δMn‖

‖Mn‖ +
‖δbn‖lp
‖bn‖lp

)
.

Since the equivalence between (2.2) and (2.8) does not imply

(2.11) sup
n

cond (Mn) <∞,

cond (Mn) can be “very large” and the computation of fn is unsatisfac-
tory, see Example 1 in Section 3. Consequently it is crucial to choose
the bases B and B′ such that (2.11) is satisfied. To this end we give
the following definition.

We shall say that B = {ϕ1, . . . , ϕn} is a Marcinkiewicz basis, M-basis,
in Lp

u if, for any polynomial q =
∑n

i=1 vniϕi, we have:

(2.12)
1
C

‖vn‖lp ≤ ‖q‖Lp
u
≤ C ‖vn‖lp , 1 < p <∞,

with vn = (vn1, . . . , vnn) and C = C(n, q). Marcinkiewicz first proved
in [13] (see also [27, p. 28]) inequalities of type (2.12), with p = 2, for
trigonometric polynomials. In the algebraic case the reader can consult
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[14], [15] and the references therein. In L2√
w
, w ∈ GJ , if {ϕn}n is an

orthonormal set of polynomials, then B = {ϕ1, . . . , ϕn} is an M-basis
since ‖vn‖l2 = ‖q‖L2√

w

, but in Lp
u for p = 2 we cannot expect a similar

situation.

By using M -bases, we can give a simple estimate of the perturbation
of the polynomial fn arising from the numerical solution of the system
(2.8). In fact if B is an M-basis, then, denoting by an

∗ = an +
δan the numerical solution of (2.9) and by f∗n =

∑
j=1,n a

∗
njϕj the

corresponding polynomial, the estimate (2.5) has to be replaced by the
following one

(2.13) ‖f − f∗n‖Lp
u
≤ ‖f − fn‖Lp

u
+ ‖fn − f∗n‖Lp

u
,

where the second addendum, recalling that B is an M-basis, can be
estimated as follows

‖fn − f∗n‖Lp
u

‖fn‖Lp
u

=

∥∥∥(∑n
j=1 δanjϕj

)
u
∥∥∥
p

‖fn‖Lu
p

∼
‖δan‖lp
‖an‖lp

≤ Ccond (Mn)
(‖δMn‖

‖Mn‖ +
‖δbn‖lp
‖bn‖lp

)
.

Here C and the constants in “∼” are independent of n and the
functions.

Then estimate (2.13) is comparable with (2.5) if supn cond (Mn) <∞
and the quantity in the brackets is very small, e.g., as the machine
precision. Moreover, the following proposition holds.

Proposition 2.2. If the polynomials fn and gn in (2.2) are repre-
sented by means of M-bases, then the matrix of the system (2.8) satisfies

(2.14)

1
C

cond
(
(I − An) |Pn−1

) ≤ cond(Mn) ≤ C cond
(
(I −An) |Pn−1

)
,

with a positive constant C independent of n. In particular, if B and B′

are orthonormal bases in L2
u, then we have

(2.15) cond (Mn) = cond
(
(I −An) |Pn−1

)
.
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Proof. Let an = (an1, . . . , ann)
T ∈ ◦

R
n
, fn =

∑n
i=1 aniϕi. Let us

recall that if bn = Mnan, bn = (bn1, . . . , bnn)
T and gn = (I −An) fn

then the second formula in (2.7) holds. Thus, by (2.12), we can write

(2.16) ‖fn‖Lp
u
∼ ‖an‖lp

and, also,

(2.17) ‖Mnan‖lp ∼ ‖(I −An) fn‖Lp
u
.

Here and in the sequel the constants in “∼” are independent of n and
the functions. According to the definition of the operator norm and
taking into account conditions (2.16) and (2.17), one has

‖Mn‖ = sup
an∈

◦
R

n

‖an‖lp

=0

‖Mnan‖lp
‖an‖lp

∼ sup
fn∈Pn−1
‖fn‖L

p
u

=0

‖(I −An) fn‖Lp
u

‖fn‖Lp
u

=
∥∥(I −An) |Pn−1

∥∥ .

In the same way, for the inverse matrix, we can write

∥∥M−1
n

∥∥ = sup
bn∈

◦
R

n

‖bn‖lp

=0

∥∥M−1
n bn

∥∥
lp

‖bn‖lp

∼ sup
gn∈Pn−1
‖gn‖L

p
u

=0

∥∥∥(I −An)
−1
gn

∥∥∥
Lp

u

‖gn‖Lp
u

=
∥∥∥[
(I −An) |Pn−1

]−1
∥∥∥ .

Then, by the definition of the condition number, (2.14) follows. Finally
(2.15) follows by replacing in the previous relations the symbol “∼” by
“=”.

Now, we are able to state the following result.
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Theorem 2.3. Assume that the system (2.8) is obtained from
(2.2) by representing fn and gn by means of the M-bases B and B′,
respectively. Moreover, under the assumptions of Theorem 2.1, the
following results

(2.18)

1
C

cond (I −A) ≤ lim inf
n

cond (Mn)

≤ lim sup
n

cond (Mn) ≤ C cond (I −A),

with a positive constant C independent of n. In particular, if both B
and B′ are orthonormal bases, in L2

u, then

(2.19) lim
n

cond (Mn) = cond(I −A).

Obviously Theorem 2.3 can be applied if the Marcinkiewicz bases
are known. Yet the existence of such bases in arbitrary Banach
spaces seems to be an open problem. To confirm this fact, until
now, (polynomial) M-bases are not known in Lp

u with u arbitrary and
p = 2. In Lp

u with p ∈ (1,∞) and u a generalized Jacobi weight,
such bases do exist. To show this fact we need some notations. Let
w ∈ GJ be a weight function (equal or different from u). Denote by
{pn(w)}n the system of the orthonormal polynomials with respect to
the weight w having positive leading coefficients and let xnj = xnj(w),
j = 1, . . . , n, be the zeros of pn(w). Furthermore, let Ln(w,F )
be the Lagrange polynomial interpolating a function F at the zeros
of pn(w), i.e., Ln(w,F, x) =

∑n
j=1 lnj(w, x)F (xnj) with lnj(w, x) =

(pn(w, x))/(p′n (w, xnj) (x− xnj)). Finally, for a given weight σ, let

λn(σ, x) =
[ n−1∑

i=0

p2i (σ, x)
]−1

, n = 1, 2, . . .

be the n-th Christofel functions. Obviously

(2.20) Bp
n(u,w) =

{
λ−1/p
n (up, xnj(w)) lnj(w)

}
j=1,... ,n

is a basis of Pn−1, but, in general, it is not an M -basis. The following
proposition characterizes the M -bases of type (2.20).
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Proposition 2.4. Bp
n(u,w) is an M -basis if and only if the weights

u and w satisfy the conditions

(2.21)
u√
wϕ

∈ Lp,

√
wϕ

u
∈ Lq,

1
p
+

1
q
= 1, ϕ(x) =

√
1− x2 .

Proof. Every polynomial q∈Pn−1, can be written in a unique way as

q =
n∑

j=1

anjλ
−1/p
n (up, xnj) lnj(w), anj = λ1/p

n (up, xnj) q (xnj) .

By Theorem 2.6 and Theorem 2.7 in [14], if u and w satisfy (2.21),
and only in this case, Marcinkiewicz inequalities hold and, then, the
equivalence

(2.22)
1
C
‖qu‖p ≤


 n∑

j=1

|anj |p



1/p

≤ C‖qu‖p

is fulfilled for some C independent of n and q.

Remark 1. Since the conditions (2.21) are equivalent ([14]) to the
uniform boundedness of the operators Ln(w) in the Sobolev type spaces

W p
r (u) =

{
f ∈ Lp

u : ‖fu‖p +
∥∥∥f (r)ϕru

∥∥∥
p
<∞

}
, r ≥ 1,

we can rewrite Proposition 2.4 as follows.

Bp
n(u,w) is an M -basis if and only if supn ‖Ln(w)‖Wp

r (u)→Wp
r (u) <∞.

In this section we assumed 1 < p < ∞; the case p ∈ {1,∞} is an
open problem.

3. Special cases and numerical tests. In this section, in order
to apply the results in Section 2, we shall consider some special cases.
To this end let (I −A)f = g in Lp

u where 1 < p <∞ and u = vα,β is a
Jacobi weight (u ∈ J). We also assume that (I−A)f = g has a unique
solution for any g.
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Moreover we recall some basic facts about the polynomial approxi-
mation in Lp

u (see [5], [14]). The error of the best approximation is
defined as

Em(f)u,p = inf
p∈Pm

‖(f − P )u‖p, 1 < p <∞,

u = vα,β , α, β > − 1
p
,

and, in order to estimate Em(f)u,p, we can use the following modulus
of smoothness

Ωk
ϕ(f, t)u,p = sup

0<h≤t
‖(∆k

hϕf)u‖Lp(Irh)

where ϕ(x) =
√
1− x2, ∆k

hϕf(x) =
∑k

i=0

(
k

i

)
(−1)if(x + ((k/2) −

i)hϕ(x)) and Irh = [−1 + (2rh)2, 1 − (2rh)2]. Then we can write the
Jackson theorem and the Stechkin inequality by

(3.1)

Em(f)u,p ≤ C

∫ 1/m

0

Ωk
ϕ(f, t)

dt

t

Ωk
ϕ

(
f,

1
m

)
u,p

≤ C

mk

m∑
i=0

(1 + i)k−1Ei(f)u,p,

for some C > 0 independent of m and f . By (3.1) the equivalence

(3.2) sup
t>0

Ωk
ϕ(f, t)u,p
tr

∼ sup
k≥1

krEk(f)u,p

follows, with k > r > 0, r ∈ ◦
R. Zp

r denotes the Zygmund space with
index r, defined as

Zp
r =

{
f ∈ Lp

u : sup
t>0

Ωk
ϕ(f, t)u,p
tr

<∞, k > r

}
,

where u = vα,β , 1 < p <∞, 0 < r ∈ ◦
R, equipped with the norm

‖f‖Zp
r
= ‖f‖Lp

u
+ sup

t>0

Ωk
ϕ(f, t)u,p
tr

.
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Note that, in virtue of (3.2), the semi-norm in Zp
r can be expressed by

Ek(f)u,p. Moreover for r > (1/p), Zp
r admits a function continuous

in (−1, 1), as a representative. Finally we recall a result about the
polynomial interpolation.

Let Lm(w, f), w ∈ J , be the Lagrange polynomial interpolating a
function f at the zeros of Jacobi polynomial pm(w). Then, for any
g ∈ C0(−1, 1), there exists a constant C > 0, independent of m and f ,
such that

(3.3) ‖[g − Lm(w, g)]‖Lp
u
≤ C

m1/p

∫ 1/m

0

Ωk
ϕ(g, t)u,p

t1+
1
p

dt, 1 < p <∞,

if and only if the weights u and w satisfy (2.21) [14].

Case 1. For the equation (I −A)f = g we assume

(i) For all f ∈ Lp
u, Ωk

ϕ(Af, t)u,p ≤ Ctr‖fu‖p, C = C(f, t) and
k > r > 1

p

(ii) g ∈ Zp
r , r > (1/p).

This case appears frequently in applications. Condition (i) can be
verified by estimating directly Ωr

ϕ(Af, t)u,p. For instance in the case
(Af)(t) = λ

∫ 1

−1
k(x, t)f(x) dx, λ ∈ ◦

R, it is not hard to prove that, if
sup|x|≤1 ‖k(x, ·)‖Zp

r
<∞ and sup|t|≤1‖k(·, t)‖Zp

r
<∞, then Af satisfies

(i). Now, if A and g satisfy (i) and (ii) respectively, we choose a
Jacobi weight w verifying (2.21) and we set Anf = Ln(w,Af) and
gn = Ln(w, g) where Ln(w,F, x) =

∑n
k=1 lk(w)F (xk), pn(w, xk) = 0.

Hence we solve the finite-dimensional equation

(3.4) (I −An)fn = gn.

By representing fn and gn by the M -basis Bp
n(u,w) = {lk(w)/

(λ1/p
n (up, xk))}k=1,... ,n, (3.4) is equivalent to the system

(3.5) λ1/p(up, xi)
n∑

j=1

an,j λ
−1/p
n (up, xj)[(I −A)lj(w)](xi)

= λ1/p
n (up, xi)g(xi) i = 1, . . . , n,
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where an,j = λ
1/p
n (up, xj)fn(xj), that is well conditioned. Moreover by

(ii) and (3.3) it follows

‖(A−An)f‖Lp
u
≤ c

nr
‖f‖Lp

u
.

Therefore by Theorem 2.1, the system (3.5) has a unique solution, say
(ān1, . . . , ānn), and we set

fn =
n∑

i=1

āni
li(w)

λ
1/p
n (up, xi)

as the approximate solution of (I − A)f = g. Indeed by Theorem 2.1
it follows

(3.6) ‖f − f̄n‖Lp
u
≤ C

nr
‖g‖Zr

r
.

Consequently the solution f belongs to Zp
r , in view of the Steckhin

inequality (3.1).

Remark 2. Collocating the equation (3.4) on the interpolation knots
x1, . . . , xn, we obtain the following system

(3.7)
n∑

j=1

fn(xj)[(I −A)lj(w)](xi) = g(xi), i = 1, . . . , n.

Now if we multiply (3.7) to the left by the diagonal matrix, whose
entries are λ1/p

n (up, xi), i = 1, . . . , n we obtain (3.5). In this context
condition (2.21), characterizing the interpolation nodes (and, in this
example, also the collocation nodes), seems to be crucial. Indeed, if
(2.21) is not satisfied, then (3.6) is not true and Bp

n(u,w) is not an
M -basis.

If we denote byBn the matrix of the system (3.7), then supn cond (Bn)
may be infinite. In fact, for each polynomial q =

∑n
i=1 li(w)q(xi), by

using the Marcinkiewicz inequality, we have

C1

Λ
‖qu‖p ≤

( n∑
i=1

|q(xi)|p
)1/p

≤ C2
‖qu‖p
λ
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where λ = mini λ
1/p
n (up, xi) and Λ = maxi λ

1/p
n (up, xi). Then working

as in the proof of Proposition 2.2, we get

cond (Bn) ≤ C cond [(I −An)|Pn−1 ]
(
Λ
λ

)2

.

Since λ1/p
n (up, xi) ∼ u(xi)(

√
1− x2

i /n)
1/p, for u(x) = (1 − x2)α,

α > 0, we have (Λ/λ)2 ∼ n4α+ 2
p .

Then the procedure in Case 1 can be seen as a preconditioned
collocation method. Nevertheless the results of Section 2 can be used in
different contexts. In this example we deduce the space of the solution
by (3.6) while other methods are based on the a priori knowledge
of the smoothness of the solution (see [18] and enclosed references).
Finally we observe that the system (3.5) requires the computation of
cij = [(I − A)lj(w)](xi). Sometimes this can be avoided if g and Af
satisfy (i) and (ii) with r sufficiently large. To this end we show the
following

Case 2. With (Af)(x) = λ(Kf)(x) = λ

∫ 1

−1

k(x, y)f(y)dy, λ ∈ ◦
R, we

consider the equation (I − λK)f = g in L2, i.e., p = 2 and u = 1, and
assume g ∈ Z2

r , sup|x|<1 ‖k(x, ·)‖Z2
r
<∞ and sup|y|<1 ‖k(·, y)‖Z2

r
<∞

with r sufficiently large. Then we can use the following procedure.
Define the integral operator

(3.8) Knf(x) =
∫ 1

−1

Ln,y[k(x, y)]f(y) dy.

Throughout Ln denotes the Lagrange interpolation operator based
on the Legendre nodes and the subscript y in Ln,y means that the
interpolation is done with respect to the variable y. Then, consider the
following finite dimensional equation

(3.9) (I − λLnKn)fn = Lng

where fn is an unknown polynomial of degree at most n − 1 (see also
[10], [11]). Represent (3.9) in the M-basis {λ−1/2

nj lnj}j=1,... ,n, i.e.,
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(2.20) with u = w = 1 and obtain the system

(3.10)
λ

1/2
ni

n∑
j=1

anj [λ
−1/2
nj δij − λλ1/2

nj k(xni, xnj)] = λ
1/2
ni g(xni),

i = 1, . . . , n,

that is well conditioned. By solving (3.10), we construct the polynomial

(3.11) fn =
n∑

j=1

anjλ
− 1

2
nj lnj ∈ Pn−1,

that satisfies (3.6) with p = 2 and u = 1.

Remark 3. The described numerical method can be considered as
a preconditioned Nyström method (see, for instance, [1]) using the
Gauss-Legendre quadrature rule approximating the integral Kf(x),
that is,

Kf(x) ∼=
n∑

j=1

λnjk(x, xnj)f(xnj).

Recall that the Nyström method consists in solving the following system

(3.12)
n∑

j=1

fnj [δij − λλnjk(xni, xnj)] = g(xni), i = 1, . . . , n,

and in constructing the approximating solution by the Nyström inter-
polation formula

(3.13) f̃n(x) = g(x) + λ
n∑

j=1

λnjk(x, xnj)fnj .

Let us observe that the unknown coefficients fnj , j = 1, . . . , n can
be also obtained by solving the system (3.10) and computing fnj =
λ
−1/2
nj anj , j = 1, . . . , n, with the advantage of solving a system which

is well conditioned.

Case 3. Finally we consider the equation

(3.14) (I − λKµ)f = g
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where g ∈ Z2
r , (K

µf)(x) =
∫ 1

−1
kµ(x, y)f(y) dy, kµ(x, y) = |x − y|µ,

−1 < µ < 0 and k0(x, y) = log |x− y|. kµ(x, y) is a classical kernel and
the equation (I − λKµ)f = g was considered by several authors (see,
e.g., [17], [18], [21] and references therein). The mapping properties
of the operator Kµ in some spaces are well known [9]. Here we state a
more accurate result.

Theorem 3.1. Let k(x, y) be as in (3.14). Then the operator Kµ

satisfies the following estimate

(3.15) En (Kµf)2 ≤ C

n1+µ
‖f‖2,

with a constant C independent of n and f . Consequently Kµ : L2 −→
Z2
s is a compact operator for all s < 1 + µ.

In virtue of (3.15) and by assuming g ∈ Z2
r , r > 1/2, we construct a

polynomial approximation of the solution of (3.14), as in Case 1. We
set (Kµ

nf)(x) = Lm(Kµf, x) and gm = Lmg, where Lm is the Lagrange
operator based on Legendre zeros and we consider the equation

(3.16) (I − λKµ
n)fn = gn.

Representing fn by means of orthonormal Legendre polynomials {pi},
i.e., fn =

∑n−1
i=1 cnipi and gn by {lj/

√
λj }j=1,... ,n (i.e. (2.20) with

u = w = 1), we have the system

(3.17)
λ

1/2
ni

n−1∑
j=0

cnj
[
pj(xni)− λMµ

j (xni)
]
= λ

1/2
ni g(xni),

i = 1, . . . , n,

where Mµ
j (xi) = Kµpj(xn,i) can be computed by a recurrence relation

(see for instance [4], [18]). The system (3.17) is well conditioned and
has a unique solution (for n large) since by (3.15)and (3.3) we get

‖K −Kn‖ = O(n−(1+µ))

and

‖f − fn‖L2 = O(n−s), s = min(1 + µ, r).
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Notice that, if g is sufficiently smooth, e.g., g ∈ C(k)(−1, 1) k large,
then, by [26], f and Af belong to Z2µ+3 and ‖f − fn‖2 = O(m−2µ−3).
Here we considered the case −1 < µ ≤ 0. The case µ > 0 is similar. In
particular for µ > 0 “large” the system (3.10) is more suitable.

In order to show some numerical tests, we consider in L2 equations
of the type f(x)− λ ∫ 1

−1
k(x, t)f(t) dt = g(x).

Example 1. Let λ = 1, k(x, y) = x+ y, g(x) = x2 + 2.

Following Case 2, from the finite dimensional equation (3.9) we have,
by using an M -basis, the system (3.10). The numerical results are in
the following tables

TABLE 1.1

n fn(−1) fn(−0.5) fn(0.5)
8 7.666666666666 -8.33333333333e-2 -1.4083333333333e+1
16 7.666666666666 -8.333333333332e-2 -1.4083333333333e+1

TABLE 1.2

n cond (Mn)
8 1.3928203230275e+1
16 1.3928203230275e+1
32 1.3928203230275e+1

If we represent fn and gn = Lng in (3.4) by using the fundamental
Lagrange polynomials l̃1, . . . , l̃n based on given zeros x̃1, . . . , x̃n, we
have the linear system

(3.18)

n∑
j=1

[
δi,j − λ

n∑
k=1

lk(x̃i)
n∑

l=1

λlk(xl, xk)l̃j(xl)
]
fn(x̃j) = gn(x̃i),

i = 1, . . . , n.

Denote by Cn the matrix associated with the system (3.18). Then, if
xi = {−1 + (2/n− 1)i}, i = 0. . . . , n− 1, the condition number of Cn

has the following behavior
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TABLE 1.3

n cond (Cn)
8 3.552202729523286e+001
16 4.340167849100752e+004
32 8.615969917640776e+012
64 3.079632038081276e+017

If x̃i = xm,i(v7,7) are the zeros of Jacobi polynomial pα,βn with
α = β = 7, then we have

TABLE 1.4

n cond (Cn)
8 1.599545062878915e+004
16 2.343021438144193e+006
32 9.165456903104157e+008
64 7.229867516189905e+011

Example 2. Let λ = 0.2, k(x, y) = |x− y|5/2, g(x) = |x|3/2.
The exact solution f belongs to Z2

3/2. Tables (2.1) (2.2) show the
behavior of the solution and of the condition number of the system.

TABLE 2.1

n fn(±1) fn(±0.75) fn(±0.25) fn(±0.5)
8 1.51 9.9e-1 2.e-1 5.7e-1
16 1.51 9.91e-1 2.71e-1 5.73e-1
32 1.512 9.913e-1 2.719e-1 5.7392e-1
64 1.5127 9.9139e-1 2.719e-1 5.739e-1
128 1.5127 9.91395e-1 2.7199e-1 5.73932e-1
256 1.512704 9.91395e-1 2.719916e-1 5.739322722e-1
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TABLE 2.2

n cond (Mn)
8 2.0897
16 2.0897
32 2.089735
64 2.0897353
128 2.089735
256 2.089735296
512 2.0897352963

Example 3. Let λ = 0.2, k(x, y) = |x− y|−0.4, g(x) = cos (x2 + 1).

From the theoretical results, we have f ∈ Z2
r with r = 2.2, and the

numerical tests are

TABLE 3.1

n fn(0) fn(±0.25) fn(±0.75) fn(±1)
8 1.059 0.987 0.366 -0.14
16 1.0597 0.9870 0.3667 -0.14
32 1.05972 0.987089 0.366791 -0.141
64 1.059726 0.98708924 0.36679105 -0.141
128 1.0597264 0.98708924 0.36679105 -0.141
256 1.05972645 0.98708924707 0.36679105 -0.1410
512 1.0597264512 0.987089247072 0.3667910549 -0.14101
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TABLE 3.2

n cond (Mn)
8 2.
16 2.6
32 2.6
64 2.7
128 2.7
256 2.73
512 2.733

4. Proofs.

Proof of Theorem 2.1. At first, let us observe that, by applying the
Fredholm alternative theorem to the equation (2.1), we can deduce that
it has a unique solution f ∈ Lp

u for any g ∈ Lp
u.

Moreover, since the condition (2.3) holds, it is a well known result
(see for instance [1]) that, for sufficiently large n, the inverse operators
(I − An)

−1 exist and are uniformly bounded with respect to n and
satisfy the relations:

(4.1) (I −An)
−1 =

[
I − (I −A)−1 (A−An)

]−1
(I −A)−1,

and taking the operator norm (i.e., ‖ · ‖ = ‖ · ‖Lp
u→Lp

u
), we have

(4.2)
∥∥∥(I −An)

−1
∥∥∥ ≤

∥∥(I −A)−1
∥∥

1− ‖(I −A)−1‖ · ‖A−An‖ .

Then the finite dimensional equation (2.2) has a unique solution fn
which belongs to Pn−1, since fn = gn+Anfn. Now, to prove the error
estimate (2.5), let us observe that

f − fn = (I −An)
−1 [g − gn + (A−An)f ]
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and, using (4.2), one has

‖f − fn‖Lp
u
≤

∥∥∥(I −An)
−1

∥∥∥ ‖g − gn + (A−An)f‖Lp
u

≤ C
(
‖g − gn‖Lp

u
+ ‖A−An‖ · ‖f‖Lp

u

)

≤ C
(
‖g − gn‖Lp

u
+ ‖A−An‖ · ‖g‖Lp

u

)
,

with C = C(n).

It remains to prove (2.6). It is clear that

(4.3) |‖I −An‖ − ‖I −A‖| ≤ ‖A−An‖ .
For the inverse operators, we can write (see, for instance, [22])

(I −An)−1 − (I −A)−1 = (I −A)−1 [(I −A)(I −An)
−1 − I]

= (I −A)−1[(I −A)− (I −An)](I −An)−1

= (I −A)−1(An −A)(I −An)−1.

Then, taking the norms, we get

(4.4)
∥∥∥(I −An)

−1 − (I −A)−1
∥∥∥

≤ ∥∥(I −A)−1
∥∥ ‖A−An‖

∥∥∥(I −An)
−1

∥∥∥
and, consequently, taking also into account (4.2),

(4.5)
∣∣∣∥∥∥(I −An)

−1
∥∥∥ − ∥∥(I − A)−1

∥∥∣∣∣ ≤ C ‖A−An‖ .
Combining (4.3) and (4.5), the relation (2.6) follows. In fact we can
write

|cond (I −An)− cond(I −A)|
=

∣∣∣‖I −An‖
∥∥∥(I −An)

−1
∥∥∥ − ‖I −A‖ ∥∥(I −A)−1

∥∥∣∣∣
≤

∣∣∣‖I −An‖
∥∥∥(I −An)

−1
∥∥∥ −

∥∥∥(I −An)
−1

∥∥∥ ‖I −A‖
∣∣∣

+
∣∣∣∥∥∥(I −An)

−1
∥∥∥ ‖I −A‖ − ‖I −A‖ ∥∥(I −A)−1

∥∥∣∣∣
=

∥∥∥(I −An)
−1

∥∥∥ |‖I − An‖ − ‖I −A‖|

+ ‖I − A‖
∣∣∣∥∥∥(I −An)

−1
∥∥∥ − ∥∥(I −A)−1

∥∥∣∣∣
≤ C ‖A−An‖ ,
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with C = C(n).

Proof of Theorem 2.3. Set B = I−A and Bn = I−An. Let ε > 0 be
arbitrarily chosen, but fixed. By the definition of the operator norm, a
function fε ∈ Lp

u such that

‖Bfε‖Lp
u
> ‖B‖ − ε

2
, ‖fε‖Lp

u
= 1.

Now, let Pn be a projection of Lp
u onto Pn−1 such that

(4.6) sup
n

‖Pn‖ <∞.

Let us observe that a projector satisfying (4.6) exists in Lp
u. It is

sufficient to consider the Fourier operator

Sn(w, f) =
n−1∑
j=0

cjpj(w), cj =
∫ 1

−1

f(x)pj(w, x)w(x) dx

under the assumptions

u√
wϕ

∈ Lp, and
w

u
,

√
w

ϕ

1
u
∈ Lq,

ϕ(x) =
√
1− x2,

1
p
+

1
q
= 1,

(see [2], [3], [22]).

Then, as is well known, one has

(4.7) ‖Pnf − f‖Lp
u
−→ 0, as n −→ ∞

for any f ∈ Lp
u. By applying (4.7) to the function fε, we can deduce

that there exists an index n0 ∈ N such that

‖Pnfε − fε‖Lp
u
<

ε

2‖B‖ , ∀n ≥ n0.

Then, for any n ≥ n0, one has

‖BPnfε‖Lp
u
≥ ‖Bfε‖Lp

u
− ‖B (Pnfε − fε)‖Lp

u

> ‖B‖ − ε

2
− ε

2
= ‖B‖ − ε,
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from which it follows that

‖B‖ − ε < ‖BPnfε‖Lp
u
=

∥∥B |Pn−1 Pnfε
∥∥
Lp

u
≤ ∥∥B |Pn−1

∥∥ · ‖Pnfε‖Lp
u
.

Therefore, taking into account (4.7), we obtain

‖B‖ − ε ≤ lim inf
∥∥B |Pn−1

∥∥ · ‖fε‖Lp
u
= lim inf

∥∥B |Pn−1

∥∥
and then

‖B‖ − ε ≤ lim inf
∥∥B |Pn−1

∥∥ ≤ lim sup
∥∥B |Pn−1

∥∥ ≤ ‖B‖.

We can deduce that there exists limn

∥∥B |Pn−1

∥∥ and one has

(4.8) lim
n

∥∥B |Pn−1

∥∥ = ‖B‖.

Now, let us observe that, by (2.3), we have ‖B −Bn‖ −→ 0, as n→ ∞
from which it follows that

∥∥Bn |Pn−1 −B |Pn−1

∥∥ −→ 0 as n → ∞ and
then

(4.9)
∣∣∥∥Bn |Pn−1

∥∥ − ∥∥B |Pn−1

∥∥∣∣ −→ 0, n −→ ∞.

Since
∣∣∥∥Bn |Pn−1

∥∥ − ‖B‖∣∣ ≤ ∣∣∥∥Bn |Pn−1

∥∥ − ∥∥B |Pn−1

∥∥∣∣
+

∣∣∥∥B |Pn−1

∥∥ − ‖B‖∣∣ ,
by (4.8), (4.9) and taking into account the relation ‖Mn‖ ∼ ∥∥Bn |Pn−1

∥∥,
with the constant in “∼” independent of n, we conclude that

(4.10)
1
C

‖B‖ ≤ lim inf
n

‖Mn‖ ≤ lim sup
n

‖Mn‖ ≤ C‖B‖

with C constant and C = C(n).

A similar result can be obtained for the inverse operators M−1
n and

B−1, taking into account the relations (4.2), (4.4) and
∥∥M−1

n

∥∥ ∼∥∥∥(
Bn |Pn−1

)−1
∥∥∥, i.e.,

(4.11)
1
C

∥∥B−1
∥∥ ≤ lim inf

n

∥∥M−1
n

∥∥ ≤ lim sup
n

∥∥M−1
n

∥∥ ≤ C‖B−1‖.
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Combining (4.10) and (4.11) we get (2.18). Equation (2.19) follows by
replacing the symbol “∼” by “=”.

Lemma 4.1. Let Kµf(x) =
∫ 1

−1
|x − y|µf(y) dy, with −1 < µ < 0.

Then for every f ∈ L2 one has

(4.12) sup
t>0

Ωϕ (Kµf, t)2
t1+µ

≤ C‖f‖2,

where the constant C depends only on µ.

Proof. We set ϕ1(x) =
√
1− |x|. Since (ϕ(x)/

√
2) ≤ ϕ1(x) ≤ ϕ(x),

ϕ(x) =
√
1− x2, the ϕ-modulus Ωϕ is equivalent to Ωϕ1 [5]. Thus we

prove (4.12) with Ωϕ replaced by Ωϕ1 .

We can write

‖∆hϕ1 (K
µf)‖L2(Ih) =

( ∫ 1−4h2

−1+4h2
|∆hϕ1 (K

µf) (x)|2 dx
)1/2

≤
( ∫ 0

−1+4h2
|∆hϕ1 (K

µf) (x)|2 dx
)1/2

+
( ∫ 1−4h2

0

|∆hϕ1 (K
µf) (x)|2 dx

)1/2

:= I1 + I2.

Let us estimate I1. We have

|∆hϕ1 (K
µf) (x)| =

∣∣∣∣
∫ 1

−1

[∣∣∣∣x+ h2ϕ1(x)−y
∣∣∣∣
µ

−
∣∣∣∣x− h2ϕ1(x)−y

∣∣∣∣
µ]
f(y) dy

∣∣∣∣
≤

∫ 1

−1

∣∣∣∣
∣∣∣∣x+ h2ϕ1(x)−y

∣∣∣∣
µ

−
∣∣∣∣x− h2ϕ1(x)−y

∣∣∣∣
µ∣∣∣∣

∣∣∣∣f(y)| dy

=
{∫ −1+(1+x/2)

−1

+
∫ x−hϕ1(x)

−1+(1+x/2)

+
∫ x+hϕ1(x)

x−hϕ1(x)

+
∫ x+(1+x/2)

x+hϕ1(x)

+
∫ 2x+1

x+(1+x/2)

+
∫ 1

2x+1

}∣∣∣∣
∣∣∣∣x+ h2ϕ1(x)−y

∣∣∣∣
µ

−
∣∣∣∣x− h2ϕ1(x)−y

∣∣∣∣
µ∣∣∣∣|f(y)| dy =

6∑
i=1

Gi(x).



334 C. LAURITA AND G. MASTROIANNI

It follows that

I1 ≤
( ∫ 0

−1+4h2

[ 6∑
i=1

Gi(x)
]2

dx

)1/2

≤
6∑

i=1

( ∫ 0

−1+4h2
[Gi(x)]

2 dx

)1/2

:=
6∑

i=1

Ai.

To estimate A1 and A2 we shall use the following bound:

(4.13)
∣∣∣∣
∣∣∣∣x+ h

2
ϕ1(x)− y

∣∣∣∣
µ

−
∣∣∣∣x− h

2
ϕ1(x)− y

∣∣∣∣
µ∣∣∣∣

≤ hϕ1(x)
(
x− h

2
ϕ1(x)− y

)µ−1

,

since |µ| < 1. Let us estimate A1. We have

G1(x) =
∣∣∣∣
∫ −1+(x+1/2)

−1

∣∣∣∣
∣∣∣∣x+ h

2
ϕ1(x)− y

∣∣∣∣
µ

−
∣∣∣∣x− h

2
ϕ1(x)− y

∣∣∣∣
µ∣∣∣∣|f(y)| dy

∣∣∣∣
≤ h

√
1 + x

∫ −1+(x+1/2)

−1

(
x− h

2
ϕ1(x)− y

)µ−1

|f(y)| dy

≤ Ch(1 + x)µ−(1/2)

∫ −1+(x+1/2)

−1

|f(y)| dy

≤ Ch(1 + x)µ−(1/2)‖f‖2

(∫ −1+(x+1/2)

−1

dy

)1/2

≤ Ch(1 + x)µ‖f‖2,

where we have taken into account the following facts

x ≥ −1 + 4h2 ⇐⇒ h ≤
√
1 + x
2

⇐⇒ h

2
ϕ1(x) ≤ 1 + x

4

y ≤ −1 + 1 + x
2

=⇒ x− h

2
ϕ1(x)− y ≥ 1 + x

4
.
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It follows, by using

h ≤
√
1 + x
2

=⇒ hµ ≥ C(1 + x)(µ/2),

that

A1 =
( ∫ 0

−1+4h2
|G1(x)|2 dx

)1/2

≤ Ch1+µ‖f‖2

( ∫ 0

−1+4h2
(1 + x)µ dx

)1/2

≤ Ch1+µ‖f‖2.

To estimate G2(x) (and consequently A2) we use (4.13) and the change
of variable x− y = τ

√
1 + x. One has

G2(x) ≤ h
√
1+x

∫ x−hϕ1(x)

−1+(x+1/2)

(
x− h

2
ϕ1(x)−y

)µ−1

|f(y)| dy

= h(1+x)(1/2)+(µ/2)

∫ (
√

1+x/2)

h

∣∣f (
x−τ√1+x

)∣∣ (
τ− h

2

)µ−1

dτ.

Setting

x0
+ =

{ 1 x ≥ 0

0 x < 0

since
√
1 + x/2 ≤ (1/2), we have

|G2(y)| ≤ h(1 + x)(1/2)+(µ/2)

×
∫ 1/2

h

∣∣f (
x− τ√1+x

)∣∣ (
τ − h

2

)µ−1(√
1+x
2

− τ
)0

+

dτ
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from which, by the generalized Minkowski inequality, we deduce

A2 =
( ∫ 0

−1+4h2
|G2(x)|2 dx

)1/2

≤ h

( ∫ 0

−1+4h2
(1+x)µ+1

∣∣∣∣
∫ 1/2

h

∣∣f (
x−τ√1+x

)∣∣ (
τ− h

2

)µ−1

×
(√

1+x
2

−τ
)0

+

dτ

∣∣∣∣
2

dx

)1/2

≤ h

∫ 1/2

h

(
τ− h

2

)µ−1( ∫ 0

−1+4h2

∣∣∣∣∣f
(
x−τ√1+x

) ∣∣∣∣
2

×
[(√

1+x
2

−τ
)
+0

]2

(1+x)µ+1 dx

)1/2

dτ

≤ Ch

∫ 1/2

h

(
τ− h

2

)µ−1( ∫ 0

−1+4τ2

∣∣f (
x−τ√1+x

)∣∣2 dx
)1/2

dτ.

In order to evaluate the second integral at the righthand side we
use the change of variable s = x − τ

√
1+x, i.e., x = s + (τ2/2) +

τ
√
(τ2/4) + s+ 1, dx =

(
1 + (τ/2

√
(τ2/4) + s+ 1)

)
ds. We get

∫ 0

−1+4τ2

∣∣f (
x− τ√1 + x

)∣∣2 dx
=

∫ −τ

−1+2τ2
|f(s)|2

(
1 +

τ

2
√
(τ2/4) + s+ 1

)
ds

≤ C‖f‖2
2,

since from τ ∈ [h, 1/2] and s > −1 + 2τ2 it follows that s + 1 +
(τ2/4) > (9/4)τ2 and hence 1 < 1 + (τ/2

√
s+ 1 + (τ2/4)) < (4/3).

Consequently,

A2 ≤ Ch‖f‖2

∫ 1/2

h

(
τ − h

2

)µ−1

dτ

= Ch‖f‖2

[(
h

2

)µ

−
(
1
2
− h

2

)µ]

≤ Ch1+µ‖f‖2.
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To estimate G3(y), and then A3, we use the following decomposition

G3(y) ≤
{∫ x

x−hϕ1(x)

+
∫ x+hϕ1(x)

x

}∥∥∥∥x+ h

2
ϕ1(x)− y

∣∣∣∣
µ

−
∣∣∣∣x− h

2
ϕ1(x)− y

∣∣∣∣
µ∣∣∣∣

|f(y)| dy := F1(x) + F2(x).

Observe that

F1(x) ≤
∫ x

x−hϕ1(x)

∣∣∣∣x− h

2
ϕ1(x)− y

∣∣∣∣
µ

|f(y)| dy
(4.14)

and

F2(x) ≤
∫ x+hϕ1(x)

x

∣∣∣∣x+ h

2
ϕ1(x)− y

∣∣∣∣
µ

|f(y)| dy.
(4.15)

By using the change of variable x − (h/2)ϕ1(x) − y = hτϕ1(x) in the
first integral and x+ (h/2)ϕ1(x)− y = hτϕ1(x) in the second one, we
may estimate quantities such as

h1+µ[ϕ1(x)]1+µ

∫ 1/2

0

∣∣∣∣f(x± h
(
1
2
± τ

)
ϕ1(x)

∣∣∣∣τµ dτ.
Consequently, to obtain an estimate for A3 we can proceed as in the
estimate ofA2. If we repeat this procedure by replacing τ by (1/2± τ )h
and assuming, as it is possible, h < (1/2) in the estimate of the integrals

∫ 0

−1+4h2

∣∣∣∣f(x± h
(
1
2
± τ

)
ϕ1(x)

∣∣∣∣
2

dx,

we get
A3 ≤ Ch1+µ‖f‖2.

To estimate A4 A5 and A6 we shall use the following bound:

(4.16)
∣∣∣∣
∣∣∣∣x+ h

2
ϕ1(x)− y

∣∣∣∣
µ

−
∣∣∣∣x− h

2
ϕ1(x)− y

∣∣∣∣
µ∣∣∣∣

≤ hϕ1(x)
(
y − h

2
ϕ1(x)− x

)µ−1

.
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The estimate of A4 can be obtained by proceeding as for the estimate
of A2. One has

A4 ≤ Ch1+µ‖f‖2.

To bound A5, observe that

G5(x) ≤ h
√
1 + x

∫ 2x+1

x+(1+x/2)

(
y − h

2
ϕ1(x)− x

)µ−1

|f(y)| dy

≤ Ch1+µ(1 + x)(µ/2)−(1/2)

∫ 2x+1

x+ 1+x
2

|f(y)|dy

≤ Ch1+µ(1 + x)µ/2‖f‖2,

from which we can deduce

A5 ≤ Ch1+µ‖f‖2

( ∫ 0

−1+4h2
(1 + x)µ dx

)1/2

≤ Ch1+µ‖f‖2.

Let us estimate G6(x) and consequently A6. We have

G6(x) ≤ h
√
1 + x

∫ 1

2x+1

(
y − h

2
ϕ1(x)− x

)µ−1

|f(y)| dy

≤ h
√
1 + x

∫ 1

2x+1

(y + 1)µ−1|f(y)| dy

≤ Ch

∫ 1

2x+1

(y + 1)µ−
1
2 |f(y)| dy

≤ Ch1+µ

∫ 1

2x+1

(y + 1)(µ/2)−(1/2)|f(y)| dy

≤ Ch1+µ‖f‖2

( ∫ 1

2x+1

(y + 1)µ−1 dy

)1/2

≤ Ch1+µ‖f‖2(1 + x)µ/2,

since y ≥ 2x + 1 ⇔ y − x ≥ (y + 1)/2 from which it follows that
y − (h/2)ϕ1(x)− x ≤ (1 + y)/4. Therefore we get

A6 ≤ Ch1+µ‖f‖2

( ∫ 0

−1+4h2
(1 + x)µ dx

)1/2

≤ Ch1+µ‖f‖2.
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Finally we conclude

(4.17) I1 ≤ Ch1+µ‖f‖2.

A similar estimate can be obtained also for I2, recalling that in this
case ϕ1(x) =

√
1− x and dividing the interval [−1, 1] as follows

[−1, 1] = [−1,−1 + 2x] ∪
[
− 1 + 2x, x− 1− x

2

]

∪
[
x− 1− x

2
, x− hϕ1(x)

]

∪ [x− hϕ1(x), x+ hϕ1(x)]

∪
[
x+ hϕ1(x), 1− 1− x

2

]
∪

[
1− 1− x

2
, 1

]
.

Proof of Theorem 3.1. For −1 < µ < 0, (3.15) follows from (4.12)
and (3.1). Let us prove the theorem in the case µ > 0.

The following inequality (Favard’s Theorem) holds (see [5]):

(4.18) En(h)2 ≤ C

n
inf

P∈Pn−1
‖(h′ − P )√ϕ ‖2 ,

with ϕ(x) =
√
1− x2 .

By applying (4.18) to Kµf in [µ] + 1 iterations, one has

En (Kµf)2 ≤ C

n[µ]+1
inf

P∈Pn−([µ]+1)

∥∥∥(Kµf)([µ]+1) − P
∥∥∥

2

≤ C

n[µ]+1
En

(
(Kµf)([µ]+1)

)
2

≤ C

n[µ]+1+1−1+µ−[µ]
‖f‖2

=
C

n1+µ
‖f‖2,

where we used (3.15) by replacing µ by −1 < µ− [µ]− 1 < 0.

Let us now consider µ = 0. By applying (4.18) to K0f we have

En(K0f)2 ≤ C

n
inf

P∈Pn

∥∥∥∥
[ (
K0f

)′ − P
]√
ϕ

∥∥∥∥
2

≤ C

n

∥∥∥∥ (
K0f

)′ √
ϕ

∥∥∥∥
2

.
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Since

(K0f)′(x) =
∫ 1

−1

f(y)
x− y dy =: Hf(x),

with Hf the Hilbert transform of f , using the boundedness of H in
L2√

ϕ ([17]) one has

En(K0f)2 ≤ C

n
‖(Hf)√ϕ‖2 ≤ C

n
‖f√ϕ‖2 ≤ C

n
‖f‖2

and the theorem is completely proved.
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