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THE EXPECTED NUMBER OF ELEMENTS
TO GENERATE A FINITE GROUP

WITH d-GENERATED SYLOW SUBGROUPS

ANDREA LUCCHINI AND MARIAPIA MOSCATIELLO

ABSTRACT. Given a finite group G, let e(G) be the ex-
pected number of elements of G which have to be drawn
at random, with replacement, before a set of generators is
found. If all of the Sylow subgroups of G can be generated
by d elements, then e(G) ≤ d + κ, where κ is an absolute
constant that is explicitly described in terms of the Riemann
zeta function and is the best possible in this context.
Approximately, κ equals 2.752394. If G is a permutation
group of degree n, then either G = Sym(3) and e(G) = 2.9 or
e(G) ≤ ⌊n/2⌋+κ∗ with κ∗ ∼ 1.606695. These results improve
weaker bounds recently obtained by Lucchini.

1. Introduction. In 1989, Guralnick [5] and the first author [10]
independently proved that, if all of the Sylow subgroups of a finite
group G can be generated by d elements, then the group G itself can
be generated by d+1 elements. A probabilistic version of this result was
obtained in [12]. LetG be a nontrivial finite group, and let x = (xn)n∈N
be a sequence of independent, uniformly distributed G-valued random
variables. We may define a random variable τG by

τG = min{n ≥ 1 | ⟨x1, . . . , xn⟩ = G}.

We denote by e(G) the expectation E(τG) of this random variable: e(G)
is the expected number of elements of G which have to be drawn at
random, with replacement, before a set of generators is found. In [12],
it was proven that, if all of the Sylow subgroups of G can be generated
by d elements, then e(G) ≤ d+ η with η ∼ 2.875065. This bound is not
too distant from being the best possible. Indeed, in [15], Pomerance
proved that, if Ωd is the set of all the d-generated finite abelian groups,
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then
sup
G∈Ωd

e(G) = d+ σ, where σ ∼ 2.118457.

However, the bound e(G) ≤ d + η is approximative, and it may be
interesting to find a best possible estimation for e(G). We give an
exhaustive answer to this question, proving the next result.

Theorem 1.1. Let G be a finite group. If all of the Sylow subgroups
of G can be generated by d elements, then e(G) ≤ d+ κ, where κ is an
absolute constant that is explicitly described in terms of the Riemann
zeta function and is the best possible in this context. Approximately, κ
equals 2.752394.

This bound can further be improved under some additional assump-
tions on G. For example, we prove that, if all the Sylow subgroups
of G can be generated by d elements and G is not soluble, then
e(G) ≤ d+2.750065 (Proposition 3.1). A stronger result holds if |G| is
odd.

Theorem 1.2. Let G be a finite group of odd order. If all the Sylow
subgroups of G can be generated by d elements, then e(G) ≤ d+ κ̃, with
κ̃ ∼ 2.148668.

In this case, the constant κ̃ is probably not the best possible. In
particular, as suggested by the proof of Theorem 1.2, a precise estimate
would require a complete knowledge of the distribution of the Fermat
primes.

If G is a p-subgroup of Sym(n), then G can be generated by ⌊n/p⌋
elements (see [7]); thus, Theorem 1.1 has the following consequence: if
G is a permutation group of degree n, then e(G) ≤ ⌊n/2⌋+κ. However,
this bound is not the best possible, and a better result can be obtained:

Corollary 1.3. If G is a permutation group of degree n, then either
G = Sym(3) and e(G) = 2.9 or e(G) ≤ ⌊n/2⌋+κ∗ with κ∗ ∼ 1.606695.

The number κ∗ is the best possible. Let m = ⌊n/2⌋, and set

Gn = Sym(2)m
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if m is even,
Gn = Sym(2)m−1 × Sym(3)

if m is odd. If n ≥ 8, then e(Gn) − m increases with n and
limn→∞ e(G)−m = κ∗.

Our proofs implicitly depend on the classification of the finite simple
groups. More precisely, the proof of Theorem 1.1 requires a result,
proved by Pyber, which states that, for every finite group G and every
n ≥ 2, G has at most n2 core-free maximal subgroups of index n (this is
necessary in the proof of Lemma 2.3), while the proof of Corollary 1.3
uses a bound on the chief length of a permutation group of degree n
(see Theorem 5.2).

2. Preliminary results. Let G be a finite group, and use the
following notation:

• For a given prime p, dp(G) is the smallest cardinality of a
generating set of a Sylow p-subgroup of G.

• For a given prime p and a positive integer t, αp,t(G) is the
number of complemented factors of order pt in a chief series of
G.

• For a given prime p, αp(G) =
∑

t αp,t(G) is the number of
complemented factors of p-power order in a chief series of G.

• β(G) is the number of nonabelian factors in a chief series of G.

Lemma 2.1. For every finite group G, we have:

(i) αp(G) ≤ dp(G).
(ii) α2(G) + β(G) ≤ d2(G).
(iii) If β(G) ̸= 0, then β(G) ≤ d2(G)− 1.
(iv) If α2,1(G) = 0, then α2(G) + β(G) ≤ d2(G)− 1.
(v) If αp,1(G) = 0, then αp(G) ≤ dp(G)− 1.

Proof. (i), (ii) and (iii) are proven in [12, Lemma 4]. Now, assume
that no complemented chief factor of G has order 2, and let r =
α2(G) + β(G). There exists a sequence

Xr ≤ Yr ≤ · · · ≤ X1 ≤ Y1

of normal subgroups of G such that, for every 1 ≤ i ≤ r, Yi/Xi is a
complemented chief factor of G of even order. Note that β(G/Y1) =
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α2(G/Y1) = 0; hence, G/Y1 is a finite soluble group, all of whose
complemented chief factors have odd order, but, then, G/Y1 has odd
order, and consequently, d2(G) = d2(Y1). Moreover, as in the proof of
[12, Lemma 4],

d2(Y1) ≥ d2(Y1/X1) + r − 1.

Since |Y1/X1| ̸= 2 and the Sylow 2-subgroups of a finite nonabelian
simple group cannot be cyclic [16, 10.1.9], we deduce d2(Y1/X1) ≥ 2,
and consequently, d2(G) = d2(Y1) ≥ r+1. This proves (iv). The proof
of (v) is similar. �

Recall (see [12, (1.1)] for more details) that

(2.1) e(G) =
∑
n≥0

(1− PG(n)),

where

PG(n) =
|{(g1, . . . , gn) ∈ Gn | ⟨g1, . . . , gn⟩ = G}|

|G|n

is the probability that n randomly chosen elements of G generate G.
Denote by mn(G) the number of index n maximal subgroups of G. We
have (see [9, 11.6]):

(2.2) 1− PG(k) ≤
∑
n≥2

mn(G)

nk
.

Using the notation introduced in [8, Section 2], we say that a
maximal subgroup M of G is of type A if soc(G/CoreG(M)) is abelian,
of type B otherwise, and we denote by mA

n (G) (respectively, mB
n (G))

the number of maximal subgroups of G of type A (respectively, B) of
index n. Denote the set of the prime divisors of |G| by π(G). Given
t ∈ N and p ∈ π(G), define

µ∗(G, t) =
∑
k≥t

(∑
n≥5

mB
n (G)

nk

)
,

µp(G, t) =
∑
k≥t

(∑
n≥1

mA
pn(G)

pnk

)
.
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Lemma 2.2. Let t ∈ N. Then,

e(G) ≤ t+ µ∗(G, t) +
∑

p∈π(G)

µp(G, t).

Proof. By (2.1) and (2.2),

e(G) ≤ t+
∑
n≥t

(1− PG(n)) ≤ t+
∑
k≥t

(∑
n≥2

mn(G)

nk

)
. �

Lemma 2.3. Let t ∈ N. If β(G) = 0, then µ∗(G, t) = 0. If t ≥ β(G)
+ 3, then

µ∗(G, t) ≤ β(G)(β(G) + 1)

2 · 5t−4
· 1
4
.

Proof. The result follows from [12, Lemma 8] and its proof. �

Lemma 2.4. Let t ∈ N and p ∈ π(G). If αp(G) = 0, then µp(G, t) = 0.

(i) If α2(G) ≤ t− 1 and α2,u(G) ≤ t− 2 for every u > 1, then

µ2(G, t) ≤ 1

2t−α2(G)−1
.

(ii) Let p be an odd prime. If αp(G) ≤ t− 2, then

µp(G, t) ≤ 1

pt−αp(G)−2

1

(p− 1)2
.

Proof. The result follows from [12, Lemma 7] and its proof. �

Let G be a finite soluble group, and let A be a set of representatives
for the irreducible G-modules that are G-isomorphic to some comple-
mented chief factor of G. For every A ∈ A, let δA be the number of
complemented factors G-isomorphic to A in a chief series of G,

qA = |EndG(A)|, rA = dimEndG(A)(A),

ζA = 0, if A is a trivial G-module, ζA = 1, otherwise. Moreover, for
every l ∈ N, let QA,l(s) be the Dirichlet polynomial, defined by

QA,l(s) = 1−
ql+rA·ζA
A

qrA·s
A

.
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By [4, Satz 1], for every positive integer k, we have

(2.3) PG(k) =
∏
A∈A

( ∏
0≤l≤δA−1

QA,l(k)

)
.

For every prime p dividing |G|, let Ap be the subset of A consisting of
the irreducible G-modules having order a power of p, and let

(2.4) PG,p(k) =
∏

A∈Ap

( ∏
0≤l≤δA−1

QA,l(k)

)
.

Definition 2.5. For every prime p and every positive integer α, let

Cp,α(s) =
∏

0≤i≤α−1

(
1− pi

ps

)
,

Dp,α(s) =
∏

1≤i≤α

(
1− pi

ps

)
.

Lemma 2.6. Let G be a finite soluble group and let k be a positive
integer.

(i) If dp(G) ≤ d, then PG,p(k) ≥ Dp,d(k).
(ii) If p divides |G/G′|, then PG,p(k) ≥ Cp,d(k).
(iii) If αp,1(G) = 0, then PG,p(k) ≥ Cp,d(k).
(iv) If d2(G) ≤ d, then PG,2(k) ≥ C2,d(k).

Proof. Suppose that Ap = {A1, . . . , At}, and let qi = qAi
, ri = rAi ,

ζi = ζAi and δi = δAi . Recall that

(2.5) PG,p(k) =
∏

1≤i≤t
0≤l≤δi−1

QAi,l(k).

By Lemma 2.1,

δ1 + δ2 + · · ·+ δt = αp(G) ≤ dp(G);

hence, the number of factors QAi,l(k) in (2.5) is at most dp(G). We
order these factors in such a way that QAi,u(k) precedes QAj ,v(k) if
either i < j or i = j and u < v. Moreover, we order the elements of Ap

in such a way that A1 is the trivial G-module if p divides |G/G′|.
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(i) Since Dp,d(k) = 0, if k ≤ d, we may take k > d. To show that
PG,p(k) ≥ Dp,d(k), it is sufficient to show that the jth factor Qj(k) =
QAi,l(k) of PG,p(k) is greater than the jth factor Dj(k) = 1− pj/pk of
Dp,d(k). If j ≤ δ1, then Qj(k) = QA1,l(k) with l = j − 1. If j > δ1,
then Qj(k) = QAi,l(k) for some i ∈ {2, . . . , t} and l ∈ {0, . . . , δi − 1};
thus,

j = δ1 + δ2 + · · ·+ δi−1 + l + 1 ≥ l + 2.

In any case,

qriζii qli ≤ q
ri(l+1)
i ≤ qriji .

We have qi = pni for some ni ∈ N. Since j ≤ d < k, we deduce that

qriζii qli
qriki

≤ qriji

qriki

=

(
pj

pk

)rini

≤ pj

pk
.

Then,

Qj(k) = 1− qriζii qli
qriki

≥ 1− pj

pk
= Dj(k).

(ii) Since Cp,d(k) = 0 if k < d, we may take k ≥ d. To show that
PG,p(k) ≥ Cp,d(k), it is sufficient to show that the jth factor Qj(k) =
QAi,l(k) of PG,p(k) is greater than the jth factor Cj(k) = 1− pj−1/pk

of Cp,d(k). If i = 1, then, by the way in which we ordered the elements
of Ap, we have Qj(k) = Cj(k). Otherwise, as we see in the proof of (i),
l + 2 ≤ j; thus, riζi + l ≤ ri + j − 2 ≤ ri(j − 1). Since j ≤ d ≤ k, we
deduce that

qriζii qli
qriki

≤ q
ri(j−1)
i

qriki

≤ pj−1

pk

and

Qj(k) = 1− qriζii qli
qriki

≥ 1− pj−1

pk
= Cj(k).

(iii) Assume that no complemented chief factor of G has order p.
By Lemma 2.1 (v), αp(G) ≤ dp(G) − 1 ≤ d − 1. But, then, in the
factorization of PG,p(k) described in (2.5), the number of factors is at
most d− 1, and, arguing as in the proof of (i), we conclude that

PG,p(k) ≥ Dp,d−1(k) ≥ Cp,d(k).
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(iv) We may assume that α2(G) ̸= 0 (otherwise, PG,2(k) = 1). Since
α2,1(G) ̸= 0 if and only if 2 divides |G/G′|, the conclusion follows from
(ii) and (iii). �

3. The main result.

Proposition 3.1. Let G be a finite group. If all of the Sylow subgroups
of G can be generated by d elements and G is not soluble, then

e(G) ≤ d+ κ∗ with κ∗ ≤ 2.750065.

Proof. Let β = β(G). Since G is not soluble, β > 0; hence, by
Lemma 2.1 (ii), (iii), we have

1 ≤ β ≤ d2(G)− 1 ≤ d− 1

and
α2(G) ≤ d2(G)− β ≤ d− 1.

We distinguish two cases:

Case (a) β < d − 1. From Lemmas 2.2, 2.3 and 2.4 and, using a
rather precise approximation of

∑
p(p− 1)−2 given in [1], we conclude:

e(G) ≤ d+ 2 + µ∗(G, d+ 2) + µ2(G, d+ 2) +
∑
p>2

µp(G, d+ 2)

≤ d+ 2 +
1

20
+

1

4
+
∑
p>2

1

(p− 1)2
≤ d+ 2.675065.

Case (b) β = d − 1. By Lemma 2.1 (ii), (iv), either α2(G) = 0 or
α2(G) = α2,1(G) = 1. In the first case, µ2(G, d+ 2) = 0; in the second
case, mA

2 (G) = 1, and consequently,

µ2(G, d+ 2) =
∑

k≥d+2

mA
2 (G)

2k
≤
∑

k≥d+2

1

2k
≤
∑
k≥4

1

2k
≤ 1

8
.
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From Lemmas 2.2, 2.3 and 2.4, we conclude:

e(G) ≤ d+ 2 + µ∗(G, d+ 2) + µ2(G, d+ 2) +
∑
p>2

µp(G, d+ 2)

≤ d+ 2 +
1

4
+

1

8
+
∑
p>2

1

(p− 1)2
≤ d+ 2.750065. �

The previous proposition reduces the proof of Theorem 1.1 to the
particular case when G is soluble. In order to deal with this case, we
shall introduce, for every positive integer d and every set of primes π, a
supersoluble group Hπ,d, all of whose Sylow subgroups are d-generated
and with the property that e(G) ≤ e(Hπ,d), whenever G is soluble,
π(G) ⊆ π and the Sylow subgroups of G are d-generated.

Definition 3.2. Let π be a finite set of prime numbers with 2 ∈ π, and
let d be a positive integer. We define Hπ,d as the semidirect product of
A with ⟨y, z1, . . . , zd−1⟩, where A is isomorphic to∏

p∈π\{2}

Cd
p

and ⟨y, z1, . . . , zd−1⟩ is isomorphic to Cd
2 and acts on A via xy = x−1,

xzi = x for all x ∈ A and 1 ≤ i ≤ d− 1. Thus,

Hπ,d
∼=
(( ∏

p∈π\{2}

Cd
p

)
o C2

)
× Cd−1

2 .

Theorem 3.3. Let G be a finite soluble group. If all of the Sylow
subgroups of G can be generated by d elements, then e(G) ≤ e(Hπ,d),
where π = π(G) ∪ {2}.

Proof. Let H = Hπ,d, p ∈ π, k ∈ N. Let A be a set of representatives
for the irreducible H-modules that are H-isomorphic to some comple-
mented chief factor of H, and let Ap be the subset of A consisting of the
irreducible H-modules having as order a power of p. For every p ∈ π,
Ap contains a unique element Ap. Moreover, |Ap| = p, δAp = d and
ζAp = 1 if p ̸= 2, while ζA2 = 0. Hence, by (2.4), PH,p(k) = Dp,d(k) if
p ̸= 2, while PH,2(k) = C2,d(k). From Lemma 2.6, PG,p(k) ≥ PH,p(k)
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for every p ∈ π(G). This implies

PG(k) =
∏

p∈π(G)

PG,p(k) ≥
∏
p∈π

PH,p(k) = PH(G),

and consequently,

e(G) =
∑
k≥0

(1− PG(k)) ≤
∑
k≥0

(1− PH(k)) = e(H). �

Definition 3.4. Let π be a finite set of prime numbers with 2 ∈ π,
and let d be a positive integer. We set ed = supπ e(Hπ,d) and κ =
supd(ed − d).

Let π∗ = π \ {2}. Since PHπ,d
(k) = 0, for all k ≤ d, we have

e(Hπ,d)=
∑
k≥0

(1−PHπ,d
(k)) = d+ 1 +

∑
k≥d+1

(
1− C2,d(k)

∏
p∈π∗

Dp,d(k)

)

=d+1+
∑

k≥d+1

(
1−

∏
1≤i≤d

(
1− 2i−1

2k

)∏
p∈π∗

∏
1≤i≤d

(
1− pi

pk

))

=d+1+
∑
t≥0

(
1−

∏
1≤i≤d

(
1− 2i−1

2t+(d+1)

)∏
p∈π∗

∏
1≤i≤d

(
1− pi

pt+(d+1)

))
.

We immediately deduce that e(Hπ,d) − d increases as d increases.
Moreover, we have

ed − d = sup
π
(e(Hπ,d)− d)

= 1 +
∑

k≥d+1

(
1− (1− 1/2k)

(1− 2d/2k)

∏
p

∏
1≤i≤d

(
1− pi

pk

))
.

For k = d+1, the double product tends to 0, while, for k ≥ d+2, it tends
to
∏

1≤i≤d ζ(k − i)
−1

, where ζ denotes the Riemann zeta function.
Hence, we obtain

ed − d = 2 +
∑

k≥d+2

(
1− (1− 1/2k)

(1− 2d/2k)

∏
1≤i≤d

ζ(k − i)
−1

)

= 2 +
∑
j≥1

(
1− (1− 1/2j+(d+1))

(1− 1/2j+1)

∏
1≤l≤d

ζ(j + l)
−1

)

= 2 +
∑
j≥1

(
1−

(
2j+1 − 2−d

2j+1 − 1

) ∏
1+j≤n≤d+j

ζ(n)
−1

)
.
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Let c =
∏

2≤n≤∞ ζ(n)
−1

. Since ed − d increases as d grows, we get

κ = lim
d→∞

ed − d

= 2 +

(
1−

(
22

22 − 1

)
c

)
+
∑
j≥2

(
1−

(
2j+1

2j+1 − 1

)
c
∏

2≤n≤j

ζ(n)

)

= 2 +

(
1− 4

3
· c
)
+
∑
j≥2

(
1−

(
1 +

1

2j+1 − 1

)
c
∏

2≤n≤j

ζ(n)

)
.

Using the computer algebra system PARI/GP [14], we obtain

κ=2+

(
1− 4

3
·c
)
+
∑
j≥2

(
1−
(
1+

1

2j+1 − 1

)
c
∏

2≤n≤j

ζ(n)

)
∼ 2.752395.

Combining this result with Proposition 3.1 and Theorem 3.3, we obtain
the proof of Theorem 1.1.

4. Finite groups of odd order.

Theorem 4.1. Let G be a finite soluble group. There exists a finite
supersoluble group H, such that

(i) π(H) = π(G),
(ii) PG(k) ≥ PH(k) for all k ∈ N,
(iii) dp(G) ≥ dp(H) for all p ∈ π(G),
(iv) π(G/G′) ⊆ π(H/H ′).

Proof. Let π(G) = {p1, . . . , pn} with p1 ≤ · · · ≤ pn. For i ∈
{1, . . . , n}, set πi = {p1, . . . , pi}. We will prove, by induction on i,
that, for every i ∈ {1, . . . , n}, there exists a supersoluble group Hi such
that π(Hi) = πi and, for every j ≤ i,

(i) PHi,pj (k) ≤ PG,pj (k) for all k ∈ N;
(ii) dpj (Hi) ≤ dpj (G);
(iii) if Cpj is an epimorphic image of G, then Cpj is an epimorphic

image of Hi;
(iv) πi ∩ π(G/G′) ⊆ π(Hi/H

′
i).

Assume thatHi has been constructed, and set p = pi+1 and dp = dp(G).
We distinguish two different cases:
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Case (i). Either p divides |G/G′| or G contains no complemented

chief factor of order p. We consider the direct productHi+1 = Hi×C
dp
p .

Clearly,
PHi+1,pj (k) = PHi,pj (k) ≤ PG,pj (k) if j ≤ i.

Moreover, by Lemma 2.6 (ii), (iii),

PHi+1,p(k) = Cp,dp(k) ≤ PG,p(k).

Case (ii). p does not divide |G/G′|, but G contains a complemented
chief factor which is isomorphic to a nontrivial G-module, say A, of
order p. In this case, G/CG(A) is a nontrivial cyclic group whose
order divides p − 1. Let q be a prime divisor of |G/CG(A)| (it must
be q = pj for some j ≤ i). Since q divides |G/G′|, we have that q
divides also |Hi/H

′
i|; hence, there exists a normal subgroup N of Hi

with Hi/N ∼= Cq and a nontrivial action of Hi on Cp with kernel N . We

use this action to construct the supersoluble group Hi+1 = C
dp
p oHi.

Clearly, PHi+1,pj (k) = PHi,pj (k) ≤ PG,pj (k) if j ≤ i. Moreover, by
Lemma 2.6 (i), PHi+1,p(k) = Dp,dp(k) ≤ PG,p(k).

The proof is complete, noting that H = Hn satisfies the requests in
the statement. �

Proof of Theorem 1.2. Let π = π(G). From Theorem 4.1, there
exists a supersoluble group H such that π(H) = π, dp(H) ≤ d for
every p ∈ π and PG(k) ≥ PH(k) for every k ∈ N. In particular,

e(G) =
∑
k≥0

(1− PG(k)) ≤
∑
k≥0

(1− PH(k)) = e(H).

Since H is supersoluble, if A is H-isomorphic to a chief factor of H,
then |A| = p for some p ∈ π and H/CH(A) is a cyclic group of order
dividing p−1. If p is a Fermat prime, then H/CH(A) is a 2-group and,
since |H| is odd, we must have H = CH(A). This implies that, if p ∈ π
is a Fermat prime, then PH,p(k) = Cp,dp(H)(k) ≥ Cp,d(k). For all of
the other primes in π, by Lemma 2.6 (i), we have PH,p(k) ≥ Dp,d(k).
Therefore, denoting the set of Fermat primes by Λ and the set of the
remaining odd primes by ∆, we obtain

PH(k) =
∏
p∈π

PH,p(k) ≥
∏
p∈Λ

Cp,d(k)
∏
p∈∆

Dp,d(k).
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It follows that

e(H) =
∑
k≥0

(1− PH(k))

≤
∑
k≥0

(
1−

∏
p∈Λ

∏
1≤i≤d

(
1− pi−1

pk

) ∏
p∈∆
p ̸=2

∏
1≤i≤d

(
1− pi

pk

))

=d+1+
∑

k≥d+1

(
1−
∏
p∈Λ

∏
1≤i≤d

(
1− pi−1

pk

)∏
p∈∆

∏
1≤i≤d

(
1− pi

pk

))

=d+1+
∑
t≥0

(
1−
∏
p∈Λ

∏
1≤i≤d

(
1− pi−1

pt+(d+1)

)∏
p∈∆

∏
1≤i≤d

(
1− pi

pt+(d+1)

))
.

Let

κ̃d=
∑
t≥0

(
1−

∏
p∈Λ

∏
1≤i≤d

(
1− pi−1

pt+(d+1)

)∏
p∈∆

∏
1≤i≤d

(
1− pi

pt+(d+1)

))
+ 1.

It can easily be verified that κ̃d increases as d increases. Let

b =
∏

1≤n≤∞

(
1− 1

2n

)−1

, c =
∏

2≤n≤∞

ζ(n)
−1

,

and let Λ∗ = {3, 5, 17, 257, 65537} be the set of the known Fermat
primes. Similar computations to those in the final part of Section 3
lead to the conclusion:

κ̃d ≤ 3− b · c
2

∏
p∈Λ

p2

p2 − 1

+
∑
j≥2

(
1− b

∏
1≤n≤j

(
1− 1

2n

)∏
p∈Λ

(
1 +

1

pj+1 − 1

)
c
∏

2≤n≤j

ζ(n)

)

≤ 3− b · c
2

∏
p∈Λ∗

p2

p2 − 1

+
∑
j≥2

(
1−b

∏
1≤n≤j

(
1− 1

2n

) ∏
p∈Λ∗

(
1+

1

pj+1 − 1

)
c
∏

2≤n≤j

ζ(n)

)
.
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Let

κ̃ = 3− b · c
2

∏
p∈Λ∗

p2

p2 − 1

+
∑
j≥2

(
1− b

∏
1≤n≤j

(
1− 1

2n

) ∏
p∈Λ∗

(
1+

1

pj+1 − 1

)
c
∏

2≤n≤j

ζ(n)

)
.

With the aid of PARI/GP, we get that κ̃ ∼ 2.148668. �

5. Permutation groups.

Theorem 5.1 ([7]). If G is a p-subgroup of Sym(n), then G can be
generated by ⌊n/p⌋ elements.

Theorem 5.2 ([13, Theorem 10.0.5]). The chief length of a permuta-
tion group of degree n is at most n− 1.

Lemma 5.3. If G ≤ Sym(n) and n ≥ 8, then β(G) ≤ ⌊n/2⌋ − 3.

Proof. Let R(G) be the soluble radical of G. From [6, Theorem 2],
G/R(G) has a faithful permutation representation of degree at most n,
so we may assume that R(G) = 1. In particular,

soc(G) = S1 × · · · × Sr,

where S1, . . . , Sr are nonabelian simple groups and, by [2, Theo-
rem 3.1], n ≥ 5r. Let

K = NG(S1) ∩ · · · ∩NG(Sr).

We have that K/ soc(G) is soluble and that G/K ≤ Sym(r); thus, by
Theorem 5.2, β(G/K) ≤ r − 1 (and, indeed, β(G/K) = 0 if r ≤ 4).
However, then, β(G) ≤ 2r− 1 ≤ 2⌊n/5⌋− 1 if r ≥ 5, β(G) ≤ r ≤ ⌊n/5⌋
otherwise. �

Lemma 5.4. Suppose that G ≤ Sym(n) with n ≥ 8. If G is not soluble,
then

e(G) ≤ ⌊n/2⌋+ 1.533823.

Proof. Let m = ⌊n/2⌋. From Theorem 5.1, d2(G) ≤ m. Since G is
not soluble, we must have β(G) ≥ 1. By Lemma 5.3, β(G) ≤ m − 3;
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hence, by Lemma 2.3, µ∗(G,m) ≤ 1/4. From Lemma 2.1 (ii), (iv),
α2(G) ≤ m − 1 and α2,u(G) ≤ m − 2 for every u > 1; hence, by
Lemma 2.4, µ2(G,m) ≤ 1. If p ≥ 5, then, by Theorem 5.1,

m− αp(G) ≥ m− dp(G) ≥ m− ⌊n/5⌋ ≥ 3;

thus, by Lemma 2.4, µp(G,m) ≤ (p(p − 1)2)−1. Since n ≥ 8, we have
m − α3(G) ≥ m − ⌊n/3⌋ ≥ 2 if n ̸= 9. On the other hand, it can
be easily verified that α3(G) ≤ 2 for every non-soluble subgroup G of
Sym(9); hence, m − α3(G) ≥ 2 also when n = 9. But, then, again by
Lemma 2.4, µ3(G,m) ≤ 1/4. It follows that

e(G) ≤ m+ µ∗(G,m) + µ2(G,m) + µ3(G,m) +
∑
p>3

µp(G,m)

≤ m+
1

4
+1 +

1

4
+
∑
p≥5

1

p(p− 1)2
≤ m+

3

2
+
∑
n≥5

1

n(n− 1)2

≤ m+1.533823. �

Lemma 5.5. Suppose that G ≤ Sym(n) with n ≥ 8. If G is soluble
and α2,1(G) < ⌊n/2⌋, then

e(G) ≤ ⌊n/2⌋+ 1.533823.

Proof. Let α = α2,1(G), α∗ =
∑

i>1 α2,i(G) and m = ⌊n/2⌋. Note
that α∗ ≤ m− 1 by Lemma 2.1 (iv). Set

µ2,1(G, t) =
∑
k≥t

mA
2 (G)

2k
, µ2,2(G, t) =

∑
k≥t

(∑
n≥2

mA
2n(G)

2nk

)
.

We distinguish two cases:

Case (1). α2,u(G) < m− 1 for every u ≥ 2. Since mA
2 (G) = 2α − 1,

we have

µ2,1(G,m) ≤
∑
k≥m

2α

2k
=

1

2m−α−1
≤ 1.

Moreover, arguing as in the proof of [12, Lemma 7], we deduce that

µ2,2(G,m) ≤ 1

2m−α∗−1
≤ 1.

Note that, if α = m− 1, then α∗ ≤ 1, and consequently, µ2,2(G,m) ≤
22−m ≤ 1/4. Similarly, if α∗ = m − 1, then α ≤ 1 and µ2,1(G,m) ≤
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22−m ≤ 1/4. If follows that

µ2(G,m) = µ2,1(G,m) + µ2,2(G,m) ≤ 5/4.

Except for the case when n = 9 and α3(G) = 3, arguing as near the
end of the proof of Lemma 5.4, we conclude that

e(G) ≤ m+ µ2(G,m) + µ3(G,m) +
∑
p>3

µp(G,m)

≤ m+
5

4
+

1

4
+
∑
p≥5

1

p(p− 1)2
≤ m+ 1.533823.

It remains to deal with the case when G is a soluble subgroup of Sym(9)
with α3(G) = 3. This occurs only if G is contained in the wreath
product Sym(3) ≀ Sym(3). In particular, α2(G) ≤ 3. If α2(G) ≤ 2,
then, by Lemma 2.4,

e(G) ≤ 5 + µ2(G, 5) + µ3(G, 5) ≤ 5 + 1/4 + 1/4 = 5.5.

We have α2(G) = α3(G) = 3 only in two cases: Sym(3) × Sym(3) ×
Sym3 and ⟨(1, 2, 3), (4, 5, 6), (1, 4)(2, 5)(3, 6), (1, 2)(4, 5)⟩ × Sym(3). In
these two cases, G contains exactly 16 maximal subgroups, 7 of index
2 and 9 of index 3. But, then,

e(G) ≤ 4 +
∑
k≥4

m2(G)

2k
+
∑
k≥4

m3(G)

3k

= 4 +
∑
k≥4

7

2k
+
∑
k≥4

9

3k

= 4 +
7

8
+

1

6
∼ 5.041667.

Case (2). α2,u(G) = m−1 for some u ≥ 2. In this case, mA
2 (G) ≤ 1;

so,

µ2,1(G,m+ 1) ≤
∑

k≥m+1

1

2k
=

1

2m
≤ 1

16
.

Moreover, by [12, Lemma 5], mA
2u(G) ≤ 2uα2,t(G)+u, which yields:

µ2,2(G,m+ 1) =
∑

k≥m+1

(∑
n≥2

mA
2n(G)

2nk

)
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=
∑

k≥m+1

mA
2u(G)

2uk
≤

∑
k≥m+1

2uα2,t(G)+u

2uk

≤
∑

k≥m+1

2um

2uk
=

1

2u − 1
≤ 1

3
.

If p ≥ 5, then m − αp(G) ≥ 3; thus, by Lemma 2.4, µp(G,m + 1) ≤
(p(p−1))−2. Moreover, m−α3(G) ≥ 2 (note that there is no subgroup
of Sym(9) with α3(G) = 3 and α2,u(G) = 3 for some u ≥ 2). Therefore,
again by Lemma 2.4, µ3(G,m+ 1) ≤ 1/12. It follows that

e(G) ≤ m+ 1 + µ2,1(G,m+ 1) + µ2,2(G,m+ 1)

+ µ3(G,m+ 1) +
∑
p>3

µp(G,m+ 1)

≤ m+ 1 +
1

16
+

1

3
+

1

12
+
∑
p≥5

1

p2(p− 1)2

≤ m+ 71/48 +
∑
n≥5

1

n2(n− 1)2
≤ m+ 1.484316. �

When G ≤ Sym(n) and n ≤ 7, the precise value of e(G) can be
computed by GAP [3] using the formula

e(G) = −
∑
H<G

µG(H)|G|
|G| − |H|

,

where µG is the Möbius function defined on the subgroup lattice of G
(see [11, Theorem 1]). The crucial information is contained in the next
lemma.

Lemma 5.6. Suppose that G ≤ Sym(n) with n ≤ 7. Either e(G) ≤
⌊n/2⌋+ 1, or one of the following cases occurs:

(1) G ∼= Sym(3), n = 3, e(G) = 29/10;
(2) G ∼= C2 × C2, n = 4, e(G) = 10/3;
(3) G ∼= D8, n = 4, e(G) = 10/3;
(4) G ∼= C2 × Sym(3), n = 5, e(G) = 1181/330;
(5) G ∼= C2 × C2 × C2, n = 6, e(G) = 94/21;
(6) G ∼= C2 ×D8, n = 6, e(G) = 94/21;
(7) G ∼= C2 × C2 × Sym(3), n = 7, e(G) = 241789/53130;
(8) G ∼= D8 × Sym(3), n = 7, e(G) = 241789/53130.
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Theorem 5.7. Let G be a permutation group of degree n ̸= 3. If
α2,1(G) = ⌊n/2⌋, then e(G) ≤ ⌊n/2⌋+ ν, with ν ∼ 1.606695.

Proof. Let m = ⌊n/2⌋. We have that α2,1(G) = m if and only if
Cm

2 is an epimorphic image of G. If Cm
2 is an epimorphic image of

G, then, by [7, main theorem], the group G is the direct product of
its transitive constituents, and each constituent is one of the following:
Sym(2) of degree 2, Sym(3) of degree 3, C2 × C2 and D8 of degree 4,
and the central product D8 ◦D8 of degree 8. Consequently:

G/Frat(G) ≃

{
Cm

2 if n = 2m,

Cm−1
2 × Sym(3) if n = 2m+ 1.

Therefore, by (2.3),

PG(k) = PG/Frat(G)(k) =
∏

0≤i≤m−1

(
1− 2i

2k

)(
1− 3

3k

)n−2m

.

Setting η = 0 if n is even, and η = 1 otherwise, we have

e(G) =
∑
k≥0

(1− PG(k)) ≤
∑
k≥0

(
1−

∏
0≤i≤m−1

(
1− 2i

2k

)(
1− 3

3k

)η )

= m+
∑
k≥m

(
1−

∏
0≤i≤m−1

(
1− 2i

2k

)(
1− 3

3k

)η )

= m+
∑
j≥0

(
1−

∏
1≤l≤m

(
1− 1

2j+l

)(
1− 3

3j+m

)η )
.

Set

ωm,η =
∑
j≥0

(
1−

∏
1≤l≤m

(
1− 1

2j+l

)(
1− 3

3j+m

)η )
.

Clearly, ωm,0 increase with m. On the other hand, if m ≥ 4 and j ≥ 0,
then (

1− 1

2j+m+1

)(
1− 3

3j+m+1

)
≤
(
1− 3

3j+m

)
,

and thus, ωm,1 ≤ ωm+1,1 if m ≥ 4. Moreover,

lim
m→∞

ωm,1 = lim
m→∞

ωm,0 ∼ 1.606695.
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Then, e(G) ≤ m+1.606695 whenever m ≥ 4. The values of e(G) when
n is small are given in the following table (which also indicates how
fast e(G)−m tends to 1.606695).

TABLE 1.

n e(G) n e(G)

2 2 9
4633553

832370
∼ 5.566699

3
29

10
= 2.900000 10

7134

1085
∼ 6.575115

4
10

3
∼ 3.333334 11

3227369181

490265930
∼ 6.582895

5
1181

330
∼ 3.578788 12

74126

9765
∼ 7.590988

6
94

21
∼ 4.476191 13

6399598043131

842767133670
∼ 7.593554

7
241789

53130
∼ 4.550894 14

10663922

1240155
∼ 8.598862

8
194

35
∼ 5.542857 15

70505670417749503

8198607229768494
∼ 8.599713

From the information contained in Table 1, we deduce that e(G) ≤
m+ 1.606695, except when G = Sym(3). �
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