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ABSTRACT. We consider numerical methods for nonstiff
initial-value problems for Volterra integro-differential equa-
tions. Such problems may be considered as initial-value prob-
lems for ordinary differential equations with expensive right-
hand side functions because each righthand side evaluation
requires the application of a quadrature formula. The often
considerable costs suggest the use of methods that require
only one righthand side evaluation per step. One option is
a conventional linear multistep method. However, if a par-
allel computer system is available, then one might also look
for methods with more righthand sides per step but such that
they can all be evaluated in parallel. In this paper we con-
struct such parallel methods and we show that on parallel
computers they are by far superior to the conventional linear
multistep methods which do not have scope for parallelism.
Moreover, the (real) stability interval is considerably larger.

1. Introduction. We consider explicit numerical methods for
nonstiff initial-value problems (IVPs) for Volterra integro-differential
equations (VIDEs) of the form

(1.1)
dy(t)

dt
= f(y(t),q(t)), q(t) :=

∫ t

t0

k(y(t),y(x)) dx,

y, f ,k ∈ Rd, t0 ≤ t ≤ tend.

Such IVPs may be considered as IVPs for ordinary differential equations
(ODEs) with expensive righthand sides (RHSs) because each RHS
evaluation requires the evaluation of the integral term q(t). In the
numerical solution of (1.1), the often considerable costs of the RHSs
suggest the application of methods that use only one RHS per step,
such as in the conventional linear multistep methods, or if a parallel
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computer system is available, methods of which all RHSs per step can
be evaluated in parallel. This leads us to consider methods of the form

(1.2) Yn+1 = (R ⊗ I)Yn + h(S ⊗ I)F(Yn,Qn), n ≥ 1.

Here R and S denote k × k matrices, h is the stepsize tn+1 − tn and
⊗ denotes the direct product between matrices (Kronecker product).
Each of the k components yn,i of the kd-dimensional solution vector
Yn represents a numerical approximation to y(tn−1 + aih) and each
of the k components qn,i of the kd-dimensional vector Qn represents
a quadrature formula for q(tn−1 + aih). The vector a := (ai) is called
the abscissa vector, Yn is called the stage vector and its components
yni the stage values. Furthermore, for any two vectors Yn = (yni)
and Qn = (qni), F(Yn,Qn) contains the RHS values (f(yni,qni)). We
shall always assume that ak = 1.

Since the k components of F(Yn,Qn) can be computed in parallel
(provided that k processors are available), (1.2) requires only one
effective righthand side evaluation per step (here, effective means that
RHSs that can be evaluated in parallel are evaluated in parallel).

In the ODE case (f independent of q), the method (1.2) belongs to
the wide class of general linear methods (GLMs) introduced by Butcher
in 1966, see the textbooks [4] and [6] for a detailed analysis. Examples
of such GLMs are (i) linear multistep methods with a = (i − k + 1)T

and a matrix S whose first k − 1 rows vanish, or (ii) the multi-block
methods of Chu and Hamilton [5] characterized by a = (i/k)T and by
(in principle) full matrices R and S. Multiblock methods with general
(nonequidistant) abscissae have been considered in [7] as a special case
of block Runge-Kutta methods, but specific methods were only given
for k = 2.

In this paper we want to derive methods of the type (1.2) for
VIDEs, that is, we should equip the method with a quadrature method
based on the y-values available at the points tni := tn−1 + aih. We
shall consider two options, viz. (i) quadrature formulas using all
points {tni : n ≥ 1, 1 ≤ i ≤ k}, so-called extended methods, and
(ii) quadrataure formulas only using the step points {tn : n ≥ 1}, so-
called mixed methods. In the case of extended methods, it will be
an advantage if the points tni are more or less equidistant. If the
stage order of the GLM is sufficiently high, then this would make the
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quadrature formula considerably more accurate than the conventional
linear multistep approach where only step points are available, or the
explicit Runge-Kutta formulas where the off-step points cannot be
used because of their low stage order. However, a disadvantage is
the large storage requirement if many integration steps are involved.
An alternative is the use of the storage economic mixed methods.
Since here only the step point values are involved in the quadrature
formula, we should try to choose the abscissae such that we have
superconvergence at the step points. Given a sufficiently accurate
quadrature formula, the methods constructed in this paper have stage
order k, step point order k + 1, and satisfactory large real stability
boundaries.

2. Construction of methods. Given a procedure to compute the
quadrature terms, suitable methods can be constructed by imposing
consistency conditions on the arrays a, R and S. The consistency of
(1.2) is defined by substitution of the exact solution into the GLM and
by requiring that the residue vanishes as h tends to zero. The rate by
which the residue tends to zero determines the order of consistency.
We shall call the GLM (or the stage vector Yn+1) consistent of order p
if the residue upon substitution of the exact solution values y(tn +aih)
into (1.2) is of order hp+1. Assuming that the quadrature formulas
are sufficiently accurate, we find by expansion into Taylor series the
consistency conditions

(R + zS) exp(bz) − exp(az) = O(zp+1),
b := a − e, e := (1, . . . , 1)T ,

where we used the componentwise notation of function of vectors, that
is, for any vector v := (vi), exp(v) denotes the vector with components
exp(vi). This leads to the equations

Re = e, Rbj + jSbj−1 = aj , j = 1, . . . , p.

The error constants are given by the components of the vector

(2.1) C(p + 1) := Rbp+1 + (p + 1)Sbp − ap+1.

Let us introduce the k × p matrices U(p), V (p) and W (p):

(2.2)
U(p) := (a, a2, . . . ,ap),
V (p) := (b,b2, . . . ,bp),
W (p) := (e, 2b, 3b2, . . . , pbp−1).
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The consistency conditions can now be expressed as

(2.3) Re = e, RV (p) + SW (p) = U(p).

Given the abscissa vector a, the system (2.3) yields k(p + 1) linear
equations. However, in order to have convergence, that is, yn+1,i →
y(tn + aih) as h → 0 for all grid points in the integration interval, the
GLM should satisfy the necessary condition of zero-stability, that is,
R has its eigenvalues on the unit disk and the eigenvalues of modulus
one have multiplicity one. Therefore, in the construction of GLMs, one
usually prescribes a (family of) zero-stable matrix R, satisfying the
condition Re = e, and next the remaining order conditions are solved.

2.1 Generalized Adams-Bashforth methods. In this paper we
confine our considerations to the case where the matrix R = eeT

k

with ek denoting the kth unit vector. Evidently, this matrix is zero-
stable. Substitution into (2.3) and setting p = k, and by virtue of our
assumption ak = 1, yields the matrix

(2.4) S = (U(k) − eeT
k V (k))W−1(k) = U(k)W−1(k).

The resulting methods may be considered as generalizations of the clas-
sical Adams-Bashforth methods (AB methods), because just as in AB
methods, each stage value is defined by the most recent y-vector avail-
able and the k already computed RHS values. Furthermore, as with
the k-step AB methods, they have order p = k and possess a ma-
trix R with one eigenvalue 1 and k − 1 eigenvalues 0. The methods
{(1.2), (2.4)} will be referred to as Generalized Adams-Bashforth meth-
ods (GAB methods).

In this paper we shall choose one of the still free abscissae ai such that
the GLM contains an embedded formula for stepsize control. Suppose
that ak−1 = 2. Then yn+1,k − yn,k−1 provides an O(hk+1) local error
estimate. However this estimate will be more effective if yn+1,k is of
higher order than yn,k−1. By virtue of the structure of R, this can be
achieved by requiring that the kth component Ck(k + 1) of the error
vector C(k + 1) vanishes. This equation imposes a condition on the
abscissae ai. In order to derive a simple expression for this condition,
we consider the equation in the system (1.2), viz.

(2.5) yn+1,k = yn,k + h(eT
k S ⊗ I)F(Yn,Qn),
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and we compare this equation with the relation

(2.6) y(tn+1) = y(tn) +
∫ tn+1

tn

f(y(t),q(t)) dt.

Thus h(eT
k S ⊗ I)F(Yn,Qn) may be considered as an interpolatory

quadrature formula for the integral term in (2.6) using the quadrature
points tni := tn−1 +aih = tn +bih, where bi := ai−1. Such quadrature
formulas possess an approximation error of the form, see, e.g., [1, p.
55],

1
k!

∫ tn+1

tn

πk(t)
dkf(y(θ(t)),q(θ(t)))

dtk
dt,

πk(t) :=
k∏

i=1

(t − tni),

where f(y(t),q(t)) is assumed k times continuously differentiable on
[tn, tn+1] and θ(t) assumes values in the interval (tn, tn+1). Hence, the
polynomial order of accuracy can be raised by one if the integral of πk(t)
over the interval [tn, tn+1] vanishes, that is, if the shifted abscissae bi

satisfy the relation

(2.7)
∫ tn+1

tn

πk(t) dt = hk+1

∫ 1

0

k∏
i=1

(x − bi) dx = 0.

Imposing this superconvergence condition yields a (k − 2)-parameter
family of GAB methods of order p = k + 1. We remark that relation
(2.7) can never be satisfied by abscissae ai in the interval [0, 1], i.e.,
−1 ≤ bi ≤ 0. This follows from the fact that if the quantities bi would
all be nonpositive, then πk(t) has no zeros in the interval [tn, tn+1],
so that the integral of πk(t) over the interval [tn, tn+1] cannot vanish.
If k = 2, then we obtain a uniquely defined third-order method with
a = (5/3, 1)T . In this case the easy error estimate mentioned above is
not possible. However, if k > 2, then we may set ak−1 = 2 to obtain the
local error estimate yn+1,k − yn,k−1. Observing that, for ak = 1 and
ak−1 = 2, the super-convergence condition (2.7) can always be satisfied
by choosing the free abscissae ai symmetrically with respect to 3/2, we
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are led to define

(2.8)

k even: k = 2 : ak = 1, ak−1 = 5/3,

k ≥ 4 : ak = 1, ak−1 = 2, ai = 3 − ak−i−1,

i = 1, . . . , k − 2.

k odd: k ≥ 3 : ak = 1, ak−1 = 2, ak−2 = 3/2,

k ≥ 5 : ai = 3 − ak−i−2,

i = 1, . . . , k − 3.

Theorem 2.1. Let (2.8) be satisfied. Then the following assertions
hold:

(a) If k ≥ 2, then the global order p = k + 1.

(b) If k ≥ 3, then the error estimate yn+1,k −yn,k−1 is of local order
k + 1.

Condition (2.7) is always true for k odd. If k is even, then we have to
spend one abscissa to satisfy (2.7). The still remaining free abscissae
may be chosen, for example, such that the first k − 1 components of
the error vector C(k + 1) are of small magnitude, or such that the
stability region is sufficiently large. Let us first try to reduce the
magnitude of the error constants. Since we assumed ak = 1, we may
write C(k + 1) = (k + 1)Sbk − ak+1. We have minimized the error
constants Ci(k + 1), i ≤ k − 1, under the constraint that the norm of
S does not increase too much. Thus, we expect that a suitable choice
for the free abscissae ai is obtained by minimizing the quantity

(2.9) G(a) := max
a

{‖(C1(k + 1), . . . , Ck−1(k + 1))‖∞ + γ‖S‖∞},

where γ denotes some constant.

In Table 2.1 we have listed the GAB abscissa vectors obtained for
γ = 10−2 (this value was chosen experimentally), together with the
corresponding (local) minimum value of G(a) and the real stability
boundaries for both the AB and GAB methods, see also Section 2.2
for a discussion of the overall stability of the VIDE method. It turns
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TABLE 2.1 Abscissa vectors, the norm G(a) and real stability boundaries.

k aT for GAB methods G(a) βreal(AB) βreal(GAB)

2 ( 5
3 , 1) 1.88 1.0 0.63

3 ( 3
2 , 2, 1) 4.07 0.53 0.48

4 ( 1741
1364 ), 2351

1364 , 2, 1) 6.34 0.30 0.44

5 ( 1137
1024 , 1935

1024 , 3
2 , 2, 1) 10.26 0.16 0.42

6 ( 2480
2279 , 2199

1643 , 2730
1643 , 4379

2279 , 2, 1) 20.59 0.08 0.42

7 ( 865
944 , 571

476 , 857
476 , 1967

944 , 3
2 , 2, 1) 48.32 0.04 0.41

out that the abscissae in the four-stage GAB method are numerically
equal to the Lobatto abscissae in the interval [1, 2]. For larger values of
k, there is no relation with the Lobatto points. The stability boundaries
of the GAB methods are quite satisfactory, so that there is no reason
to look for abscissa vectors which yield still larger boundaries.

2.2. The starting vector and overall stability. The GLM (1.2)
needs the starting vector Y1 ≈ y(t0 +aih). If all abscissae are positive,
then this starting vector can be generated by a one-step method, e.g.,
a Runge-Kutta method. If one or more abscissae are negative, then we
need starting values at points left to t0. Since this is inconvenient in
practice, we follow another approach which is based on the redefinition
of the points tn, n ≥ 1. Let amin denote the minimal abscissa value
and define for n ≥ 1, tn := t0 + (n − amin)h (instead of the original
step points tn = t0 + nh). In particular, we have t1 = t0 + (1− amin)h.
Evidently, none of the points t1i := t0 + (ai − amin)h are located to the
left of t0. So by using a starting vector Y1 which approximates the
exact solution at these points, i.e., Y1 ≈ y(t1i), we do not anymore
need starting values at points left to t0. Now, let yRK(t) denote a
Runge-Kutta approximation at the point t. Then we may define the
starting vector Y1 := (yRK(t0 + (ai − amin)h))T . In fact, we can
also use this starting vector in the case of positive abscissae with the
advantage that the starting value corresponding with amin is exact.
Thus, given the quantities {a, h, R, S}, the starting procedure Y1 =
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(yRK(t0+ai−amin)h))T , and the quadrature formulas qni, the method
(1.2) completely defines the sequence of vectors Y2,Y3,Y4, . . . .

Next we briefly discuss the overall stability of the VIDE method. Ev-
idently, the overall stability is influenced by the stability of the quadra-
ture formula. A stable way of defining quadrature rules converts the
integral term into a differential equation and integrates this differen-
tial equation by a sufficiently stable ODE solver. For that purpose, we
introduce the function

(2.10) z(t, s) :=
∫ s

t0

k(y(t),y(x)) dx.

By observing that q(t) = z(t, t), we see that we can apply the GLM
(1.2) to the ODE (1.1), where the values of q(t) needed by the GLM
are obtained by integrating the initial-value problem

(2.11)
∂z(t, s)

∂s
= k(y(t),y(s)), z(t, t0) = 0

from s = t0 until s = t.

The underlying integrator should be sufficiently stable because the
righthand side in (2.8) is affected by the numerical errors due to the
GLM integrator. One option is to apply the same GLM (1.2) as
used for integrating (1.1) to obtain an (R, S)-reducible method for
VIDEs. If the GLM (1.2) is sufficiently stable, then we may also expect
overall stability. To be more precise, we should consider the complete
integration process, that is, the recursions

(2.12)

Yn+1 = (R ⊗ I)Yn + h(S ⊗ I)F(Yn,Qn), n ≥ 1,

Zn,ν+1 = (R ⊗ I)Zn,ν + h(S ⊗ I)K(Y)n,Yν),
ν = 0, 1, . . . , n − 1,

Qn = Zn,n,

where K(Yn, Yν) contains the kernel values (k(yni,yνi)). The linear
stability of VIDE methods is usually studied by means of the linear
test equation, cf. [3],

(2.13)
dy(t)
dt

= ξy(t) + η

∫ t

t0

y(x) dx.
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By writing this equation as a system of the two ODEs,

(2.13′)
dy(t)
dt

= ξy(t) + ηz(t),
dz(t)
dt

= y(t),

one first shows that, separately applying the GLM {a, R, S} to each of
these two equations is equivalent with applying it directly to the system
(2.13′). Then the following result is easily proved, cf. [1, p. 470], [8].

Theorem 2.2. Let S be the linear stability region of the GLM (1.2),
defined by the set of points z where R + zS has its eigenvalues on the
unit disk, and let λ and μ be defined by λ + μ = ξ, λμ = −η. Then,
with respect to the linear test equation (2.13), the set {(hξ, h2η) : hλ ∈
S, hμ ∈ S} defines the region of stability of the (R, S)-reducible GLM
{(1, 2), (2.12)}.

If this theorem is applied to the case where ξ and η are real, which
is relevant in the case of scalar VIDEs, and if the GLM (1.2) has a
real stability boundary βreal, then the (R, S)-reducible GLM has the
stability region, see Table 2.1 for the values of βreal corresponding to
the AB and GAB methods,

−2βreal ≤ hξ ≤ 0, −β2
real ≤ h2η.

Remark 2.1. Equation (2.11) can of course be integrated by any GLM
{a, R∗, S∗} with the same abscissae vector a. This would lead to the
recursion(

Yn+1

hZn+1

)
= M

(
Yn

hZn

)
, M :=

(
R + hξS ηS

h2S∗ R∗

)
.

The stability region is now defined by the set {(hξ, h2η) : |λ(M)| ≤
1} where the eigenvalues λ(M) of the amplification matrix M are
determined by its characteristic equation

det(R + hξS − λI) det(R∗ − λI − h2ηS∗(R + hξS − λI)−1S) = 0.

An advantage of the quadrature procedure (2.12) is that the high
stage order of all stage values in Yn and Yν can be fully exploited (this
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is not the case if the underlying method (1.2) is replaced by a Runge-
Kutta method). However, as already remarked in the introduction, a
disadvantage of these extended methods is the large storage requirement
if many integration steps are involved.

An alternative is the use of mixed methods in which the quadrature
formula is only based on the set of step points {tν : ν = 0, . . . , n} and
the right end point t of the integration interval. Let the numerical
approximation to z(t, tν) be denoted by zν , let kν := k(yn,i,yν),
and let the quadrature formula be of the linear m-step form, that is,
zν is defined as a linear combination of values zν−1, . . . , zν−m and
kν , . . . ,kν−m. Then, by observing that the k-values indirectly depend
on the z-values, we should at least require that the linear m-step
formula is stable. For example, let (2.11) be integrated by the classical
fourth-order Runge-Kutta method whose intermediate points coincide
with the step points tn. Then this method is equivalent with the linear
two-step method

zν+1 = zν−1 + 2h

(
1
6
kν−1 +

2
3
kν +

1
6
kν+1

)
.

This method is easily recognized as the Simpson method which has a
zero real stability boundary. Thus, although the underlying Runge-
Kutta method has a nonzero real stability boundary for ODEs of the
form z′ = k(z), it does not have a nonzero real stability boundary in
the present situation because the Runge-Kutta method has changed
from a one-step method to a multistep method. However, applying
a multistep method to (2.11) leads to quadrature formulas that are
equivalent with the same multistep method. Hence, if these multistep
methods are sufficiently stable, e.g., Adams-Moulton methods, then the
resulting quadrature method is also sufficiently stable.

3. Numerical comparisons. In order to isolate algorithmic
properties from implementation properties, all methods were run with
fixed stepsizes. The accuracy was measured by the number of correct
significant digits csd := − log10 (relative maximum error at the end
point) and the computational effort by the total, effective number of
RHS evaluations N , that is, N refers to those RHS evaluations that
have to be done sequentially. Since the main computational cost of
the whole algorithm consists of the evaluation of RHS functions, and
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since the computation of the RHSs is quite costly, the communication
costs will be negligible, so that N furnishes an estimate for the effective
computational costs.

The VIDE algorithm consists of two main numerical procedures, viz.
an ODE solver and a quadrature procedure. For the quadrature pro-
cedure, we took the 2-step, third order Adams-Moulton method (AM
method) only based on step point values, using the trapezoidal rule to
obtain the necessary starting values. For the ODE solver we took k-
stage GAB methods and classical k-stage, i.e., k-step, Adams Bashforth
methods, respectively, denoted by GABk and ABk. Furthermore, in or-
der to compare with ODE methods requiring more than one effective
RHS per step, we also applied the classical fourth order Runge-Kutta
method (RK method). The methods were run on the following test
problems:

(3.1)

dy

dt
=

1
y

ln
(

1 + t

1 + t/2

)
− t − 1

(1 + t)2

+
∫ t

t0

1
1 + (1 + t)y(x)

dx,

y(0) = 1, 0 ≤ t ≤ 1,

(3.2)
dy

dt
= − exp(y(t)3) +

∫ t

t0

y(x) dx,

y(0) = 1, 0 ≤ t ≤ 1,

(3.3)
dy

dt
= − exp(y(t)8) +

∫ t

t0

sin(y(t)y(x)) dx,

y(0) = 1, 0 ≤ t ≤ 1.

The first test problem is the often used example of Brunner and
Lambert [3]. The second example is more difficult because of the highly
nonlinear ODE part. The third example is the most difficult problem
with increased nonlinearity (note also that the kernel depends on both
y(t) and y(x)).

Table 3.1 lists values of N and csd for k = 3, . . . , 7. These figures
show that, for a given number of stages, the GAB methods are always
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considerably more accurate than the AB methods. In fact, in most
cases, the GAB methods produce about the same accuracy for 25
percent of the number of effective RHS evaluations (this implies that,
on a sequential computer, the GAB4-AM method is about as efficient
as the AB4-AM method). Furthermore, it seems to pay to use ODE
methods of higher order than the quadrature formula. As to the
performance of the RK method, we see that the RK-AM results are
more or less comparable with the ABk-AM results for k ≥ 4. Finally,
we remark that the GAB methods allow us to use extended quadrature
formulas based on all available stage values, which will again improve
the accuracy when compared with the AB-AM and RK-AM methods.

TABLE 3.1. Correct number of significant digits at the end point

using third-order AM quadrature.

Prob- N AB3 GAB3 AB4 GAB4 AB5 GAB5 AB6 GAB6 AB7 GAB7 RK

lem

(3.1) 10 2.9 5.2 3.7 5.5 3.3 5.4 3.7 5.1 3.4 5.8 3.8

20 4.0 6.7 4.7 6.7 3.8 7.0 4.4 6.4 4.2 6.9 4.4

40 4.5 8.6 5.8 7.9 5.6 8.5 5.4 7.6 5.2 7.8 5.5

80 5.5 8.8 7.1 9.0 6.7 9.0 6.5 8.5 6.2 8.8 6.7

160 6.2 9.6 6.7 10.0 6.1 9.8 7.5 9.4 7.4 9.7 7.5

(3.2) 40 1.8 3.9 2.1 4.0 4.1 4.2 2.2 4.1 2.2 3.8 2.4

80 2.6 5.5 3.1 4.8 3.9 4.9 3.1 4.8 3.0 4.7 3.4

160 3.4 6.1 4.3 5.7 4.3 5.7 4.1 5.6 3.9 5.6 4.1

320 4.3 6.7 5.3 6.6 5.7 6.6 5.2 6.5 6.3 6.5 4.9

(3.3) 40 0.4 2.2 0.8 2.5 0.9 2.9 1.0 3.9 1.3 2.9 0.6

80 1.2 3.1 1.5 3.6 1.8 4.2 1.9 4.4 2.3 4.0 1.7

160 2.0 4.2 2.5 4.7 2.9 5.4 3.0 5.1 3.9 4.9 2.8

320 2.8 5.3 3.5 5.8 4.2 6.0 4.2 5.9 4.4 5.8 3.9

4. Concluding remarks. In this paper we constructed explicit k-
stage GLMs with step point order k +1 and stage order k such that all
RHSs per step can be evaluated in parallel. Application to VIDEs with
fixed stepsizes and a third order Adams-Moulton quadrature formula
only based on step points showed a theoretical speedup by a factor
of about 4 with respect to Adams-Bashforth methods. These quite
promising results motivate future research in the following directions:
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(i) providing the methods with an extended quadrature procedure
based on all available stage values and with automatic stepsize control
based on the embedded local error estimate yn+1,k − yn,k−1, see
Theorem 2.1.

(ii) Extension to parallel VIDE methods for stiff IVPs, in prepara-
tion, see [2].

(iii) Implementation on parallel computer systems.

These topics will be the subject of future research.
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