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NUMERICAL ANALYSIS OF AN UNBOUNDED
OPERATOR ARISING FROM AN ELECTRO-

MAGNETIC INTERIOR SCATTERING PROBLEM

SHERWOOD SAMN

ABSTRACT. In this paper a 1-D singular integral equa-
tion motivated by the well-known singular volume integral
equation associated with electromagnetic interior scattering
is considered. In the 3-D case the kernel (the dyad Green’s
function) is O(R−3) and in the present 1-D case the kernel
is O(R−1). The numerical solution is obtained by using a
simple Nyström method. The mapping properties of the inte-
gral operator and the numerical integral operators are studied
in various (Hölder) subspaces of C([a, b]). Convergence the-
orems for the numerical integral operators as well as for the
numerical solutions are proved.

1. Introduction. For safety and health reasons, it is of consider-
able interest to assess the short- and long-term effects of electromag-
netic (EM) radiation on people working near radars and other similar
EM-wave-generating devices. Research to understand this can be clas-
sified as epidemiological, experimental and numerical. In numerical
electromagnetic dosimetry one is led naturally to the problem of solv-
ing the Maxwell’s equations inside a highly inhomogeneous and highly
dispersive body. One of the solution approaches is to solve an equiva-
lent problem in the frequency domain using a volume integral equation
formulation.

Mathematically, in the time-harmonic case, if the body (V ) is incident
by an electric field Ei(r) and if E(r) is the total electric field inside
the body (r ∈ V ), then the scattered field Es(r), defined through the
relation

(1) E(r) = Es(r) +Ei(r),
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has the form [13]

(2) Es(r) =
(
I+

1
k2
o

∇∇ ·
) ∫

V

g3(r, r′)F(r′) dV ′,

in which F(r) := τ (r)E(r), τ (r) := k2(r)−k2
o, g3(r, r′) := (ejkor/(4πr))

and r := |r − r′|. Here j =
√−1 and ko and k(r) are the wave

numbers associated with free space and the body, respectively. One
can manipulate equation (2) to avoid the differentiations outside the
integral and rewrite equation (1) as a vector integral equation of the
form (see Appendix A):

(3)
A(r)F(r)−

∫
V

g3(r, r′)F(r′) dV ′

− 1
k2
o

∫
V

∇′∇′g3(r, r′)(F(r′)− F(r)) dV ′ = Ei(r)

where
A(r) =

1
τ (r)

I− 1
k2
o

∫
∂V

∇′g3(r, r′)n̂′ dS′.

For r on the boundary, the integral in the dyad A(r) is singular
but exists as an improper integral [7]. The integrand in the second
volume integral in equation (3), ∇′∇′g3(r, r′), has a singularity of type
O(|r − r′|−3). Previous attempts [9], [10] to solve equation (3) using
either a Moment method or a Nyström method have been successful
only for a restricted class of parameters. This motivated us to analyze
a 1-D integral equation analogous to (3). Starting with a scalar version
of equation (2) and again eliminating the differentiations outside the
integral, we arrive (Appendix B) at an integral equation analogous to
equation (3):

(4) λ(t)φ(t)−Kgφ(t)−Kbφ(t) = χ1(t)

for t ∈ (a, b) and χ1 ∈ C((a, b)). Here

λ(t) =
1

τ (t)
− 1

k2
o

[gt(t, a)− gt(t, b)](5)

Kgφ(t) =
∫ b

a

g(t, s)φ(s) ds(6)

Kbφ(t) =
1
k2
o

∫ b

a

gss(t, s) [φ(s)− φ(t)] ds.(7)
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Since ∇′∇′g3(r, r′) has a singularity of type O(|r − r′|−3), we seek
a function g(t, s) whose second derivatives have a singularity of type
O(|s− t|−1). We picked gss(t, s) to be

(8) gss(t, s) =
1

|t− s| .

(As pointed out by one of the reviewers, a more appropriate choice
would be gss(t, s) = 1/(t − s), as its 3-D counterpart is Cauchy
integrable. The singularity resulting from the present choice is more
severe.) A function g(t, s) that satisfies equation (8) is (see Appendix
C)

(9) g(t, s) = |t− s| (ln |t− s|+Ag) +Bg,

where Ag and Bg are arbitrary constants. It has properties analogous
to those of g3(r, r′):

g(t, s) = g(s, t)
gt(t, s) = − gs(t, s).

In this paper we will assume

(10) Ag ≤ − ln(b− a)− 1/2 and Bg ≤ (b− a)/8.

These will guarantee the nonpositivity of some quantities we will use
later. It should be mentioned that the problem considered here is not
equivalent to the 1-D Maxwell’s equations wherein E is dependent on
only one spatial dimension. It is well known that the Green’s function
for the 1-D Maxwell’s equations is much better behaved.

As a preliminary analysis of equation (4), we numerically solved it
using several variants of the Nyström method:

1. Product method with extrapolation at the end intervals [1],

2. Gauss-Legendre method [1], and

3. A Simple Nyström method (or Simple method, for short) in which
uniformly spaced integration points and uniform weights are used. This
method will be explained in detail in Section 4.

In each case, apparent convergence was obtained. The main result of
this paper is a rigorous mathematical proof of the convergence of the
Simple method for this problem.
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In Section 2 we will consider a special case of equation (4) and put it
into perspective. In Section 3 we will investigate the properties of an
operator K that arises from this special case. The numerical method
(the Simple method) used to solve the problem will be defined in
Section 4, and some preliminary properties of the associated numerical
integral operators Kn will be explored. Several convergence theorems
for the numerical integral operators Kn will be proven in Section 5.
In Section 6, a convergence theorem for the numerical solution of the
special case is proved. A generalization of the special case to the general
case given by equation (4) is described in Section 7. The results of some
numerical experiments to ascertain the convergent rates of the Simple
method and other similar methods will be given in Section 8. Finally,
we will conclude with some closing remarks in Section 9.

2. A special case. Since g(t, s) is continuous in [a, b] × [a, b], the
operatorKg in equation (4) is compact. If the operatorKb were absent,
this would be a classical and well-studied problem. The special feature
of the problem here is the presence of the operator Kb (which we will
show is noncompact). This motivated us to study a problem involving
only the operator Kb first. The knowledge gained is then used to study
the full equation. Hence, with Kg = 0 and g(t, s) defined by equation
(9), equation (4) becomes

(11)
λ(t)φ(t)− γ1

∫ b

a

|t− s|−1[φ(s)− φ(t)] ds = χ1(t),

t ∈ (a, b).

Here the constant γ1 := (1/k2
o) is positive and λ(t) becomes (see

Appendix B)

λ(t) =
1

τ (t)
− γ1{ln [(t− a)(b− t)] + 2(Ag + 1)}.

The quantity within the braces is negative for all t ∈ (a, b) due to the
assumption on Ag in equation (10). As the “contrast” τ (t), which gives
a measure of the difference between the electromagnetic properties of
the body and that of free space, is normally bounded above zero, we
have

(12) λ(t) ≥ c > 0
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for all t ∈ (a, b). We further assume the contrast τ (t) is continuous in
(a, b). It follows that λ(t) ∈ C((a, b)) and approaches ∞ as t → a and
as t → b. Under these assumptions, equation (11) can be transformed
to an integral equation of the second kind:

(13) φ(t)− γ(t)
∫ b

a

|t− s|−1[φ(s)− φ(t)] ds = χ(t), t ∈ (a, b).

Here both γ(t) := γ1/λ(t) and χ(t) := χ1(t)/λ(t) ∈ C((a, b)). More-
over, γ(t) > 0 in (a, b) and approaches 0 as t → a and as t → b. Hence,
we may assume γ(t) ∈ C([a, b]). If we formally define the operator K
by

(14) Kφ(t) :=
∫ b

a

|t− s|−1[φ(s)− φ(t)] ds,

then equation (13) can be written in the familiar operator notation as

(15) (I − γK)φ = χ.

It will be seen later thatKφ(t) ∈ C([a, b]) if φ(t) ∈ C([a, b]) and satisfies
an additional mild condition. Hence we will assume χ(t) ∈ C([a, b])
also. This in turn places some obvious limitations on χ1(t).

Our problem is then to analyze the numerical solution of this equation
when, in particular, a simple Nyström method (to be described in
Section 4 below) is used.

The problem being addressed here differs from conventional weakly
singular integral equations in at least two fundamental ways. First,
while equation (13) contains the difference term used in the well-known
Singularity Subtraction method, namely,

Kφ(t) =
∫ b

a

k(t, s)[φ(s)− φ(t)] ds,

the subtracted term

∫ b

a

k(t, s)φ(t) ds = φ(t)
∫ b

a

k(t, s) ds
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in our case is divergent. This is in stark contrast to the conventional
case where the subtracted term is and must be finite.

Second, for the weakly singular integral of the second kind

φ(t)−
∫ b

a

kw(t, s)φ(s) ds = χ(t)

or
(I −Kw)φ = χ

where |kw(t, s)| ≤ C|s − t|α−1, 0 < α ≤ 1, Kw is compact from
C([a, b]) → C([a, b]). Consequently, the analysis of a typical numerical
method taking the form

(16) (I −Kn)φn = χ

can be based on Anselone’s Collectively Compact operators wherein
the operators Kn are each compact from C([a, b]) → C([a, b]). (See,
for example, [1]). Unfortunately, in our problem the operators are not
compact, as we shall see below.

3. Mapping properties of K. We first investigate the mapping
properties of the operator in equation (14):

Kφ(t) :=
∫ b

a

|t− s|−1[φ(s)− φ(t)] ds.

We recall a function f is uniformly Hölder continuous of order α,
0 < α ≤ 1, on an interval [a, b] if there exists a constant C such that

|f(x)− f(y)| ≤ C|x− y|α

for all x and y in [a, b]. Define

C(0,α)([a, b]) :
{
The space of all uniformly Hölder continuous
functions of order α on an interval [a, b].

The following properties of C(0,α)([a, b]) are well known:

Proposition 1. For 0 < α < β ≤ 1,
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1. C(0,β)([a, b]) ⊂ C(0,α)([a, b])

2. C(0,β)([a, b]) is a subalgebra of C([a, b]).

3. C(0,α)([a, b]) is a Banach space under the norm

‖f‖α = ‖f‖∞ + |f |α

where

(17) |f |α := sup
{ |f(x)− f(y)|

|x− y|α
∣∣∣∣x �= y

}

is a semi-norm.

4. Imbedding maps Iβ,α : C(0,β)([a, b]) → C(0,α)([a, b]) are compact.

Proof. See [6], [3].

Corollary 2. For 0 < α < β ≤ 1, the mapping I−1
β,α from

(C(0,β)([a, b]), ‖ · ‖α) onto (C(0,β)([a, b]), ‖ · ‖β) is unbounded.

Proof. Otherwise, the identity map Iβ,β would be compact on the
infinite dimension space C(0,β)([a, b]).

Corollary 3. For 0 < α < β ≤ 1, C(0,β)([a, b]) is not a Banach
subspace of C(0,α)([a, b]).

Proof. Else I−1
β,α would be bounded, by the closed graph theorem [5],

since Iβ,α and therefore I−1
β,α are closed operators.

Proposition 4. For 0 < α < β ≤ 1, K : C(0,β)([a, b]) →
C(0,α)([a, b]) is compact.

Proof. Mimicking the steps in one of the proofs in [3], one can
show that K is bounded from C(0,β)([a, b]) → C(0,δ)([a, b]), where
δ := (α+β)/2. Using the fact that the imbedding from C(0,δ)([a, b]) →
C(0,α)([a, b]) is compact, the proposition follows immediately.
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Unfortunately, classical Fredholm theory does not apply here because
of the following observation.

Proposition 5. C(0,α)([a, b]) is not invariant under K for any
0 < α ≤ 1.

Proof. We first consider the case where 0 < α < 1. Without
loss of generality, we may assume [a, b] = [0, 1]. Since φ(t) := tα ∈
C(0,α)([0, 1]), it suffices to show that Kφ(t) /∈ C(0,α)([0, 1]). By
manipulating the (improper) integrals involved, one can readily show
that Kφ(t) = I1(t) + I2(t), where

I1(t) =
∫ t

0

(t− s)−1[sα − tα] ds = [ψ(1)− ψ(1 + α)]tα

I2(t) =
∫ 1

t

(s− t)−1[sα − tα] ds =
1
α
+ tα ln t− tα

α
+ tαI3(t).

Here ψ(∗) is the digamma function and

I3(t) =
∫ 1/t

1

xα − 1
x(x− 1)

dx ≤
∫ 2

1

xα − 1
x(x− 1)

dx

+
∫ ∞

2

xα − 1
x(x− 1)

dx ≤ ln 2 +
2α

1− α

is bounded for all t ∈ [0, 1]. Now I1(t) clearly ∈ C(0,α)([0, 1]). However,

|I2(s)− I2(0)|
|0− s|α =

∣∣∣ ln s− 1
α
+ I3(s)

∣∣∣
is not bounded in the neighborhood of 0. Hence, I2(t) and, conse-
quently, Kφ(t) /∈ C(0,α)([0, 1]).

Due to the term 1 − α in the denominator in the bound for I3(t),
the above proof does not extend to the case α = 1. For this latter
case, it is convenient to assume [a, b] = [0, 1/2] and consider the
function φ(t) = t/

√− ln(t), t ∈ [0, 1/2]. Since φ(t) is continuously
differentiable on [0, 1/2], φ(t) ∈ C(0,1)([0, 1/2]). It suffices to show that
(Kφ(t)−Kφ(0))/t is unbounded in the neighborhood of 0. We have

Kφ(t)−Kφ(0) = I4(t) + I5(t)



ANALYSIS OF AN UNBOUNDED OPERATOR 245

where

I4(t) =
∫ t

0

[
φ(s)− φ(t)

t− s
− φ(s)− φ(0)

s− 0

]
ds

I5(t) =
∫ 1/2

t

tφ(s)− sφ(t)
s(s− t)

ds.

Since φ(t) ∈ C(0,1)([0, 1/2]), I4(t)/t is bounded. Define η(t) :=√− ln(t), t ∈ (0, 1/2]. Then φ(t) = t/η(t) in (0, 1/2], and

|I5(t)/t| =
∣∣∣∣
∫ 1/2

t

tφ(s)− sφ(t)
ts(s− t)

ds

∣∣∣∣
=

∣∣∣∣
∫ 1/2

t

η(t)− η(s)
η(s)η(t)(s− t)

ds

∣∣∣∣.
Since η(s) > 0 and monotone decreasing on (0, 1/2],

|I5(t)/t| ≥ 1
η(t)2

∫ 1/2

t

η(t)− η(s)
(s− t)

ds

=
1

η(t)2

∫ 1/2

t

η(t)2 − η(s)2

(s− t)[η(t) + η(s)]
ds

≥ 1
2η(t)3

∫ 1/2

t

η(t)2 − η(s)2

(s− t)
ds

=
1

2η(t)3

∫ 1/2t

1

ln(s)
s− 1

ds.

Finally, applying the l’Hospital’s rule twice, we obtain

lim
t→0+

1
2η(t)3

∫ 1/2t

1

ln(s)
s− 1

ds = lim
t→0+

2
3
η(t) = ∞.

This completes the proof.

For theoretical as well as numerical reasons, it is desirable to consider
operators L whose range is contained in its domain, so that L2, for
example, is defined. This leads us to the following spaces. For
0 ≤ α < 1, we define

Xα :=
⋃

{C(0,β)([a, b]) | α < β ≤ 1}.
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In particular, X0 is the set of all functions defined on [a, b] which are
uniformly Hölder continuous of some order α ∈ (0, 1].

Lemma 6. For 0 < α < 1, (Xα, ‖ · ‖α) is a normed linear space and
is invariant under K.

Proof. (Xα, ‖ · ‖α) is a linear subspace of (C(0,α)([a, b]), ‖ · ‖α). The
invariance follows from Proposition 4.

While the semi-norm | · |α in equation (17) and hence the norm ‖ · ‖α
are defined for α ∈ (0, 1] on C(0,α)([a, b]), it is convenient (and also
consistent) to define

‖f‖0 := ‖f‖∞, f ∈ X0.

Lemma 7. (X0, ‖ · ‖0) is a normed linear space and is invariant
under K.

Proof. (X0, ‖·‖0)=(X0, ‖·‖∞) is a linear subspace of (C([a, b]), ‖·‖∞),
and the invariance follows again from the last proposition.

While not germane to our discussion here, it can be shown that the
closure of (Xα, ‖ · ‖α) in C(0,α)([a, b]) is not C(0,α)([a, b]), even though
C(0,α)([a, b]) contains C(0,β)([a, b]) for all β > α.

Proposition 8. K is unbounded on (Xα, ‖ · ‖α) for any 0 ≤ α < 1.

Proof. Assume, without loss of generality, [a, b] = [0, 1]. One can
then readily show that

φn(t) := t(α+1)/n

is a bounded sequence in Xα, but ‖Kφn‖α → ∞ as n → ∞.

4. A Simple Nyström method and the associated numerical
integral operators, Kn. In this section we will state the Simple
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(Nyström) method we used to find numerical solutions of equation
(15) and investigate some of the properties of the associated numerical
integral operators.

For each integer n > 0, we define a partition Pn on the interval [a, b]
by partitioning the interval into 2n equal subintervals. We associate
with the partition Pn the operator Kn defined on C([a, b]) as follows.

Knφ(t) :=
kn∑
j=1

wn,j gn,j(t)∆n,jφ(t), φ ∈ C([a, b])

where

kn = 2n

wn,j = (b− a)/kn =: hn

gn,j(t) =

{
|t− t∗n,j |−1 t /∈ [tn,j−1, tn,j ]

2/hn t ∈ [tn,j−1, tn,j ]

∆n,jφ(t) = φ(t∗n,j)− φ(t)
tn,j = a+ jhn, j = 0, . . . , kn
t∗n,j = (tn,j−1 + tn,j)/2, j = 1, . . . , kn.

For the Simple method, we have chosen each weight wn,j associated
with the jth subinterval in Pn to be dependent only on the integer n
and not on j. More sophisticated choice for the weights is of course
possible, but the resulting analysis would be more complicated. Also
Knφ is actually defined for any function φ that is merely defined on the
interval [a, b]. However, here we are only interested in those functions
that are at least continuous. It is obvious that if φ ∈ C([a, b]), then so
is Knφ. That is, C([a, b]) is invariant under Kn.

In the Simple method, the numerical solution φn to equation (15) is
obtained by solving the approximating equation

(18) (I − γKn)φn = χ.

By collocation at the kn midpoints {t∗n,j}, the following system of linear
equations is obtained

(19) (I − γKn)φn(t∗n,j) = χ(t∗n,j), j = 1, . . . , kn
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from which {φn(t∗n,j)} can be solved.

For comparison with the operator K, we will look at some properties
of Kn. Unless specified otherwise, we will always assume n is a positive
integer in the following. Also, for later convenience, we introduce the
following functions, each of which depends only on n:

ψn(t) :=
kn∑
j=1

wn,j gn,j(t).

We will first look at some properties of Kn on C([a, b]) and then its
properties on C(0,α)([a, b]), α ∈ (0, 1]. As we have already noted, we
have

Proposition 9. C([a, b]) is invariant under Kn.

Moreover, we have

Proposition 10. Kn is bounded on C([a, b]) with ‖Kn‖∞ =
8

∑kn−1
j=1 1/(2j − 1).

Proof. From the definition of Kn, it follows immediately that

Knφ(t) = Kn,1φ(t) +Kn,2φ(t)

where

Kn,1φ(t) =
kn∑
j=1

wn,j gn,j(t)φ(t∗n,j),

Kn,2φ(t) = −ψn(t)φ(t).

Now Kn,1 is compact and hence bounded on C([a, b]), because it has
finite dimensional range. Since gn,j(t) ∈ C([a, b]), so does ψn(t). Hence
Kn,2 is also bounded on C([a, b]). It follows that Kn must be bounded
on C([a, b]). To find the norm of Kn on C([a, b]), let t∗ = (a + b)/2.
One can verify directly that

‖ψn‖∞ = ψn(t∗).
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For any φ ∈ C([a, b]),

|Knφ(t)| ≤ 2‖φ‖∞ψn(t)
≤ 2‖φ‖∞ψn(t∗).

Hence ‖Kn‖∞ ≤ 2ψn(t∗). Since t∗ �= t∗n,j , j = 1, . . . , kn, there exists
φo ∈ C([a, b]) such that ‖φo‖∞ = 1 and φo(t∗) = −φo(t∗n,j) = 1,
j = 1, . . . , kn. Thus, Knφo(t∗) = 2ψn(t∗) and ‖Kn‖∞ ≥ 2ψn(t∗). It
follows that

‖Kn‖∞ = 2ψn(t∗).

By direct verification, one obtains ψn(t∗) = 4
∑kn−1

j=1 1/(2j−1). Hence,

‖Kn‖∞ = 8
∑kn−1

j=1 1/(2j − 1).

Corollary 11. Kn is not a compact operator on C([a, b]).

Proof. If Kn were compact, then Kn,2 = Kn − Kn,1 would also be
compact, since Kn,1 is compact. Now 1/(ψn(t)) ∈ C([a, b]) as ψn(t) is
bounded away from 0. Hence Kn,2/(ψn(t)) = −I would be compact.
This is impossible since the identity operator I is not compact on
C([a, b]).

Incidentally, the last proposition implies that if the method of suc-
cessive approximation is applied to equation (15), it will likely fail as
n increases, since ‖Kn‖∞ are not uniformly bounded.

We now turn our attention to the properties of Kn on C(0,α)([a, b]),
α ∈ (0, 1]. Unlike the operator K, we have

Proposition 12. C(0,α)([a, b]) is invariant under Kn for α ∈ (0, 1].

Proof. It suffices to show that gn,j(·)∆n,jφ(·) ∈ C(0,α)([a, b]) for
any φ ∈ C(0,α)([a, b]). If φ ∈ C(0,α)([a, b]), then clearly ∆n,jφ ∈
C(0,α)([a, b]). One can also show that gn,j ∈ C(0,1)([a, b]) and hence
it belongs to C(0,α)([a, b]) for α ∈ (0, 1]. Finally, gn,j(·)∆n,jφ(·) ∈
C(0,α)([a, b]), since the latter is an algebra.

To investigate the boundedness of Kn on C(0,α)([a, b]), α ∈ (0, 1],
it suffices to consider the individual components of Kn, leading us to
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define the following operators on C(0,α)([a, b]):

Ln,jφ(t) := gn,j(t)∆n,jφ(t), j = 1, . . . , kn.

Clearly, Kn =
∑kn

j=1 wn,j Ln,j .

Lemma 13. Ln,j is bounded on C(0,α)([a, b]), α ∈ (0, 1], for
j = 1, . . . , kn and ‖Ln,j‖α ≤ 2‖gn,j‖α.

Proof. For any φ ∈ C(0,α)([a, b]), we have |Ln,jφ(t)|= |gn,j(t)∆n,jφ(t)|
≤ 2‖gn,j‖∞‖φ‖∞, for all t ∈ [a, b]. Hence ‖Ln,jφ‖∞ ≤ 2‖gn,j‖∞‖φ‖∞.
For any s and t ∈ [a, b],

|Ln,jφ(s)− Ln,jφ(t)| = |gn,j(s)∆n,jφ(s)− gn,j(t)∆n,jφ(t)|
≤ |[gn,j(s)− gn,j(t)]∆n,jφ(s)|
+ |gn,j(t)[∆n,jφ(s)−∆n,jφ(t)]|

≤ 2‖φ‖∞|gn,j(s)−gn,j(t)|+ ‖gn,j‖∞|φ(t)−φ(s)|
≤ (2‖φ‖∞|gn,j |α + ‖gn,j‖∞|φ|α)|s− t|α

since both gn,j and φ ∈ C(0,α)([a, b]). Hence |Ln,jφ|α ≤ 2‖φ‖∞|gn,j |α+
‖gn,j‖∞|φ|α. It follows that

‖Ln,jφ‖α = ‖Ln,jφ‖∞ + |Ln,jφ|α
≤ 2‖gn,j‖∞‖φ‖∞ + 2‖φ‖∞|gn,j |α + ‖gn,j‖∞|φ|α
≤ 2‖gn,j‖α‖φ‖α.

The lemma is now proved.

For 0 < α < 1, one can readily show that

‖gn,j‖α = ‖gn,j‖∞ + |gn,j |α =
2
hn

+
αα(1− α)(1−α)

h
(1+α)
n

.

Proposition 14. Kn is bounded on C(0,α)([a, b]), α ∈ (0, 1].

Proof. This follows directly from the last lemma.
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While the restriction of the operator K to C(0,α)([a, b]) allows it to
be defined, the restriction of the operator Kn to C(0,α)([a, b]) does not
gain us much. We still have

Proposition 15. Kn is not compact on C(0,α)([a, b]) for α ∈ (0, 1].

Proof. The proof follows in exactly the same manner as that in the
C([a, b]) case.

Because Kn are not compact on C(0,α)([a, b]), we cannot make use
of the theory of collectively compact operators to prove convergence of
our numerical method. We do have some type of compactness as we
will see in the next proposition. However, this is mainly of academic
interest only.

Proposition 16. Kn : C(0,α)([a, b]) → C(0,β)([a, b]) is compact if
0 < β < α ≤ 1.

Proof. if we denote by Aα,β the map A : C(0,α)([a, b]) → C(0,β)([a, b]),
then Kα,β

n = Iα,βKα,α
n . Since Kα,α

n is bounded and Iα,β is compact,
Kα,β

n is compact.

5. Convergence theorems for Kn. As we cannot make use of the
theory of collectively compact operators to prove the convergence of
our numerical method, we resort to proving it directly. We will prove
some pointwise convergence properties of Kn after establishing several
preliminary lemmas. For convenience, we define

∆φ(t, s) := φ(t)− φ(s)
gα(t, s) := gss(t, s)|t− s|α
B(t, δ) := {s ∈ [a, b] | |s− t| < δ}

Fα
φ (t, s) :=

{
(φ(t)− φ(s))/(|t− s|α) for t �= s

0 for t = s

where, as before,

gss(t, s) =
1

|t− s| .
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Lemma 17. Let φ ∈ C(0,β)([a, b]), β ∈ (0, 1] and α ∈ (0, β]. Then

|Fα
φ (t, s)| ≤ ‖φ‖β |t− s|β−α

for all (t, s) ∈ [a, b]× [a, b].

Proof. This follows trivially from the definition of C(0,β)([a, b]).

Lemma 18. Let t ∈ [a, b] and φ ∈ C(0,β)([a, b]), β ∈ (0, 1]. Then,
for any ε > 0, there exists δ(ε, φ) > 0 independent of t such that

∣∣∣ ∫
B(t,δ′)

gss(t, s)∆φ(s, t) ds
∣∣∣ < ε,

for all δ′ ≤ δ.

Proof. Let t ∈ [x1, x2] ⊂ [a, b]. Then

∣∣∣ ∫ x2

x1

gss(t, s)∆φ(s, t) ds
∣∣∣ ≤ ∫ x2

x1

|gβ(t, s)F β
φ (t, s)| ds

≤ ‖φ‖β
∫ x2

x1

|t− s|β−1 ds

≤
[
21−β‖φ‖β

β

]
(x2 − x1)β.

Thus, the required δ can be chosen as

δ =
1
2

(
βε

21−β‖φ‖β

)1/β

.

Lemma 19. Let t ∈ [a, b] and φ ∈ C(0,β)([a, b]), β ∈ (0, 1]. Then
for any ε > 0, there exists N (independent of t), 0 ≤ kN,1 < kN,2, and
δ > 0 such that

∣∣∣Sn(τ ) :=
kn,2∑

j=kn,1+1

wn,j gn,j(τ )∆n,jφ(τ )
∣∣∣ < ε
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for all τ ∈ B(t, δ) and for all n ≥ N , where

a+ kn,1hn = a+ kN,1hN =: a1

a+ kn,2hn = a+ kN,2hN =: b1

and

B(t, δ) ⊂ [a1, b1].

Proof. Let ε > 0 be given. Let N = max{N1, N2, N3}, where
N1, N2, N3 are specified below. For any positive integer n, define

In,j :=
{
[tn,j−1, tn,j) if 1 ≤ j < kn

[tn,j−1, tn,j ] if j = kn

Since [a, b] is the disjoint union of {In,j}j=kn

j=1 , t ∈ In,j∗n(t) for a unique
j∗n(t), 1 ≤ j∗n(t) ≤ kn. We define [a1, b1] := [tN,j∗

N
(t)−1, tN,j∗

N
(t)].

It follows that [a1, b1] ⊇ In,j∗n(t) and kn,1 < j∗n(t) ≤ kn,2 for all
n ≥ N . For ease of presentation, we assume t ∈ (a1, b1). (If, for
example, t = tN,j∗

N
−1 and t �= a, we can increase N by 1 and let

[a1, b1] := [tN,j∗
N
−2, tN,j∗

N
].) In the following, we will always assume

τ ∈ (a1, b1) = (kn,1hn, kn,2hn) and n ≥ N . Then

Sn(τ ) = Sn,1(τ ) + Sn,2(τ ) + Sn,3(τ )

where
Sn,1(τ ) =

∑
kn,1<j<j∗n(τ)

wn,j gn,j(τ )∆n,jφ(τ )

Sn,2(τ ) = wn,j∗n(τ) gn,j∗n(τ)(τ )∆n,j∗n(τ)φ(τ )

Sn,3(τ ) =
∑

j∗n(τ)<j≤kn,2

wn,j gn,j(τ )∆n,jφ(τ ).

We shall show that each of the above can be made arbitrarily small
uniformly for τ ∈ (a1, b1) for n sufficiently large. Indeed,

|Sn,2(τ )| = 2|φ(t∗n,j∗n(τ))− φ(τ )|
≤ 2‖φ‖β |t∗n,j∗n(τ) − τ |β

≤ 2‖φ‖β hβN
≤ ε

3
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provided

n ≥ N2 := max
{⌈

1
β
log2

(6
ε
(b− a)β‖φ‖β

)⌉
, 1

}
.

We will now derive a bound for |Sn,1(τ )|. If j∗n(τ ) = kn,1 + 1, then
Sn,1(τ ) = 0. Otherwise, if j∗n(τ ) > kn,1 + 1, then

|Sn,1(τ )| ≤ hn
∑

kn,1<j<j∗n(τ)

|φ(t∗n,j)− φ(τ )|
|t∗n,j − τ |

≤ hn‖φ‖β
∑

kn,1<j<j∗n(τ)

(τ − t∗n,j)
β−1

= hn‖φ‖β
LN∑
m=0

(x+mhn)β−1

where x := τ−t∗n,j∗n(τ)−1 and L := j∗n(τ )−kn,1−2. From the definitions
of t∗n,j and j∗n(τ ), we must have (hn/2) ≤ x ≤ (3hn/2). Let y := (x/hn).
Then (1/2) ≤ y ≤ (3/2) and

|Sn,1(τ )| ≤ hβn‖φ‖β
Ln∑
m=0

(y +m)β−1

= hβn‖φ‖β yβ−1 + hβn‖φ‖β
Ln∑
m=1

(y +m)β−1.

Since β ∈ (0, 1] and (1/2) ≤ y ≤ (3/2),

|Sn,1(τ )| ≤ 21−β hβn‖φ‖β + hβn‖φ‖β
Ln∑
m=1

mβ−1

≤ 21−β hβn‖φ‖β + hβn‖φ‖β
(
1 +

1
β
Lβ
n

)
.

From j∗n(τ ) ≤ kn,2 and Ln = j∗n(τ )− kn,1 − 2, we have

Lnhn < (kn,2 − kn,1)hn
= b1 − a1,
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and so

|Sn,1(τ )| ≤ (21−β + 1)hβn‖φ‖β +
1
β
‖φ‖β(b1 − a1)β

≤ ε

3
,

provided
n ≥ N1 := max{N1,a, N1,b}

where

N1,a = max
{⌈

1
β
log2

(18
ε
(b− a)β‖φ‖β

)⌉
, 1

}

N1,b = max
{⌈

1
β
log2

( 6
εβ

(b− a)β‖φ‖β
)⌉

, 1
}
.

Estimating a bound for |Sn,3(τ )| is similar to that for |Sn,1(τ )|,
producing N3 similar to N1. The lemma is proved by choosing δ =
min{|t− a1|, |t− b1|}.

Remark. It follows from the proof of the last lemma that∣∣∣∣
m2∑

j=m1

wn,j gn,j(τ )∆n,jφ(τ )
∣∣∣∣ < ε,

as long as kn,1 + 1 ≤ m1 ≤ m2 ≤ kn,2.

Proposition 20. For any φ ∈ C(0,β)([a, b]), β ∈ (0, 1],

lim
n→∞ ‖(K −Kn)φ‖∞ = 0.

Proof. Let ε > 0 be given. By the compactness of [a, b], it suffices
to show that for any t ∈ [a, b], there exist Nt and δt such that
|(K − Kn)φ(τ )| < ε for all n > Nt and for all τ ∈ B(t, δt). Now
for any γ1 and γ2 with 0 ≤ γ1 ≤ t− a, and 0 ≤ γ2 ≤ b− t, and for any
m1 and m2 with 1 ≤ m1 < m2 ≤ kn,

(K−Kn)φ(τ ) = T1(τ, a, t−γ1) + T1(τ, t−γ1, t+γ2) + T1(τ, t+γ2, b)
− T2(τ, n, 1,m1)− T2(τ, n,m1+1,m2)
− T2(τ, n,m2+1, kn)
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where

T1(τ, x, y) =
∫ y

x

gss(t, s)∆φ(s, t) ds

T2(τ, n,m, k) =
k∑

j=m

wn,j gn,j(τ )∆n,jφ(τ ).

It follows readily from the last two lemmas that there exist N1 and δ1 >
0 such that by letting γ1 = t− tN1,kN1 ,1

≥ 0 and γ2 = tN1,kN1 ,2
− t ≥ 0,

we have
|T1(τ, t− γ1, t+ γ2)| ≤ ε

3
|T2(τ, n, kn,1 + 1, kn,2)| ≤ ε

3

for all n ≥ N1 and τ ∈ B(t, δ1). Let f(t, s) := gss(t, s)∆φ(s, t). Since
f(t, s) is continuous and therefore uniformly continuous on [ [t− δ1, t+
δ1] ∩ [a, b] ]× [a, t− γ1], there exist N2 and δ2 > 0 such that

|T1(τ, a, t− γ1)− T2(τ, n, 1, kn,1)|

=
∣∣∣∣
kn,1∑
j=1

∫ tn,j

tn,j−1

[f(τ, s)− f(τ, t∗n,j)] ds
∣∣∣∣

≤ ε

6

for all n ≥ N2 and τ ∈ B(t, δ2). Similarly, N3 and δ3 > 0 exist such
that

|T1(τ, t+ γ2, b)− T2(τ, n, kn,2 + 1, kn)|

=
∣∣∣∣

kn∑
j=kn,2+1

∫ tn,j

tn,j−1

[f(τ, s)− f(τ, t∗n,j)] ds
∣∣∣∣

≤ ε

6

for all n ≥ N3 and τ ∈ B(t, δ3). The proposition is proved by letting
Nt = max{N1, N2, N3} and δt = min{δ1, δ2, δ3}.

It follows immediately from the definition of X0 that
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Corollary 21. For any φ ∈ X0,

lim
n→∞ ‖(K −Kn)φ‖∞ = 0.

Remark. If φ ∈ C(0,β)([a, b]), β ∈ (0, 1], then we already know that
both Kφ and Knφ ∈ C(0,α)([a, b]), for α ∈ (0, β). One may suspect
the convergence in the last proposition is also true in C(0,α)([a, b]), i.e.,
limn→∞ ‖(K −Kn)φ‖α = 0 for 0 < α < β. Unfortunately, we have not
been able to prove it.

6. Convergence theorems for I−γKn. In studying the properties
of the operator An := I−γKn associated with the Simple method (see
equation (19)), the matrix Bn defined below will be useful. For any
γ ∈ C([a, b]) with γ(t) > 0 in (a, b), let

cn,j(t) := γ(t)wn,j gn,j(t) > 0 on (a, b), j = 1, . . . , kn
and

bn(t) := 1 +
kn∑
j=1

cn,j(t) > 0 on [a, b].

Then
Bn := (bi,j)

where
bi,j = bn(t∗n,i)δi,j − cn,j(t∗n,i), 0 ≤ i, j ≤ kn,

Bn is simply the discretized version of An in the sense that

Bn(φ(t∗n,i))i=1,... ,kn
= (Anφ(t∗n,i))i=1,... ,kn

.

Lemma 22. Bn is invertible.

Proof. Let Λi :=
∑

j �=i cn,j(t
∗
n,i), i = 1, . . . , kn. One can directly

verify that bi,i = 1 + Λi, i = 1, . . . , kn. Thus, applying Gerschgorin
Circle theorem [12], all eigenvalues of Bn are contained in the union of
the disks |z − bi,i| ≤ Λi, 1 ≤ i ≤ kn. It follows that all the eigenvalues
must have absolute values ≥ 1. Hence Bn is invertible.
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Proposition 23. Let γ ∈ C([a, b]) and γ(t) > 0 on (a, b). Then, for
each positive integer n, An maps C(J) 1 1 onto C(J), where J := [a, b].

Proof. An is clearly defined on C(J). For a given χ ∈ C(J), we can
define, because of the invertibility of Bn,

5χn := (χ(t∗n,1), . . . , χ(t
∗
n,N ))

t

(φχi ) := B−1
n

5χn.

Then it can readily be shown that Anφ = χ, where

(20) φ(t) = bn(t)−1

[
χ(t) +

kn∑
j=1

cn,j(t)φ
χ
j

]
.

Hence An is onto. If Anφ = 0, then Anφ(t∗n,i) = 0, i = 1, . . . , kn. Since
Bn is invertible, φ(t∗n,i) = 0, i = 1, . . . , kn. Subsequently, φ(t) = 0,
since bn > 0.

Corollary 24. A−1
n is bounded for each n.

Proof. Clearly An = I − γKn is bounded on the Banach space
C([a, b]). The boundedness of A−1

n is a consequence of the Open
Mapping theorem [2].

Other properties of the matrix Bn that we will need are contained in
the following lemmas.

Lemma 25. Bn is irreducible.

Proof. Because Bn is a full matrix with no nonzero entries, it is
irreducible [12].

Lemma 26. B−1
n > 0, i.e., all entries are positive.

Proof. Bn is real, irreducible, diagonally dominant with

(21) bi,j =
{
< 0 i �= j

> 0 i = j.
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The lemma now follows from a theorem in Varga [12, p. 85].

Lemma 27. Each row-sum of Bn is 1.

Proof. The ith row-sum of Bn is
∑N

j=1 bi,j . From the definition of
bi,j , each is seen to be one.

Remark. Since the entries bi,j of Bn do not all have the same signs,

‖Bn‖∞ = max
1≤i≤kn

kn∑
1=j

|bi,j | �= 1.

Lemma 28. If each row-sum of a nonsingular n× n matrix A is 1,
then its inverse has the same property.

Proof. Let e be the vector whose components are all ones. Then
Ae = e. Therefore, A−1e = e. (This short proof was suggested by one
of the reviewers.)

Corollary 29. ‖B−1
n ‖∞ = 1 for all positive integer n.

Proof. This follows from the last lemma and the fact that all entries
in B−1

n are positive.

Proposition 30. (A−1
n )∞n=1 is uniformly bounded on C([a, b]).

Proof. Let χ ∈ C([a, b]). Then, using the notations in equation (20),
we have

A−1
n

χ(t) = bn(t)−1[χ(t) + 5Cn(t)B−1
n

5χn]

where
5Cn(t) := (cn,1(t), . . . , cn,N (t)), N = kn.

From the definition of bn(t), it follows immediately that

|bn(t)−1| < 1
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and

‖bn(t)−1 5Cn(t)‖1 ≤ 1

for all t ∈ [a, b] and n > 0. Also,

‖B−1
n

5χn‖∞ ≤ ‖B−1
n ‖∞‖5χn‖∞

= ‖5χn‖∞
≤ ‖χ‖∞.

It readily follows that

‖A−1
n

χ‖∞ ≤ 2‖χ‖∞
for each χ in C([a, b]) and for all n > 0. Hence ‖A−1

n ‖∞ ≤ 2 for all n.

Theorem 31. Let χ ∈ C([a, b]) and assume (I − γK)φ = χ has
a unique solution φ ∈ X0. For each positive integer n, let φn be the
solution of

Anφn := (I − γKn)φn = χ.

Then
‖φ− φn‖∞ −→ 0

as n → ∞.

Proof. Following the standard arguments, we have

0 = (I − γK)φ− (I − γKn)φn
= φ− φn − γ(Kφ−Knφn)

= φ− φn − γ(Kφ−Knφ+Knφ−Knφn)

= φ− φn − γ((K −Kn)φ+Kn(φ− φn))

= (I − γKn)(φ− φn)− γ(K −Kn)φ

= An(φ− φn)− γ(K −Kn)φ.

Hence,
φ− φn = γA−1

n (K −Kn)φ,
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and
‖φ− φn‖∞ ≤ C‖A−1

n ‖∞‖(K −Kn)φ‖∞.

The theorem follows from the uniform boundedness of A−1
n and the

pointwise convergence of Kn to K.

Remark. It would be valuable to have regularity results on the so-
lution φ(t) based on the regularity of the input function χ(t), anal-
ogous to the results of Giraud [4] or Schneider [11]. These results
would greatly strengthen the last theorem. Presently, we have to make
an unverifiable assumption on the solution. Our conjecture is that if
χ(t) ∈ C(0,α)([a, b]), α ∈ [0, 1), then the solution φ(t), if it exists, ∈ Xα.

7. A convergence theorem for the general case. We now
consider the general case given by equation (4). It is repeated here
using a slightly different notation (Kb = γ1K):

(22) λ(t)φ(t)−Kgφ(t)− γ1Kφ(t) = χ1(t)

for t ∈ (a, b) and χ1 ∈ C((a, b)). Again, γ1 = 1/k2
o and

λ(t) =
1

τ (t)
− 1

k2
o

[gt(t, a)− gt(t, b)]

Kgφ(t) =
∫ b

a

g(t, s)φ(s) ds

Kφ(t) =
∫ b

a

gss(t, s)[φ(s)− φ(t)] ds.

Defining

K1φ(t) := k2
o

∫ b

a

g(t, s)(φ(s)− φ(t)) ds,

we can rewrite equation (22) in a form similar to equation (11):

(23) λ̃(t)φ(t)− γ1Kcφ(t) = χ1(t)

where Kc = K + K1 and λ̃(t) = λ(t) − ∫ b

a
g(t, s) ds. Because of the

assumptions on Ag and Bg given in (10), we have again

λ̃(t) > c > 0 on (a, b).
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As in the special case, the general problem reduces to solving a problem
of the form:

(24) (I − γ2Kc)φ = χ2,

where γ2 := γ1/λ̃(t) and χ2 := χ1(t)/λ̃(t). Defining Kc,n, Ãn, c̃n,j , b̃n
and B̃n, the counterparts of Kn, An, cn,j , bn and Bn, by

Kc,nφ(t) :=
kn∑
j=1

wn,j [k2
og(t, t

∗
n,j) + gn,j(t)]∆n,jφ(t)

Ãnφ(t) := φ(t)− γ2(t)Kc,nφ(t)
c̃n,j(t) := γ2(t)wn,j [k2

og(t, t
∗
n,j) + gn,j(t)]

b̃n(t) := 1 +
kn∑
j=1

c̃n,j(t)

B̃n := (b̃i,j) := (b̃n(t∗n,i)δi,j − c̃n,j(t∗n,i))

we can prove the following

Theorem 32. Let χ2 ∈ C([a, b]) and assume (I − γ2Kc)φ = χ2 has
a unique solution φ ∈ X0. For each positive integer n, let φn be the
solution of

Ãnφn := (I − γ2Kc,n)φn = χ.

Then
‖φ− φn‖∞ −→ 0

as n → ∞.

The proof of this theorem is similar to Theorem 31 for the special
case as Kc,n, Ãn, c̃n,j , b̃n and B̃n have properties similar to that of
Kn, An, cn,j , bn, and Bn, respectively. In particular, since g(t, s) is
continuous on [a, b]×[a, b], one easily obtains the pointwise convergence
of Kc,n to Kc in X0. The remark following Theorem 31 clearly applies
here also.

8. Numerical estimation of the convergence rate. As remarked
earlier, we presently do not have regularity results on the solution φ(t)
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of equation (4) based on the regularity of the input function χ1(t). This
makes the estimation of the convergence rate of the Simple method
difficult. However, to get some idea of the convergence rate we have
conducted some numerical experiments.

In the Simple method we have used the simplest numerical integration
algorithm possible to simplify the convergence proofs. However, any
numerical integration algorithm that makes the approximate∫ b

a

f(t, s) ds ≈
n∑

j=1

wj f(t, sj)

would have worked. For comparison, we considered two additional
methods that involved numerical integration algorithms of this type.
The first alternate method, which we will call the Extended Simpson
method, consists of using, for its numerical integration algorithm, the
fourth order Simpson’s rule in the interior intervals and a fourth order
extrapolative open formula for the first and last intervals. The second
alternate method, which we will call the Gauss-Legendre method, uses
the Gauss-Legendre numerical integration algorithm. Both of these
numerical integration algorithms are well-documented in [8].

We considered three problems with the following characteristics:

• Problem I: The true solution is φ(t) = 1 + (t− 1/2)2 + (t− 1/2)3

• Problem II: The true solution is φ(t) =
√
t

• Problem III: The input function is χ1(t) = cos(10t).

We considered these problems on the interval [0, 1]. The coefficients
in the integral equation are arbitrarily chosen as if a non-magnetic body
with relative permittivity 70 is incident by a 1-GHz wave. The result
of applying the three methods (Simple, Extended Simpson, and Gauss-
Legendre), to each of the three problems are summarized in Tables 1 3.
The order is calculated using the formula

log
(

RMSn
RMSn−1

)/
log

(
n− 1
n

)
,

where RMSn is the root-mean-square error between the calculated
solution φn(t) and the exact solution. For Problems I and II, the
RMSn’s are evaluated at the collocation points {tn,j}. As we do
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TABLE 1. Order estimation: φ(t) = 1 + (t−1/2)2 + (t−1/2)3.

Simple Extended Simpson Gauss-Legendre

N RMS Order RMS Order RMS Order

21 0.299245E-02 0.179426E-01 0.106354E-03

29 0.160181E-02 1.94 0.904380E-02 2.12 0.561217E-04 1.98

39 0.896201E-03 1.96 0.321361E-02 3.49 0.322635E-04 1.87

53 0.489313E-03 1.97 0.114327E-02 3.37 0.174202E-04 2.01

69 0.290498E-03 1.98 0.488913E-03 3.22 0.968257E-05 2.23

93 0.161246E-03 1.97 0.205825E-03 2.90 0.446552E-05 2.59

125 0.903678E-04 1.96 0.992015E-04 2.47 0.166996E-05 3.33

167 0.516632E-04 1.93 0.538077E-04 2.11 0.967447E-06 1.88

not have an analytic solution for Problem III, we used an apparently
converged solution, n = 999, for the exact solution and used the integral
equation to interpolate the values of the approximate solution at the
collocation points of the ‘exact’ solution.

The order of convergence for each method depends on the problem.
For Problem I the convergence rates for the three methods (Simple,
Extended Simpson and Gauss-Legendre) are approximately (averaging
orders in rows 4 to 7 in the tables) 1.97, 3.16 and 2.54, respectively. Not
unexpected is the fact that the order of convergence here is different
from the theoretical order of convergence (based on sufficiently smooth
integrands) of the respective numerical quadrature used. Nevertheless,
the Gauss-Legendre method is most accurate in this case, as its root-
mean-square error is 1 to 2 orders of magnitude smaller than the other
two methods.

For Problem II, the order of convergence for the three methods are
approximately 1.46, 1.02 and 1.46, respectively. These orders are much
smaller than the corresponding orders in Problem I, especially for the
Extended Simpson and the Gauss-Legendre methods. Moreover, the
estimated order of the Extended Simpson method is less than that of the
Simple method. This is unexpected. The difference between Problem
I and Problem II is the regularity of the solution φ(t). In Problem I,
φ(t) ∈ C∞([0, 1]), whereas in Problem II, φ(t) ∈ C(0,1/2)([0, 1]). This
suggests the regularity of the solution may play an important role in
determining the order of convergence of the method.

Finally, in Problem III, the order of convergence for the three methods
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TABLE 2. Order estimation: φ(t) = square root (t).

Simple Extended Simpson Gauss-Legendre

N RMS Order RMS Order RMS Order

21 0.112546E-01 0.250719E-01 0.563858E-04

29 0.694025E-02 1.50 0.647886E-02 4.19 0.608720E-04 -0.24

39 0.448682E-02 1.47 0.360581E-02 1.98 0.478940E-04 0.81

53 0.286456E-02 1.46 0.297206E-02 0.63 0.328247E-04 1.23

69 0.195050E-02 1.46 0.229246E-02 0.98 0.224827E-04 1.43

93 0.126451E-02 1.45 0.161527E-02 1.17 0.141634E-04 1.55

125 0.824122E-03 1.45 0.110573E-02 1.28 0.877121E-05 1.62

167 0.542340E-03 1.44 0.749686E-03 1.34 0.541797E-05 1.66

TABLE 3. Order estimation: χ1(t) = cos(10t).

Simple Extended Simpson Gauss-Legendre

N RMS Order RMS Order RMS Order

21 0.120568E+01 0.120448E+02 0.277724E+01

29 0.696564E+00 1.70 0.341448E+01 3.91 0.118370E+01 2.64

39 0.448696E+00 1.48 0.116724E+01 3.62 0.624652E+00 2.16

53 0.295290E+00 1.36 0.411297E+00 3.40 0.355010E+00 1.84

69 0.209759E+00 1.30 0.247087E+00 1.93 0.231757E+00 1.62

93 0.144163E+00 1.26 0.173976E+00 1.18 0.150264E+00 1.45

125 0.100035E+00 1.24 0.126691E+00 1.07 0.101824E+00 1.32

167 0.703408E-01 1.22 0.916024E-01 1.12 0.709499E-01 1.25

are approximately 1.29, 1.90 and 1.56, respectively. A noticeable
difference between this problem and the previous two are the relatively
large RMS value in this problem. This is unexpected since the input
function χ1(t) ∈ C([0, 1]) in this case, but only ∈ C((0, 1))\C([0, 1]) (by
direct verification) in the previous two. Similarly, results were obtained
(not shown here) for Problem III when we used a less oscillatory input
χ1(t) = cos(t) instead.

These numerical experiments tend to show (1) the order of conver-
gence of the Simple method is in the neighborhood of 1.5, (2) one can
generally (but not always) increase the order of convergence by using
higher order numerical quadrature, and (3) more analyses are required
to truly understand the convergence properties of numerical solutions
of the integral equation that we discussed here.
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9. Conclusion. In this paper we analyzed the numerical solution of
the singular integral equation given in equation (4):

(25) λ(t)φ(t)−Kgφ(t)−Kbφ(t) = χ1(t)

using the Simple Nyström method described in Section 4. The distinc-
tive feature of this equation is the integral operator Kb = γ1K where

Kφ(t) =
∫ b

a

|t− s|−1[φ(s)− φ(t)] ds.

We studied the mapping properties of the operator K and found that
the space (X0, ‖ · ‖∞) of all uniformly Hölder continuous functions,
despite not being a Banach space, is a natural setting to study the
unbounded operator K, as it (X0) is invariant under K.

We also studied the mapping properties of the numerical integral
operators Kn that arise from a Simple Nyström method. It is found
that Kn are bounded on C([a, b]) and (therefore) on X0, but they
are not compact on C([a, b]). Nevertheless, we proved a pointwise
convergence theorem of Kn to K on (X0, ‖ · ‖∞). Using this and
other properties of Kn, we proved, under appropriate conditions, the
convergence of the numerical solutions of the singular integral equation
(25) to its actual solution.

The convergence theorems we have given will carry over to the slightly
more general case

Kφ(t) =
∫ b

a

M(t, s)
|t− s| [φ(s)− φ(t)] ds

in which 0 < M(t, s) ∈ C([a, b] × [a, b]), as the positivity of c̃n,j(t)
is retained. Whether or not these theorems are true for more general
M(s, t) remains to be seen.

There are many other interesting issues yet to be resolved, utmost of
which are the regularity of the solution of this singular integral equation
and its effects on the order of convergence of the simple Nyström
method or other numerical methods.
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Appendix A

Starting with equation (2),

Es(r) =
(
I+

1
k2
o

∇∇ ·
) ∫

V

g3(r, r′)F(r′) dV ′

one can move (with careful manipulations) the differentiations under
the integral sign, resulting readily in a vector integral equation of the
form [13]

Es(r) =
∫
V

g3(r, r′)F(r′) dV ′

+
1
k2
o

∫
V−Ve(r)

∇′∇′g3(r, r′)F(r′) dV ′

+
1
k2
o

∫
Ve(r)

∇′∇′g3(r, r′)(F(r′)− F(r)) dV ′

+
1
k2
o

∫
∂Ve(r)

∇′g3(r, r′)n̂′ dS′F(r),

where Ve(r) is a sub-volume of V containing r. There are different ways
to pick Ve(r), depending on the application. If Ve(r) is taken to be V
for all r, then this is equation becomes

Es(r) =
∫
V

g3(r, r′)F(r′) dV ′

+
1
k2
o

∫
∂V

∇′g3(r, r′)n̂′ dS′F(r)

+
1
k2
o

∫
V

∇′∇′g3(r, r′)(F(r′)− F(r)) dV ′.

In terms of the total field E(r) or, equivalently, F(r) = τ (r)E(r), the
equation E(r)− Es(r) = Ei(r) becomes

(26)
A(r)F(r)−

∫
V

g3(r, r′)F(r′) dV ′

− 1
k2
o

∫
V

∇′∇′g3(r, r′)(F(r′)− F(r)) dV ′ = Ei(r)
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where
A(r) =

1
τ (r)

I− 1
k2
o

∫
∂V

∇′g3(r, r′)n̂′ dS′.

Appendix B

The derivation of equation (4) is formally outlined below. We assume
φ ∈ C(0,α)([a, b]) for some α > 0. We also assume∫ b

a

gss(t, s)φ(s) ds is divergent

but ∫ b

a

gss(t, s)[φ(s)− φ(t)] ds is convergent,

and gt(t, s) = −gs(t, s). We start with the equation

(27)
1

τ (t)
φ(t) = φs(t) + φinc(t)

where

(28) φs(t) =
(
1 + γ1

d2

dt2

) ∫ b

a

g(t, s)φ(s) ds.

The goal is to remove the differentiations outside the integral. Con-
centrating on the second integral on the right side of equation (28), we
have

d2

dt2

∫ b

a

g(t, s)φ(s) ds =
d

dt

∫ b

a

gt(t, s)φ(s) ds

= − d

dt

∫ b

a

gs(t, s)φ(s) ds

= − d

dt

∫ b

a

∂

∂s
{g(t, s)φ(s)} − g(t, s)φs(s) ds

= − d

dt
[g(t, s)φ(s)]s=b

s=a +
d

dt

∫ b

a

g(t, s)φs(s) ds

= − [gt(t, s)φ(s)]s=b
s=a −

∫ b

a

gs(t, s)φs(s) ds.



ANALYSIS OF AN UNBOUNDED OPERATOR 269

Concentrating on the second term, we have

−
∫ b

a

gs(t, s)φs(s) ds

= −
∫ b

a

gs(t, s)
∂

∂s
{φ(s)− φ(t)} ds

= −
∫ b

a

∂

∂s
(gs(t, s){φ(s)− φ(t)})− gss(t, s){φ(s)− φ(t)} ds

= − [gs(t, s){φ(s)− φ(t)}]s=b
s=a +

∫ b

a

gss(t, s){φ(s)− φ(t)} ds

= [gt(t, s){φ(s)− φ(t)}]s=b
s=a +

∫ b

a

gss(t, s){φ(s)− φ(t)} ds.

Combining and simplifying the above equations, we obtain

d2

dt2

∫ b

a

g(t, s)φ(s) ds = − [gt(t, s)φ(s)]s=b
s=a + gt(t, s)[φ(s)− φ(t)]s=b

s=a

+
∫ b

a

gss(t, s){φ(s)− φ(t)} ds

= − [gt(t, s)φ(t)]s=b
s=a +

∫ b

a

gss(t, s){φ(s)−φ(t)} ds.

The full equation becomes

1
τ (t)

φ(t) = φs(t) + φinc(t)

=
∫ b

a

g(t, s)φ(s) ds+ γ1[gt(t, s)]s=a
s=b φ(t)

+ γ1

∫ b

a

gss(t, s){φ(s)− φ(t)} ds+ φinc(t).

This is equivalent to equation (4).

Appendix C

Consider the class of functions of the form

g(t, s) = |t− s| {ln(|t− s|) +A}+B
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defined on the square [a, b]× [a, b] for arbitrary constants A and B. We
have

(29) g(t, s) =



(t− s) [ln(t− s) +A] +B for a ≤ s < t ≤ b

(s− t) [ln(s− t) +A] +B for a ≤ t < s ≤ b

0 for t = s.

Clearly g(t, s) is continuous everywhere on [a, b]× [a, b]. It immediately
follows that

gt(t, s) =

{
ln(t− s) +A+ 1 for a ≤ s < t ≤ b

− ln(s− t)−A− 1 for a ≤ t < s ≤ b
(30)

and

gs(t, s) =

{− ln(t− s)−A− 1 for a ≤ s < t ≤ b

ln(s− t) +A+ 1 for a ≤ t < s ≤ b.
(31)

Finally,

gtt(t, s) =




1
t− s

for a ≤ s < t ≤ b

1
s− t

for a ≤ t < s ≤ b

(32)

and

gss(t, s) =




1
t− s

for a ≤ s < t ≤ b

1
s− t

for a ≤ t < s ≤ b.
(33)

All derivatives are undefined for t = s. By inspection, we have the
following properties:

g(u, v) = g(v, u)
gs(u, v) = − gt(u, v) for u �= v

gs(u, v) = − gs(v, u) for u �= v

gss(u, v) = gtt(u, v)

=
1

|u− v| for u �= v.
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Lemma. If A ≤ − ln(b − a) − 1/2 and B ≤ (b − a)/8, then, for
t ∈ (a, b), ∫ b

a

g(t, s) ds < 0

and
gt(t, a)− gt(t, b) < 0.

Proof. By direct calculation, we can readily show

∫ b

a

g(t, s) ds = F (t−a) + F (b−t)− 1
2
(t−m)2 − h2

8
+Bh

gt(t, a)− gt(t, b) = ln(C2(t−a)(b−t)) + 2

where

F (x) =
1
2
x2 ln(Cx)

m =
a+ b

2
h = b− a

C = exp(A).

The lemma follows immediately.
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