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ON THE BACKWARD EULER METHOD FOR
TIME DEPENDENT PARABOLIC INTEGRO-

DIFFERENTIAL EQUATIONS WITH
NONSMOOTH INITIAL DATA

AMIYA K. PANI AND RAJEN K. SINHA

ABSTRACT. In this paper the backward Euler method
is applied for discretization in time for a time dependent
parabolic integro-differential equation. A simple energy tech-
nique is used to derive almost optimal order error estimates
when the initial function is only in L2.

1. Introduction. In this paper we shall consider a time dependent
parabolic integro-differential equation of the form

(1.1)
ut +A(t)u =

∫ t

0

B(t, s)u(s) ds in Ω × J,

u = 0 on ∂Ω × J,

u(·, 0) = u0 in Ω,

where Ω is a bounded domain in Rd with smooth boundary, J denotes
the interval (0, T ] with T < ∞, and u(x, t) is a real-valued function in
Ω×J with ut = ∂u/∂t. We shall assume that A(t) is a time dependent
uniformly elliptic, second order self-adjoint linear partial differential
operator in Ω and B(t, s) is a second order partial differential operator
with appropriately smooth coefficients.

Such problems and variants of them occur in several applications,
such as in models for heat conduction in rigid materials with memory,
the compression of poroviscoelastic media, reactor dynamics and epi-
demic phenomena in biology. For a detailed study, we refer to Yanik
and Fairweather [14].

Let H1
0 = {φ ∈ H1(Ω) | φ = 0 on ∂Ω}. Further, let A(t; ·, ·) and

B(t, s; ·, ·) be the bilinear forms on H1
0 ×H1

0 corresponding to operators
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A(t) and B(t, s), respectively. The weak formulation of (1.1) is then
defined as: Find u : J → H1

0 such that

(ut, φ) +A(t;u, φ) =
∫ t

0

B(t, s;u(s), φ) ds,

∀φ ∈ H1
0 , t ∈ J

u(0) = u0.

Here and below, we denote (·, ·) and ‖ · ‖ by the L2 inner product and
the induced norm on L2(Ω).

For the purpose of Galerkin procedure, we assume that we are given
a family {Sh}, 0 < h < 1, of finite dimensional subspaces of H1

0 such
that

inf
χ∈Sh

{‖φ− χ‖ + h‖φ− χ‖1} ≤ Chr‖φ‖r,

φ ∈ Hr ∩H1
0 , r = 1, 2.

The standard semi-discrete finite element approximation is then defined
as a function uh : J → Sh such that

(1.2)
(uht, χ) +A(t;uh, χ) =

∫ t

0

B(t, s;uh(s), χ) ds,

∀χ ∈ Sh, t ∈ J,

uh(0) = Phu0,

where Phu0 is the L2-projection of u0 onto Sh.

In the present paper we shall discuss time discretization of (1.1) based
on the backward Euler method. Let k > 0 be the time step and tn = nk
with T = Nk. Further, let Un be the approximation of u(tn) and
∂tU

n = k−1(Un − Un−1). Then the backward Euler scheme is to seek
Un ∈ Sh such that, for n = 1, 2, . . . , N ,

(1.3)

(∂tU
n, χ) +A(tn;Un, χ) = k

n−1∑
j=0

B(tn, tj ;U j , χ),

∀χ ∈ Sh,

U0 = Phu0,
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where the integral term in (1.2) has been approximated by the rectangle
rule ∫ tn

0

φ(s) ds ≈ k

n−1∑
j=0

φ(tj), 0 < tn ≤ T.

Below, we shall state the main result of this paper, whose proof will
be carried out by energy arguments in Section 3.

Theorem 1.1. Let u be the exact solution of (1.1) and U be the
backward Euler approximation defined by (1.3). Then there exists a
positive constant C = C(T ) such that, for tn ∈ (0, T ],

‖Un − u(tn)‖ ≤ Ct−1
n

(
h2 + k

(
1 +

(
log

1
k

)))
‖u0‖.

For our error analysis, we shall use the standard Sobolev space
Hm(Ω), m ∈ Z and its norm as ‖ · ‖m. Let us define ‖φ‖−j,h as

‖φ‖−j,h = sup
χ∈Sh

(φ, χ)
‖χ‖j

, j = 0, 1.

Throughout this paper C denotes a generic positive constant indepen-
dent of h, k and any function involved and not necessarily the same at
each occurrence.

The numerical solution of parabolic integro-differential equations was
first studied by Douglas and Jones [2] using the finite difference method.
Later, Yanik and Fairweather [14] presented fully discrete Galerkin
finite element approximations to the solutions of a nonlinear parabolic
integro-differential equation with B at most of first order. For a more
general parabolic integro-differential equation with A independent of
time, Sloan and Thomée [10] discussed the discretization in time with
special attention paid to the storage requirements of the memory term.

Earlier, Thomée and Zhang [12] derived optimal L2-error estimates
for the semi-discrete Galerkin method applied to (1.1) with A(t) = A.
The related fully discrete backward Euler scheme has been discussed
by Thomée and Zhang [13], and optimal order error estimates are
obtained through the semi-group theoretic approach when the given
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initial function is only in L2. The method adopted also paid attention to
the advantageous storage requirements of the memory term. Recently,
for smooth initial data, Pani et al. [7] have also studied fully discrete
numerical methods for (1.1) and obtained stability and optimal error
estimates using energy arguments, and the methods considered there
pay attention to the storage need during time-stepping. The semi-
discrete Galerkin finite element approximation to (1.1) was presented
by Pani and Sinha in [6], and optimal error estimates are derived using
the parabolic duality argument and energy methods for rough initial
data.

The related reference on finite element error analysis for parabolic
equations with nonsmooth data can be found in Bramble et al. [1],
Luskin and Rannacher [5], Huang and Thomée [3,4], Sammon [8, 9]
and Thomée [11].

The layout of this paper is as follows. Section 2 contains some
preliminary materials. Moreover, a stability result related to the semi-
discrete solution uh is proved for our subsequent use. In Section 3
the backward Euler scheme for the discretization in time has been
discussed. Finally, a proof of the main result, i.e., Theorem 1.1, is
presented with the help of a series of lemmas.

2. Preliminaries. In this section we shall briefly review some basic
results and stability estimates for our future use. For a proof, we refer
to Huang and Thomée [3] and Pani et al. [7].

Let Th = Th(t) : L2 → Sh be defined by

A(t;Thψ, χ) = (ψ, χ), ∀χ ∈ Sh.

We now recall some properties related to the solution operator Th,
namely, the operator Th is positive definite on Sh and it approximates
the exact solution operator T = T (t) = A(t)−1 in the following sense

(2.1) ‖(Th − T )ψ‖ + h‖(Th − T )ψ)‖1 ≤ Ch2‖ψ‖, ψ ∈ L2(Ω).

Since Th is differentiable in time t, it is an easy exercise to show that

‖T ′
hψ‖1 ≤ C‖Thψ‖1 ≤ C‖ψ‖−1,h,

where T ′
h denotes the differentiation with respect to time t. We

shall assume that the finite element mesh satisfies the quasi-uniformity
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condition. Then the following inverse estimate holds true for Sh, i.e.,
for χ ∈ Sh,

‖χ‖1 ≤ Ch−1‖χ‖.
Let B̃(·, ·) be any bilinear form on H1

0 ×H1
0 associated with a second

order partial differential operator. Then, using (2.1) and the inverse
estimate, we have for ψ, χ ∈ Sh,

(2.2)
|B̃(ψ, Thχ)| ≤ |B̃(ψ, (Th − T )χ)| + |B̃(ψ, Tχ)|

≤ C(‖ψ‖1h‖χ‖ + ‖ψ‖‖χ‖)
≤ C‖ψ‖‖χ‖.

In our subsequent analysis, we shall also use the following properties
related to the solution operator Tn = Ah(tn)−1 : Sh → Sh where
Ah(tn) : Sh → Sh is defined by

(Ah(tn)ψ, χ) = A(tn;ψ, χ), ψ, χ ∈ Sh.

Suppose T̂n = A(tn)−1 to be the continuous analogue of Tn = Th(tn).
Then we have, see Pani et al. [7],

‖(Tn − T̂n)ψ‖ + h‖(Tn − T̂n)ψ‖1 ≤ Ch2‖ψ‖, ψ ∈ Sh.

Analogous to (2.2), we obtain

(2.3) |B̃(ψ, Tnχ)| ≤ C‖ψ‖ ‖χ‖, ψ, χ ∈ Sh.

Moreover, A(tn;Tnψ, χ) = (ψ, χ), ψ, χ ∈ Sh, and hence,

(2.4) (∂A)(tn;Tn−1ψ, χ) +A(tn; (∂nTn)ψ, χ) = 0,

where (∂A) is the backward difference quotient with respect to the first
variable t at t = tn. It is well known [4] that there exist positive generic
constants C1 and C2 such that

(2.5) C−1‖ψ‖−1,h ≤ ‖Tnψ‖1 ≤ C2‖ψ‖−1,h.

Taking χ = (∂tTn)ψ in (2.4) and, using coercivity and boundedness of
A, it is easy to obtain

(2.6) ‖(∂tTn)(ψ)‖1 ≤ C‖Tn−1ψ‖1 ≤ C‖ψ‖−1,h.
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Below we shall prove the following estimates for the semi-discrete
solution uh satisfying (1.2) which will be of frequent use in our error
analysis.

Theorem 2.1. Let uh be the solution of (1.2). Then, for u0 ∈ L2,
the following estimates

(a) ‖uh(t)‖2 +
∫ t

0
‖uh(s)‖2

1 ds ≤ C‖u0‖2,

(b) t2‖uht(t)‖2 +
∫ t

0
s2‖uhs(s)‖2

1 ds ≤ C‖u0‖2,

(c)
∫ t

0
s2‖uhss(s)‖2

−1,h ds ≤ C‖u0‖2,

and

(d)
∫ t

0
‖Thuhss(s)‖2

−1,h ds ≤ C‖u0‖2

hold.

Proof. Setting χ = uh in (1.2) and integrating the resulting equation
from 0 to t, it is easy to obtain the estimate (a). To estimate (b), we
first differentiate (1.2) with respect to time t to have

(2.7)
(uhtt, χ) +A(t;uht, χ) = −At(t;uh, χ) +B(t, t;uh(t), χ)

+
∫ t

0

Bt(t, s;uh(s), χ) ds.

Choose χ = t2uht in the above equation and use the standard energy
argument to prove (b). For the estimation of (c), use boundedness of
A, At, B and Bt to obtain

‖uhtt‖−1,h ≤ C

(
‖uht‖1 + ‖uh‖1 +

∫ t

0

‖uh(s)‖1 ds

)
.

Applying estimates (a) and (b), it now follows that

∫ t

0

s2‖uhss(s)‖2
−1,h ds

≤ C

∫ t

0

s2
(
‖uhs‖2

1 + ‖uh‖2
1 +

∫ s

0

‖uh(τ )‖2
1 dτ

)
ds

≤ C‖u0‖2.
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Finally, for the estimation of (d), we take χ = Thvh for vh ∈ Sh in (2.7)
and use the self-adjoint property of Th and (2.2) to have

|(Thuhtt, vh)| ≤ C

(
‖uht‖−1,h‖vh‖1 + ‖uh‖ ‖vh‖+

∫ t

0

‖uh(s)‖ ds‖vh‖
)
.

From (1.2), we obtain

‖uht‖−1,h ≤ C

(
‖uh‖1 +

∫ t

0

‖uh(s)‖1 ds

)
.

Therefore,

‖Thuhtt‖−1,h

≤ C

(
‖uh‖ + ‖uh‖1 +

∫ t

0

‖uh(s)‖ ds+
∫ t

0

‖uh(s)‖1 ds

)
,

and hence,

∫ t

0

‖Thuhss‖2
−1,h ds ≤ C

∫ t

0

(
‖uh(s)‖2 + ‖uh(s)‖2

1

+
∫ s

0

(‖uh(τ )‖2 + ‖uh(τ )‖2
1) dτ

)
ds

≤ C‖u0‖2.

This now completes the proof.

We shall also frequently use the discrete version of Gronwall’s lemma
which is stated as follows. For a proof, see Pani et al. [7, Lemma 2.3].

Lemma 2.1. If ξn ≥ 0, αn ≥ αn−1, βj ≥ 0 and ξn ≤ αn+
∑n−1

j=0 βjξj

for n ≥ 0, then ξn ≤ αn exp(
∑n−1

j=0 βj).

3. Error analysis for backward Euler method. In this section
we shall be concerned with discretization in time by the backward Euler
scheme given by (1.3) and derive almost optimal order error estimates
in L2 assuming u0 ∈ L2.
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For the proof of Theorem 1.1, we split the error Un − u(tn) as
(Un − un

h) + (un
h − u(tn)) with un

h = uh(tn). Since the estimate of
‖un

h − u(tn)‖ is known from Pani and Sinha [6, Theorem 4.1], it is
enough to derive an estimate for ‖Un − un

h‖. Let ηn = Un − un
h. From

(1.2) and (1.3), we obtain an error equation in ηn as

(3.1)

(∂tη
n, χ) +A(tn; ηn, χ) = k

n−1∑
j=0

B(tn; tj ; ηj , χ)

+Qn
B(uh)(χ) + (τn, χ),

η0 = 0,

where τn = un
ht − ∂tu

n
h and Qn

B(uh)(χ) = k
∑n−1

j=0 B(tn, tj ;u
j
h, χ) −∫ tn

0
B(tn, s;uh(s), χ) ds.

In order to compute ηn, set ηn =
∑2

i=1 η
n
i where ηn

i , i = 1, 2, are
determined by

(3.2)

(∂tη
n
1 , χ) +A(tn; ηn

1 ;χ) = k

n−1∑
j=0

B(tn, tj ; ηj , χ) +Qn
B(uh)(χ),

χ ∈ Sh, n ≥ 1,
η0
1 = 0,

and

(3.3)
(∂tη

n
2 , χ) +A(tn; ηn

2 , χ) = (τn, χ),
χ ∈ Sh, n ≥ 1,

η0
2 = 0.

For the estimation of ηn
2 , we shall closely follow the analysis of Huang

and Thomée [3].

Lemma 3.1. Let ηn
2 be a solution of (3.3). Then, for n = 1, 2, . . . , N ,

t2n‖ηn
2 ‖2 + k

n∑
j=1

t2j‖ηj
2‖2

1 ≤ Ck2‖u0‖2.
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Proof. Set η̃n
2 = tnη

n
2 and τ̃n = tnτ

n. Multiply (3.3) by tn to have

(3.4) (∂tη̃
n
2 , χ) +A(tn; η̃n

2 , χ) = (τ̃n, χ) + (ηn−1
2 , χ).

Taking χ = η̃n
2 in (3.4) and using coercivity of A, we obtain

1
2
∂t‖η̃n

2 ‖2 + c‖η̃n
2 ‖2

1 ≤ ‖τ̃n‖−1,h‖η̃n
2 ‖1 + ‖ηn−1

2 ‖−1,h‖η̃n
2 ‖1.

Sum n from 1 to m to have

(3.5)

t2m‖ηm
2 ‖2 + k

m∑
n=1

t2n‖ηn
2 ‖2

1 ≤ Ck
m∑

n=1

t2n‖τn‖2
−1,h

+ Ck
m−1∑
n=1

‖ηn
2 ‖2

−1,h.

To estimate the first term on the righthand side, we note that

τn =
1
k

∫ tn

tn−1

(s− tn−1)uhss(s) ds,

and, hence,

‖τn‖2
−1,h ≤ 1

k

∫ tn

tn−1

(s− tn−1)2‖uhss
(s)‖2

−1,h ds.

Since tn(s−tn−1) ≤ sk for s ∈ [tn−1, tn], we obtain, using Theorem 2.1,

(3.6)
k

m∑
n=1

t2n‖τn‖2
−1,h ≤ Ck2

∫ tn

0

s2‖uhss
(s)‖2

−1,h ds

≤ Ck2‖u0‖2.

Next, to estimate the second term on the righthand side of (3.5), we
proceed as follows.

Using the property of Tn = Th(tn), first write error equation (3.3) in
the form

Tn∂tη
n
2 + ηn

2 = Tnτ
n.
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Now rewrite the above equation as

∂t(Tnη
n
2 ) + ηn

2 = Tnτ
n + (∂tTn)ηn−1

2 = Fn + (∂tTn)ηn−1
2 ,

where Fn = Tnτ
n. Taking the inner product with Tnη

n
2 and using

(2.5) (2.6), we find that

1
2
∂t(‖Tnη

n
2 ‖2) + c‖ηn

2 ‖2
−1,h ≤ ‖Fn‖−1,h‖Tnη

n
2 ‖1

+ ‖(∂tTn)ηn−1
2 ‖1‖Tnη

n
2 ‖−1,h

≤ C‖Fn‖−1,h‖ηn
2 ‖−1,h

+ ‖ηn−1
2 ‖−1,h‖Tnη

n
2 ‖.

Using Young’s inequality, it follows that

1
2
∂t(‖Tnη

n
2 ‖2) + c‖ηn

2 ‖2
−1,h ≤ c

4
(‖ηn

2 ‖2
−1,h + ‖ηn−1

2 ‖2
−1,h)

+ C‖Fn‖2
−1,h + C‖Tnη

n
2 ‖2.

Sum n from 1 to m to have

‖Tmη
m
2 ‖2 + ck

m∑
n=1

‖ηn
2 ‖2

−1,h ≤ Ck

m∑
n=1

‖Fn‖2
−1,h + Ck

m∑
n=1

‖Tnη
n
2 ‖2.

An application of the discrete Gronwall’s lemma, Lemma 2.1, leads to

(3.7) ‖Tmη
m
2 ‖2 + ck

m∑
n=1

‖ηn
2 ‖2

−1,h ≤ Ck
m∑

n=1

‖Fn‖2
−1,h.

To estimate the term on the righthand side of (3.7), we note that

‖Fn‖2
−1,h = ‖Tnτ

n‖−1,h

≤ 1
k

∫ tn

tn−1

(s− tn−1)2‖Tnuhss(s)‖2
−1,h ds.

For s̃ ∈ (tn−1, tn) use the mean value theorem and properties of Th to
obtain

‖Tnuhss(s)‖−1,h ≤ ‖Th(s)uhss(s)‖−1,h + k‖T ′
h(s̃)uhss(s)‖−1,h

≤ ‖Th(s)uhss(s)‖−1,h + Ck‖T ′
h(s̃)uhss(s)‖1

≤ ‖Th(s)uhss(s)‖−1,h + Ck‖uhss(s)‖−1,h.
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Therefore, again using Theorem 2.1, we obtain

(3.8)

k
m∑

n=1

‖Fn‖2
−1,h ≤ Ck2

∫ tm

0

‖Th(s)uhss(s)‖2
−1,h ds

+ Ck2

∫ tm

0

s2‖uhss(s)‖2
−1,h ds

≤ Ck2‖u0‖2.

Combine (3.5) (3.8) to obtain the desired estimate. This completes the
proof.

To achieve a bound for ηn, it remains to obtain an estimate for ηn
1 .

Below we shall derive this using a series of lemmas.

Let Qm
A (uh)(χ) = −k∑m

n=1A(tn;un
h, χ) +

∫ tm

0
A(s;uh(s), χ) ds, and

Q
m

B (uh)(χ) = k2
m∑

n=1

n−1∑
j=0

B(tn, tj ;u
j
h, χ)

−
∫ tm

0

∫ s

0

B(s, τ ;uh(τ ), χ) dτ ds

be the quadrature error when we apply the right rectangle rule. In the
following lemma, we shall derive some estimates related to the above
quadrature errors for our future use.

Lemma 3.2. With Qn
A, Qn

B and Q
m

B defined as above, there is a
positive constant C such that, for χ ∈ Sh,

|Qn
A(uh)(Tnχ)| + |Qn

B(uh)(Tnχ)| + |Qm

B (uh)(Tmχ)|
≤ Ck

(
1 + log

1
k

)
‖u0‖‖χ‖.
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Proof. Using the right rectangle rule we note that

Qn
A(uh)(Tnχ) = −kA(t1, u1

h, Tnχ)

+
∫ t1

0

A(s, uh(s), Tnχ) ds

+
n∑

j=2

∫ tj

tj−1

(tj−1 − s)

· [A(s, uhs(s), Tnχ) +As(s, uh(s), Tnχ)] ds.

Now apply (2.3) to have

|Qn
A(uh)(Tnχ)| ≤ Ck‖uh(t1)‖‖χ‖

+ C

∫ t1

0

‖uh(s)‖‖χ‖ ds

+ Ck

n∑
j=2

∫ tj

tj−1

(‖uhs(s)‖ + ‖uh(s)‖) ds‖χ‖.

By Theorem 2.1, we obtain

|Qn
A(uh)(Tnχ)| ≤ Ck

(
1 +

n∑
j=2

log
tj
tj−1

)
‖u0‖‖χ‖

≤ Ck

(
1 + log

1
k

)
‖u0‖‖χ‖.

Next, using the left rectangle rule, we rewrite

Qn
B(uh)(Tnχ) = kB(tn, 0;uh(0), Tnχ)

−
∫ t1

0

B(tn, s;uh(s), Tnχ) ds

+
n−1∑
j=1

∫ tj+1

tj

(s− tj+1)[B(tn; s, uhs(s), Tnχ)

+Bs(tn, s;uh(s), Tnχ)] ds.

A similar argument as above shows that

|Qn
B(uh)(Tnχ)| ≤ Ck

(
1 +

n−1∑
j=1

log
tj+1

tj

)
‖u0‖‖χ‖

≤ Ck

(
1 + log

1
k

)
‖u0‖‖χ‖.
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Finally, to estimate Q
m

B , we now split

(3.9)

Q
m

B = k

m∑
n=1

[
k

n−1∑
j=0

B(tn, tj ;u
j
h, Tmχ)

−
∫ tn

0

B(tn, s;uh(s), Tmχ) ds
]

+
[
k

m∑
n=1

∫ tn

0

B(tn, s;uh(s), Tmχ) ds

−
∫ tm

0

∫ s

0

B(s, τ ;uh(τ ), Tmχ) dτ ds
]

= Q
m

1,B(uh)(Tmχ) +Q
m

2,B(uh)(Tmχ).

Note that

Q
m

1,B = k

m∑
n=1

Qn
B(uh)(Tmχ),

and hence, using the estimate of Qn
B (replacing Tnχ by Tmχ) we have

(3.10) |Qm

1,B(uh)(Tmχ)| ≤ Ck

(
1 + log

1
k

)
‖u0‖‖χ‖.

For the second term on the right of (3.9), it now follows that

Q
m

2,B(uh)(Tmχ) =
m∑

n=1

∫ tn

tn−1

(s− tn−1)s

· ∂
∂s

[ ∫ s

0

B(s, τ ;uh(τ ), Tmχ) dτ
]
ds

=
m∑

n=1

∫ tn

tn−1

(s− tn−1)

·
[
B(s, s;uh(s), Tmχ)

+
∫ s

0

Bs(s, τ ;uh(τ ), Tmχ) dτ
]
ds.
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Again, a use of (2.3) yields

(3.11)

|Qm

2,B(uh)(Tmχ)| ≤ Ck
m∑

n=1

∫ tn

tn−1

[‖uh(s)‖‖χ‖

+
∫ s

0

‖uh(s)‖‖χ‖ dτ ] ds

≤ Ck2
m∑

n=1

‖u0‖‖χ‖

≤ Ck‖u0‖‖χ‖.

Now combine (3.9) (3.11) to estimate the third term. This completes
the proof.

Lemma 3.3. There is a positive constant C such that the following
estimate holds for n = 1, 2, . . . , N ,

k
n∑

j=1

tj‖Tj∂tη
j
1‖2

1 + tn‖ηn
1 ‖2 ≤ C

[
k2

(
1+log

1
k

)2

‖u0‖2+tn−1‖η̂n−1‖2

]

+ C

[
k

n−1∑
j=1

‖η̂j‖2 + k

n∑
j=1

‖ηj
1‖2

+ k
n−1∑
j=1

t2j‖ηj‖2

]
,

where η̂n = k
∑n

j=0 η
j .

Proof. Choose χ = tn∂t(Tnη
n
1 ) in (3.2) to have

tn(∂tη
n
1 , ∂t(Tnη

n
1 )) + tnA(tn; ηn

1 , ∂t(Tnη
n
1 ))

= k
n−1∑
j=0

tnB(tn; tj ; ηj , ∂t(Tnη
n
1 )) + tnQ

n
B(uh)(∂t(Tnη

n
1 )).
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Note that

tn(∂tη
n
1 , ∂t(Tnη

n
1 )) = tn(∂tη

n
1 , Tn∂tη

n
1 )

+ tn(∂tη
n
1 , (∂tTn)ηn−1

1 ),

tnA(tn; ηn
1 , ∂t(Tnη

n
1 )) ≥ 1

2
∂t[tn‖ηn

1 ‖2] − 1
2
‖ηn−1

1 ‖2

− tn(∂A)(tn; ηn
1 , Tn−1η

n−1
1 ),

and

tnQ
n
B(uh)(∂t(Tnη

n
1 )) = ∂t[tnQn

B(uh)(Tnη
n
1 )]

−Qn
B(uh)(Tn−1η

n−1
1 )

− tn−1∂t(Qn
B(uh))(Tn−1η

n−1
1 ).

For n = 1, it is easy to obtain

(3.12) kt1‖T1∂tη
1
1‖2

1 + t1‖η1
1‖2 ≤ Ck2‖u0‖2 + Ckt21‖η1‖2.

We now sum n from 2 to m to have

k

m∑
n=2

tn(∂tη
n
1 , Tn∂tη

n
1 ) +

1
2
tm‖ηm

1 ‖2

≤ 1
2
k

m∑
n=2

‖ηn−1
1 ‖2

+
∣∣∣∣k

m∑
n=2

[−tn(∂tη
n
1 , (∂tTn)ηn−1

1 ) + tn(∂A)(tn; ηn
1 , Tn−1η

n−1
1 )]

∣∣∣∣
+

∣∣∣∣k
m∑

n=2

tnB(tn, tn−1; η̂n−1, ∂t(Tnη
n
1 ))

∣∣∣∣

+
∣∣∣∣ − k2

m∑
n=2

n−1∑
j=1

tn(∂2B)(tn, tj ; η̂j−1, ∂t(Tnη
n
1 ))|

+ [|tmQm
B (uh)(Tmη

m
1 ) − t1Q

1
B(uh)(T1η

1
1)|]

+
∣∣∣∣ − k

m∑
n=2

Qn
B(uh)(Tn−1η

n−1
1 )

∣∣∣∣
+

∣∣∣∣ − k

m∑
n=2

tn−1∂t(Qn
B(uh))(Tn−1η

n−1
1 )

∣∣∣∣ +
1
2
t1‖η1

1‖2
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= |I1| + |I2| + |I3| + |I4| + |I5| + |I6| + |I7| + 1
2
t1‖η1

1‖2.

For I1 and I2, apply (2.3), (2.5) and (2.6) to obtain

|I1| + |I2| ≤ 1
2
k

m−1∑
n=1

‖ηn
1 ‖2

+ Ck
m∑

n=2

[tn‖∂tη
n
1 ‖−1,h‖(∂tTn)ηn−1

1 ‖1 + tn‖ηn
1 ‖‖ηn−1

1 ‖]

≤ 1
2
k

m−1∑
n=1

‖ηn
1 ‖2

+ Ck

m∑
n=2

[tn‖Tn∂tη
n
1 ‖1‖ηn−1

1 ‖ + tn‖ηn
1 ‖‖ηn−1

1 ‖],

and hence,

|I1| + |I2| ≤ Ck

m∑
n=1

‖ηn
1 ‖2 +

1
2
k

m∑
n=2

tn‖Tn∂tη
n
1 ‖2

1.

To estimate I3, we first rewrite it as

I3 = k
m∑

n=2

∂t[tnB(tn, tn−1; η̂n−1, Tnη
n
1 )]

− k
m∑

n=2

B(tn, tn−1; η̂n−1, Tn−1η
n−1
1 )

− k
m∑

n=2

tn−1B(tn, tn−1; ηn−1, Tn−1η
n−1
1 )

− k

m∑
n=2

tn−1(∂1B)(tn, tn−1; η̂n−2, Tn−1η
n−1
1 )

− k

m∑
n=2

tn−1(∂2B)(tn−1, tn−1; η̂n−2, Tn−1η
n−1
1 ),

where ∂1B and ∂2B are the difference quotients of B with respect to
the first and second arguments, respectively. The first term on the
righthand side of I3 can be written as tmB(tm, tm−1; η̂m−1, Tmη

m
1 ).
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Now applying (2.3) to all the terms in I3 and, since tm = tm−1 + k,
we have

|I3| ≤ C(tm−1 + k)‖η̂m−1‖2

+ Ck

m−1∑
n=1

‖η̂n‖2 + Ck

m−1∑
n=1

‖ηn
1 ‖2

+ Ck

m−1∑
n=1

t2n‖ηn‖2 +
1
8
tm‖ηm

1 ‖2.

For I4, let us rewrite it as

I4 = −k2
m−1∑
j=1

m∑
n=j+1

tn(∂2B)(tn, tj ; η̂j−1, ∂t(Tnη
n
1 ))

= −k2
m−1∑
j=1

m∑
n=j+1

∂t[tn(∂2B)(tn, tj ; η̂j−1, Tnη
n
1 )]

+ k2
m∑

n=2

n−1∑
j=1

[(∂2B)(tn, tj ; η̂j−1, Tn−1η
n−1
1 )

+ tn−1(∂21B)(tn, tj ; η̂j−1, Tn−1η
n−1
1 )]

= −k
m−1∑
j=1

tm(∂2B)(tm, tj ; η̂j−1, Tmη
m
1 )

+ k

m−1∑
j=1

tj(∂2B)(tj , tj ; η̂j−1, Tjη
j
1)

+ k2
m∑

n=2

n−1∑
j=1

[(∂2B)(tn, tj ; η̂j−1, Tn−1η
n−1
1 )

+ tn−1(∂21B)(tn, tj ; η̂j−1, Tn−1η
n−1
1 )],

whence ∂21B is the difference quotient of ∂2B with respect to the first
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argument, and hence,

|I4| ≤ Ck

m−1∑
j=1

tm‖η̂j−1‖‖ηm
1 ‖

+ Ck
m−1∑
j=1

tj‖η̂j−1‖‖ηj
1‖

+ Ck2
m∑

n=2

n−1∑
j=1

‖η̂j−1‖‖ηn−1
1 ‖

+ Ck2
m∑

n=2

n−1∑
j=1

tn−1‖η̂j−1‖‖ηn−1
1 ‖.

Using the Cauchy-Schwarz inequality, it now follows that

|I4| ≤ Ck

m−1∑
j=1

‖η̂j‖2 + Ck

m−1∑
j=1

‖ηj
1‖2

+ Ck2
m∑

n=2

n−1∑
j=1

‖η̂j‖2 +
1
8
tm‖ηm

1 ‖2.

For I5 and I6, use Lemma 3.2 to obtain

|I5| + |I6| ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2

+ Ck

m−1∑
n=1

‖ηn
1 ‖2

+
1
4
(tm‖ηm

1 ‖2 + t1‖η1
1‖2).

Finally, for I7, rewrite it as

I7 = −
m∑

n=2

tn−1

[
kB(tn, tn−1;un−1

h , Tn−1η
n−1
1 )

−
∫ tn

tn−1

B(tn, s;uh(s), Tn−1η
n−1
1 ) ds

]

− k

m∑
n=2

tn−1Q
n−1

∂1B
(Tn−1η

n−1
1 )

= I1
7 + I2

7 ,
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where ∂1B is the difference quotient of B with respect to the first
argument. Using (2.3), we have

|I1
7 | ≤ C

m∑
n=2

tn−1

∫ tn

tn−1

∣∣∣∣(s− tn)
∂

∂s
[B(tn, s;uh(s), Tn−1η

n−1
1 )]

∣∣∣∣ ds

≤ k
m∑

n=2

∫ tn

tn−1

s(|B(tn, s;uhs(s), Tn−1η
n−1
1 )|

+ |Bs(tn, s;uh(s), Tn−1η
n−1
1 )|) ds

≤ Ck

m∑
n=2

∫ tn

tn−1

s(‖uhs(s)‖ + ‖uh(s)‖) ds‖ηn−1
1 ‖.

Again, use Theorem 2.1 to obtain

|I1
7 | ≤ Ck2‖u0‖

m∑
n=2

‖ηn−1
1 ‖ ≤ Ck2‖u0‖2 + Ck

m−1∑
n=1

‖ηn
1 ‖2.

For I2
7 , Lemma 3.2 can be easily modified to have

|I2
7 | ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2 + Ck

m−1∑
n=1

‖ηn
1 ‖2.

Combining the above estimates, we obtain the required estimate using
(3.12), and this completes the proof.

Note that the righthand side of the estimate tn‖ηn‖ in the previous
lemma involves terms containing η̂n. Therefore, in the following lemma
we shall obtain some estimates related to η̂n.

With η̂n = k
∑n

j=0 η
j , clearly ∂tη̂

n = ηn and η̂0 = 0. Multiply (1.3)
by k and then sum with respect to n from 1 to m with 1 ≤ n ≤ m ≤ N
to have

(3.13) (Um, χ) + k
m∑

n=1

A(tn;Un, χ)

= k2
m∑

n=1

n−1∑
j=0

B(tn, tj ;U j , χ) + (Phu0, χ).
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Integrate (1.2) from 0 to t to obtain

(3.14) (uh(t), χ) +
∫ t

0

A(s;uh(s), χ) ds

= (Phu0, χ) +
∫ t

0

∫ s

0

B(s, τ ;uh(τ ), χ) dτ ds.

Using (3.14) at t = tm and (3.13), we find that

(∂tη̂
m, χ) + k

m∑
n=1

A(tn; ηn, χ) = k2
m∑

n=1

n−1∑
j=0

B(tn, tj ; ηj , χ) +Qm
A (uh)(χ)

+Q
m

B (uh)(χ).

Since k
∑m

n=1A(tn; ηn, χ) = A(tm; η̂m, χ) − k
∑m

n=1(∂A)(tn; η̂n−1, χ),
where (∂A)(tn; ·, ·) = k−1[A(tn; ·, ·) − A(tn−1; ·, ·)] is the backward
difference quotient of A(t, ·, ·) with respect to the first variable at t = tn,
we obtain

(3.15)

(∂tη̂
m, χ) +A(tm; η̂m, χ) = k

m∑
n=1

(∂A)(tn; η̂n−1, χ)

+ k2
m∑

n=1

n−1∑
j=0

B(tn, tj ; ηj , χ)

+Qm
A (uh)(χ) +Q

m

B (uh)(χ).

Lemma 3.4. With η̂n given as above, we have

‖Tnη̂
n‖2

1 + k
n∑

j=1

‖η̂j‖2 ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2.
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Proof. Choose χ = Tmη̂
m in (3.15) to obtain

(3.16) (∂tη̂
m, Tmη̂

m) +A(tm; η̂m, Tmη̂
m)

= k
m∑

n=1

(∂A)(tn, η̂n−1, Tmη̂
m)

+ k2
m∑

n=1

n−1∑
j=0

B(tn, tj ; ηj , Tmη̂
m)

+Qm
A (uh)(Tmη̂

m)

+Q
m

B (uh)(Tmη̂
m).

For m = 1, it follows that

1
k

(η̂1, T1η̂
1) + ‖η̂1‖2 = Q1

A(uh)(T1η̂
1) +Q

1

B(uh)(T1η̂
1).

Applying (2.3) to the terms appearing on the right of the above
equation, we obtain

(3.17) ‖T1η̂
1‖2

1 + k‖η̂1‖2 ≤ Ck2‖u0‖2.

We first note that

2(∂tη̂
m, Tmη̂

m) = ∂t[(η̂m, Tmη̂
m)]

+ k(∂tη̂
m, Tm∂tη̂

m)
− (η̂m−1, (∂tTm)η̂m−1)

and for m ≥ 2,

k2
m∑

n=2

n−1∑
j=0

B(tn, tj ; ηj , Tmη̂
m) = k2

m∑
n=2

n−1∑
j=1

B(tn, tj ; ∂tη̂
j , Tmη̂

m)

= k
m∑

n=2

B(tn, tn−1; η̂n−1, Tmη̂
m)

− k2
m∑

n=2

n−1∑
j=1

(∂2B)(tn, tj ; η̂j−1, Tmη̂
m),
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where ∂2B is the backward difference quotient of B with respect to the
second argument. Here we have also used summation by parts.

Sum (3.16) with respect to m from 2 to l with m ≤ l ≤ N and use
(2.3) to have

(η̂l, Tlη̂
l) + 2k

l∑
m=2

‖η̂m‖2 ≤ |(η̂1, T1η̂
1)|

+ C

[
k2

l∑
m=2

m−1∑
n=1

‖η̂n‖‖η̂m‖

+ k

l∑
m=2

‖η̂m−1‖−1,h‖(∂tTm)η̂m−1‖1

+ k3
l∑

m=2

m∑
n=2

n−1∑
j=1

‖η̂j−1‖‖η̂m‖

+ k
l∑

m=2

|Qm
A (uh)(Tmη̂

m)|

+ k

l∑
m=2

|Qm

B (uh)(Tmη̂
m)|

]
.

For the third term on the righthand side, we shall use (2.5) (2.6) and
apply Lemma 3.2 for the last two terms. Then use Young’s inequality
to obtain

‖Tlη̂
l‖2

1 + k

l∑
m=2

‖η̂m‖2 ≤ C‖T1η̂
1‖2

1

+ Ck2

(
1 + log

1
k

)2

‖u0‖2

+ Ck2
l∑

m=2

m−1∑
j=1

‖η̂j‖2

+ Ck

l−1∑
m=1

‖Tmη̂
m‖2

1.
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With the help of (3.17), we have

‖Tlη̂
l‖2

1 + k

l∑
m=1

‖η̂m‖2 ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2

+ Ck2
l−1∑
m=1

m∑
j=1

‖η̂j‖2

+ Ck

l−1∑
m=1

‖Tmη̂
m‖2

1.

Apply the discrete Gronwall’s lemma to complete the rest of the proof.

Lemma 3.5. With η̂n as above, the following estimate

k
n∑

j=1

‖Tj∂tη̂
j‖2

1 + ‖η̂n‖2 ≤ Ck

(
1 + log

1
k

)2

‖u0‖2

holds.

Proof. Take χ = ∂t(Tmη̂
m) in (3.15) to obtain

(3.18) (∂tη̂
m, ∂t(Tmη̂

m)) +A(tm; η̂m, ∂t(Tmη̂
m))

= k
m∑

n=1

(∂A)(tn, η̂n−1, ∂t(Tmη̂
m))

+ k
m∑

n=1

n−1∑
j=0

B(tn, tj ; ηj , ∂t(Tmη̂
m))

+Qm
A (uh)(∂t(Tmη̂

m))

+Q
m

B (uh)(∂t(Tmη̂
m)).

Note that (∂tη̂
m, ∂t(Tmη̂

m)) = (∂tη̂
m, Tm∂tη̂

m)+(∂tη̂
m, (∂tTm)η̂m−1),

and

A(tm; η̂m, ∂t(Tmη̂
m)) ≥ 1

2
∂t‖η̂m‖2 − (∂A)(tm; η̂m, Tm−1η̂

m−1).
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For m = 1, use (2.3) and Young’s inequality to obtain

(3.19) k‖T1∂tη̂
1‖2

1 + ‖η̂1‖2 ≤ Ck2‖u0‖2.

For m ≥ 2, sum (3.18) with respect to m from 2 to l to obtain

k
l∑

m=2

‖Tm∂tη̂
m‖2

1 +
1
2
‖η̂l‖2

≤ 1
2
‖η̂1‖2 +

∣∣∣∣k
l∑

m=2

[−(∂tη̂
m, (∂tTm)η̂m−1)

+ (∂A)(tm; η̂m, Tm−1η̂
m−1)]

∣∣∣∣
+

∣∣∣∣k2
l∑

m=2

m∑
n=1

(∂A)(tn; η̂n−1, ∂t(Tmη̂
m))

∣∣∣∣

+
∣∣∣∣k2

l∑
m=2

m∑
n=1

B(tn, tn−1; η̂n−1, ∂t(Tmη̂
m))

∣∣∣∣

+
∣∣∣∣ − k3

l∑
m=2

m∑
n=2

n−1∑
j=1

(∂2B)(tn, tj ; η̂j−1, ∂t(Tmη̂
m))

∣∣∣∣

+
∣∣∣∣k

l∑
m=2

Qm
A (uh)(∂t(Tmη̂

m))
∣∣∣∣

+
∣∣∣∣k

l∑
m=2

Q
m

B (uh)(∂t(Tmη̂
m))

∣∣∣∣
= |I1| + |I2| + |I3| + |I4| + |I5| + |I6| + |I7|.

In view of (3.19), I1 is bounded by the term on the right of (3.19).
From (2.3), (2.5) and (2.6) we have, for I2,

|I2| ≤ Ck
l∑

m=2

[‖∂tη̂
m‖−1,h‖(∂tTm)η̂m−1‖1 + ‖η̂m‖‖η̂m−1‖]

≤ Ck

l∑
m=2

[‖Tm∂tη̂
m‖1‖η̂m−1‖ + ‖η̂m‖‖η̂m−1‖]

≤ εk

l∑
m=2

‖Tm∂tη̂
m‖2

1 + C(ε)k
l∑

m=1

‖η̂m‖2.
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To estimate I3, we observe that

I3 = k2
l∑

n=1

l∑
m=n+1

(∂A)(tn; η̂n−1, ∂t(Tmη̂
m))

= k
l∑

n=1

(∂A)(tn; η̂n−1, T1η̂
l)

− k

l∑
n=1

(∂A)(tn; η̂n−1, Tnη̂
n)

and, hence, an application of (2.3) yields

|I3| ≤ C(ε)k
l−1∑
n=1

‖η̂n‖2 + Ck
l∑

n=1

‖η̂n‖2 + ε‖η̂l‖2.

Similarly, we have for I4 and I5

|I4| + |I5| ≤ C(ε)k
l−1∑
n=1

‖η̂n‖2 + Ck

l∑
n=1

‖η̂n‖2 + ε‖η̂l‖2.

For I6, we find that

I6 = k

l∑
m=2

∂t[Qm
A (uh)(Tmη̂

m)]

− k

l∑
m=2

∂t(Qm
A (uh))(Tm−1η̂

m−1)

= [Ql
A(uh)(Tlη̂

l) −Q1
A(uh)(T1η̂

1)]

− k

l∑
m=2

∂t(Qm
A (uh))(Tm−1η̂

m−1)

= I1
6 + I2

6 .

From Lemma 3.2 and (3.19), we have

|I1
6 | ≤ Ck

(
1 + log

1
k

)
‖u0‖‖η̂l‖ + Ck‖u0‖‖η̂1‖

≤ C(ε)k2

(
1 + log

1
k

)2

‖u0‖2 + ε‖η̂l‖2.
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Note that

I2
6 = k

l∑
m=2

[
k−1

(
kA(tm;um

h , Tm−1η̂
m−1)

−
∫ tm

tm−1

A(s;uh(s), Tm−1η̂
m−1) ds

)]
.

Apply (2.3) to obtain

|I2
6 | ≤ Ck

l∑
m=2

1
tm−1

∫ tm

tm−1

s(‖uhs(s)‖ + ‖uh(s)‖) ds‖η̂m−1‖.

By Theorem 2.1, it now follows that

|I2
6 | ≤ Ck1/2‖u0‖

( l∑
m=2

k2

t2m−1

)1/2(
k

l∑
m=2

‖η̂m−1‖2

)1/2

≤ Ck‖u0‖2 + Ck
l−1∑
m=1

‖η̂m‖2.

Finally, for I7, we use summation by parts to obtain

I7 = [Q
l

B(uh)(Tlη̂
l) −Q

1

B(uh)(T1η̂
1)]

− k

l∑
m=2

∂t(Q
m

B (uh))(Tm−1η̂
m−1)

= I1
7 + I2

7 .

Using Lemma 3.2 and (3.19), it now yields

|I1
7 | ≤ C(ε)k2

(
1 + log

1
k

)2

‖u0‖2 + ε‖η̂l‖2.
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To estimate I2
7 , we rewrite it as

I2
7 = −

[
k2

l∑
m=2

m−1∑
j=0

B(tm, tj ;u
j
h, Tm−1η̂

m−1)

− k

l∑
m=2

∫ tm

0

B(tm, s;uh(s), Tm−1η̂
m−1) ds

]

−
[
k

l∑
m=2

∫ tm

0

B(tm, s;uh(s), Tm−1η̂
m−1) ds

−
l∑

m=2

∫ tm

tm−1

∫ s

0

B(s, τ ;uh(τ ), Tm−1η̂
m−1) dτ ds

]

= I21
7 + I22

7 .

For I21
7 , apply Lemma 3.2 to obtain

|I21
7 | ≤ k

l∑
m=2

|Qm
B (uh)(Tm−1η̂

m−1)|

≤ Ck2

(
1 + log

1
k

)2

‖uo‖2 + Ck
l−1∑
m=1

‖η̂m‖2

To estimate I22
7 , we note that

|I22
7 | =

∣∣∣∣ −
l∑

m=2

∫ tm

tm−1

(s− tm−1)
∂

∂s

×
( ∫ s

0

B(s, τ ;uh(τ ), Tm−1η̂
m−1) dτ

)
ds

∣∣∣∣
≤ k

l∑
m=2

∫ tm

tm−1

(|B(s, s;uh(s), Tm−1η̂
m−1)|

+
∫ s

0

|Bs(s, τ ;uh(τ ), Tm−1η̂
m−1)| dτ ) ds,
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and, hence, using the property (2.3) and Theorem 2.1, we obtain

|I22
7 | ≤ Ck

l∑
m=2

∫ tm

tm−1

(‖uh(s)‖

+
∫ s

0

‖uh(τ )‖ dτ ) ds‖η̂m−1‖

≤ Ck2‖u0‖2 + Ck
l−1∑
m=1

‖η̂m‖2.

Combining all the above estimates and choosing ε appropriately, we
arrive at

k

l∑
m=2

‖Tm∂tη̂
m‖2

1 + ‖η̂l‖2 ≤ Ck

(
1 + log

1
k

)2

‖u0‖2 + Ck

l∑
m=1

‖η̂m‖2.

Adding k‖T1∂tη̂
1‖2

1 to both sides of the above inequality and making
use of (3.19) and Lemma 3.4, we now complete the rest of the proof.

Lemma 3.6. With η̂n as above, the following estimate

k

n∑
j=1

tj‖Tj∂tη̂
j‖2

1 + tn‖η̂n‖2 ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2

holds.

Proof. Setting χ = tm∂t(Tmη̂
m) in (3.15) and repeating the argu-

ments of Lemma 3.5, we obtain the required estimates. For the sake of
clarity, we present below a short proof.

Note that, except for the term I6, all other terms in the previous
lemma, i.e. Lemma 3.3, are bounded by Ck2(1+ log(1/k))2‖u0‖2, and,
hence, we shall only estimate I6. Write I6 for the present case as

I6 = k

l∑
m=2

tmQ
m
A (uh)(∂t(Tmη̂

m))
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= k

l∑
m=2

∂t[tmQm
A (uh)(Tmη̂

m)]

− k

l∑
m=2

tm−1∂t[Qm
A (uh)](Tm−1η̂

m−1)

− k
l∑

m=2

Qm
A (uh)(Tm−1η̂

m−1)

= [tlQl
A(uh)(Tlη̂

l) − t1Q
1
A(uh)(T1η̂

1)]

− k

l∑
m=2

tm−1∂t[Qm
A (uh)](Tm−1η̂

m−1)

− k

l∑
m=2

Qm
A (uh)(Tm−1η̂

m−1)

= I1
6 + I2

6 + I3
6 .

Using Lemmas 3.2 and 3.4, the terms I1
6 and I3

6 are bounded as desired.
To estimate I2

6 , we find that

|I2
6 | ≤ k

l∑
m=2

tm−1

∫ tm

tm−1

∣∣∣∣ ∂∂s [A(;uh(s), Tm−1η̂
m−1]

∣∣∣∣ ds

≤ Ck

l∑
m=2

∫ tm

tm−1

s(‖uhs(s)‖ + ‖uh(s)‖) ds‖η̂m−1‖.

Apply Theorem 2.1 and Lemma 3.4 to obtain

|I2
6 | ≤ Ck

l∑
m=2

∫ tm

tm−1

‖u0‖ ds‖η̂m−1‖

≤ Ck2‖u0‖2 + Ck

l−1∑
m=1

‖η̂m‖2

≤ Ck2

(
1 + log

1
k

)2

‖u0‖2,

and this completes the proof.
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Finally we obtain the following estimate for ηn
1 .

Lemma 3.7. Let ηn
1 be a solution of (3.12). Then there is a constant

C independent of k such that

‖T1η
n
1 ‖2

1 + k

n∑
j=1

‖ηj
1‖2 ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2.

Proof. The proof will follow along the lines of that of Lemma 3.4
taking χ = Tnη

n
1 in (3.12). We, therefore, omit the details.

Proof of Theorem 1.1. We write Un−u(tn) as Un−u(tn) = ηn+e(tn).
From Pani and Sinha [6, Theorem 4.1], we have

‖e(tn)‖ ≤ Ch2t−1
n ‖u0‖.

Since the estimate for ηn
2 can be derived from Lemma 3.1, it is sufficient

to derive an estimate for ‖ηn
1 ‖. Now, use of Lemmas 3.4 3.7 in Lemma

3.3 yields

tn‖ηn
1 ‖2 ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2 + Ck

n−1∑
j=1

t2n‖ηn‖2.

Altogether, we obtain

t2n‖ηn‖2 ≤ Ck2

(
1 + log

1
k

)2

‖u0‖2 + Ck

n−1∑
j=1

t2j‖ηj‖2.

Now apply the discrete Gronwall lemma and then triangle inequality
to complete the proof.
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