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GLOBAL ASYMPTOTIC STABILITY OF POSITIVE
STEADY STATES OF A SOLID AVASCULAR TUMOR

GROWTH MODEL WITH TIME DELAYS

SHIHE XU AND FANGWEI ZHANG

ABSTRACT. In this work, global stability of a free
boundary problem modeling solid avascular tumor growth
is studied. The model is considered with time delays during
the proliferation process. We prove that the unique positive
constant steady state is globally asymptotically stable under
some assumptions. The proof uses the comparison principle
and the iteration method.

1. Introduction. Over the last 40 years, a variety of free bound-
ary problems of partial differential equations have been proposed to
model the growth of solid tumors, cf., [1, 3]–[6, 11, 12, 17]–[23].
Numerical simulations and asymptotic analysis of these tumor growth
free-boundary problems have shown satisfactory coincidence with ex-
perimental observations. Rigorous mathematical analysis of these free
boundary problems has drawn great interest, and many interesting re-
sults have been obtained cf., [2, 7]–[10, 13, 14, 15, 24, 25, 26].

In the model studied in this paper we assume that the tumor is
nonnecrotic and consider two unknown functions:

• σ(r, t) – the nutrient concentration at radius r and time t;
• R(t) – the outer tumor radius at time t.

As was done in [13], it is also assumed here that the nutrient is simply
consumed by tumor cells with the constant rate a. Then, the changes
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of σ are described by the following reaction-diffusion equation:

(1.1) d
∂σ

∂t
=

1

r2
∂

∂r

(
r2
∂σ

∂r

)
− a, 0 < r < R(t), t > 0,

where d = Tdiffusion/Tgrowth is a positive constant which represents the
ratio of the nutrient diffusion time scale to the tumor growth (e.g.,
tumor doubling) time scale. From [4, 9, 13, 16], we know that

Tdiffusion ≈ 1 min and Tgrowth ≈ 1 day,

so that d≪ 1. The changes of R are governed by the mass conservation
law, i.e.,

(1.2)
d

dt

(
4πR3

3

)
= S −Q,

where Q and S denote the net rates of natural apoptosis and prolif-
eration, respectively. It is reasonable to assume that the proliferation
rate is proportional to the local nutrient concentration. Denoting the
coefficient of proportionality by s, we have

(1.3) S = 4π

R(t−τ)∫
0

sσ(r, t− τ)r2dr,

where we denote by τ the time delay in cell proliferation, i.e., τ is the
length of the period that a tumor cell undergoes a full process of mitosis.
It is assumed that the apoptotic cell loss occurs with a constant rate
sc, i.e.,

(1.4) Q = 4π

R(t)∫
0

scr2dr.

The boundary conditions are as follows.

(1.5)
∂σ

∂r
(0, t) = 0, σ(R(t), t) = σe, 0 < r < R(t), t > 0,

where σe denotes the external concentration of nutrients, which is
assumed to be a constant.
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We will consider (1.1)–(1.2), together with the following initial con-
dition,

(1.6) σ(r, t) = ψ(r, t), 0 ≤ r ≤ R(t), −τ ≤ t ≤ 0,

(1.7) R(t) = φ(t), −τ ≤ t ≤ 0.

In [13], the limiting case where d = 0 has been studied. Rigorous
analysis of the problem is given in the framework of delay differential
equations. The final mathematical formulation for the problem is a
delay differential equation. The authors [13] discussed the dynamical
behavior of solutions to the model. In the limiting case where d = 0,
equations (1.1) and (1.5) can be precisely solved and the exact ex-
pression of the evolution equation for R can be obtained. This is clearly
not the case for the present model, and the method used in [13] cannot
be used for the present model. Using the Banach fixed point theorem, a
comparison method and some mathematical techniques, the existence
and uniqueness of the global solution to the problem has been proved
in [26]. In this paper, we mainly prove, under some assumptions,
the global asymptotic stability of positive steady states in the case
c < σe < (5/3)c. In what follows, we always assume that s = 1 for
simplicity of notation, and, for any positive constant s, the arguments
of problems (1.1)–(1.7) are similar.

2. Global asymptotic stability. The constant stationary solution
(Rs, σs(r)) to (1.1)–(1.7) satisfies the following equations:

(2.1)
1

r2
∂

∂r
(r2

∂σs
∂r

) = a, 0 < r < Rs,

(2.2)
∂σs
∂r

(0) = 0, σ(Rs) = σe,

(2.3)

∫ Rs

0

σs(r)r
2dr −

∫ Rs

0

cr2dr = 0.

From (2.1) and (2.2), we can get

(2.4) σs(r) = σe −
a

6
(R2

s − r2).
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Substituting (2.4) for (2.3) yields that there exists a unique positive
constant solution

(2.5) Rs =

√
15(σe − c)

a

to equation (2.3) if c < σe < (5/3)c. Therefore, if c < σe < (5/3)c, the
problem (1.1)–(1.7) has a unique positive constant stationary solution

(Rs, σs(r)) =

(√
15(σe − c)

a
, σe −

a

6
(R2

s − r2)

)
, 0 ≤ r ≤ Rs.

The next theorem comprises some of the main results of this paper.

Theorem 2.1. Let (σ(r, t), R(t)) be the solution of system (1.1)–(1.7).
If c < σe < (5/3)c, assume that the initial value function φ satisfies
δ1 ≤ φ(t) ≤ δ2 for all −τ ≤ t ≤ 0, where δ1 and δ2 are positive
constants and

δ2 <

√
6σe
a

1
3
√
1 + σeτ

e−bτ/3, b = σe + c.

Then, there exist corresponding positive constants d0, γ, T0 and C such
that

|R(t)−Rs| ≤ Ce−γt,

|R′(t)| ≤ Ce−γt,

|σ(r, t)− σs(r)| ≤ Ce−γt

for all t ≥ T0 + τ , 0 ≤ r ≤ R(t) and 0 < d ≤ d0.

Let (v(r, t), R(t)) be the solution to the limiting case, i.e., d = 0, of
(1.1)–(1.7). Then,

(2.6)
1

r2
∂

∂r

(
r2
∂v

∂r

)
= a, 0 < r < R(t), t > 0,

(2.7)
∂v

∂r
(0, t) = 0, v(R(t), t) = σe, t > 0,
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(2.8)
d

dt

4πR3(t)

3
= 4π

R(t−τ)∫
0

v(r, t− τ)r2dr − 4π

R(t)∫
0

cr2dr, t > 0.

The solution to (2.6) and (2.7) is

(2.9) v(r, t) = σe −
a

6
(R2(t)− r2).

Lemma 2.2. Let (σ(r, t), R(t)) is the solution to (1.1)–(1.7), and let
v(r, t) be the solution to the limiting case (i.e., d = 0) of (1.1) and
(1.5), where

v(r, t) = σe −
a

6
(R2(t)− r2).

Assume that, for some 0 < T ≤ ∞ and ε > 0,

(2.10) |R′(t)| ≤ L ≤ L0, ε ≤ R(t) ≤ 1

ε
, 0 ≤ t < T,

where L0 is a fixed constant. Then, there exist positive constants d0
and C, independent of d, T , L and R0 but dependent on ε, L0 and M0,
such that

(2.11) |σ(r, t)− v(r, t)| ≤ CLd

(
1

ε2
− r2

)
.

for arbitrary 0 ≤ r ≤ R(t), 0 ≤ t < T and 0 < d ≤ d0.

Proof. By direct computation, we have

∂v

∂t
= −a

3
R(t)R′(t).

Hypothesis (2.10) implies that

(2.12)

∣∣∣∣∂v∂t
∣∣∣∣ ≤ CL,

for 0 < r < R(t), t ≥ 0, where C depends only upon a and ε. Let

σ±(r, t) = v ± CLd

6ε2
∓ CLdr2

6
.
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Then, by using (2.12) we have

d
∂σ+
∂t

− 1

r2
∂

∂r

(
r2
∂σ+
∂r

)
+ a = d

∂v

∂t
− 1

r2
∂

∂r

(
r2
∂v

∂r

)
+ a

+
1

r2
∂

∂r

(
r2
∂(CLdr2/6)

∂r

)
≥ −CLd+ CLd = 0.

From (2.7) and (2.10), we have

∂σ+
∂r

(0, t) =
∂v

∂r
(0, t) = 0 for t > 0,

σ+(R(t), t) = v(R(t), t) +
CLd

6ε2
− CLdR2

6
≥ σe for t > 0,

and

σ+(r, 0) = v(r, 0) +
CLd

6ε2
− CLdr2

6
≥ v(r, 0) for 0 ≤ r ≤ R(0).

Then, by the comparison principle, we obtain

σ+(r, t) ≥ σ(r, t) for 0 ≤ r ≤ R(t), 0 ≤ t < T.

Similar arguments prove that

σ−(r, t) ≤ σ(r, t) for 0 ≤ r ≤ R(t), 0 ≤ t < T.

It follows that

(2.13) |σ − v| ≤ |σ+ − v|+ |σ− − v| ≤ CLd

(
1

ε2
− r2

)
.

Hence, (2.11) holds. This completes the proof. �

Lemma 2.3 ([26, Theorem 3.3]). Let (σ(r, t), R(t)) be the solution to
(1.1)–(1.7). Then, the following estimates hold :

(i) σe − ar2/6 ≤ σ(r, t) ≤ σe, 0 ≤ r ≤ R(t), t ≥ 0;

(ii) φ(0)e−ct/3 ≤ R(t) ≤ Aebt/3, for t ≥ 0, where A = 3
√
1 + σeτ |φ|,

|φ| = max−τ≤t≤0 φ(t), b = σe + c.
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Lemma 2.4. Let (σ(r, t), R(t)) be the solution to (1.1)–(1.7). Let

δ1, δ2

(
<

√
6σe
a

1
3
√
1 + σeτ

e−bτ/3

)
be positive constants such that δ1 ≤ φ(t) ≤ δ2, where b = σe+c. Assume
that c < σe < (5/3)c holds. Then, there exists a positive constant d0
such that

(2.14)
1

2
min(Rs, φ(0)e

−cτ/3) < R(t) <

√
6σe
a

for arbitrary t > 0 and 0 < d < d0, where Rs =
√

15(σe − c)/a.

Proof. By Lemma 2.3 (ii) and the assumption δ1 ≤ φ(t) ≤ δ2 for
−τ ≤ t ≤ 0, we have

1

2
min(Rs, φ(0)e

−cτ/3) < R(t) <

√
6σe
a
, 0 ≤ t ≤ τ.

Assume that (2.14) is not valid for some t. It follows that there exists
a T > τ such that, for 0 ≤ t < T ,

1

2
min(Rs, φ(0)e

−cτ/3) < R(t) <

√
6σe
a
,

and either R(T ) =
√
6σe/a or R(T ) = (1/2)min(Rs, φ(0)e

−cτ/3).

If R(T ) =
√
6σe/a, then

(2.15) R′(T ) ≥ 0.

By equation (1.2) and the fact that, for 0 ≤ t < T ,

1

2
min(Rs, φ(0)e

−cτ/3) < R(t) <

√
6σe
a
,

we have |R′(t)| ≤ L0; L0 is a positive constant independent of d and

T . By Lemma 2.2, noting the facts |R′(t)| ≤ L0 and R(t) <
√
6σe/a,

it follows that

(2.16) |σ(r, t)− v(r, t)| ≤ Cd

(
6σe
a

− r2
)
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for arbitrary 0 ≤ r ≤ R(t), 0 ≤ t < T and 0 < c ≤ c0. Then, we have,
for t > τ :

R′(t) =
1

R2(t)

[ R(t−τ)∫
0

σ(r, t− τ)r2dr −
R(t)∫
0

cr2dr

]

≤ 1

R2(t)

[ R(t−τ)∫
0

v(r, t− τ)r2dr +
2σe
a
CdR3(t− τ)

]
− 1

3
cR(t)

=
1

R2(t)

[ R(t−τ)∫
0

(
σe −

a

6
(R2(t− τ)− r2)

)
r2dr +

2σe
a
CdR3(t− τ)

]

− 1

3
cR(t)

=
1

3R2(t)

[(
σeR(t− τ)− a

15
R3(t− τ)

)
R2(t− τ) +

6σe
a
CdR3(t− τ)

]
− 1

3
cR(t).

Then, for d satisfying

0 < d < d1 =

(
c− 3

5
σe

)
a

6σeC
,

noting that R(T − τ) <
√
6σe/a, we can obtain

R′(T ) ≤ 1

3

(
− c+ σe −

6σe
15

+
6σe
a
Cd

)√
6σe
a

< 0,

for which we have used c < σe < (5/3)c and the fact that the function(
σex− a

15
x3

)
x2 +

6σe
a
Cdx3

is monotone increasing for

0 < d < d1 =

(
c− 3

5
σe

)
a

6σeC

and c < σe < (5/3)c. Therefore, this contracts to the fact R′(T ) ≥ 0.
Hence, the right hand side of inequality (2.14) is true.



AVASCULAR TUMOR GROWTH MODEL 1693

Next, we prove the left hand side of inequality (2.14). If R(T ) =
(1/2)min(Rs, φ(0)e

−cτ/3), then

(2.17) R′(T ) ≤ 0.

From equation (1.2) and the fact that, for 0 ≤ t < T ,

1

2
min(Rs, φ(0)e

−cτ/3) < R(t) <

√
6σe
a
,

we have |R′(t)| ≤ L0; L0 is a positive constant independent of d and

T . By Lemma 2.2, noting the facts |R′(t)| ≤ L0 and R(t) <
√
6σe/a,

we obtain

(2.18) |σ(r, t)− v(r, t)| ≤ Cd

(
6σe
a

− r2
)

for arbitrary 0 ≤ r ≤ R(t), 0 ≤ t < T and 0 < c ≤ c0. Then, we have,
for t > τ ,

R′(t) =
1

R2(t)

[ R(t−τ)∫
0

σ(r, t− τ)r2dr −
R(t)∫
0

cr2dr

]

≥ 1

R2(t)

[ R(t−τ)∫
0

v(r, t− τ)r2dr − 2σe
a
CdR3(t− τ)

]
− 1

3
cR(t)

=
1

R2(t)

[ R(t−τ)∫
0

(
σe−

a

6
(R2(t−τ)−r2)

)
r2dr− 2σe

a
CdR3(t−τ)

]

− 1

3
cR(t)

=
1

3R2(t)

[(
σeR(t−τ)−

a

15
R3(t−τ)

)
R2(t−τ)− 6σe

a
CdR3(t−τ)

]
− 1

3
cR(t).

Then, for d satisfying

0 < d < d2 =
a(σe − c)

12σeC
,
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R′(T ) ≥ 1

6

(
− c+ σe −

a

30
R2

s −
6σe
a
Cd

)
Rs > 0,

for which we have used c < σe < (5/3)c and the fact that the function(
σex− a

15
x3

)
x2 +

6σe
a
Cdx3

is monotone increasing for

0 < d < d2 =
a(σe − c)

12σeC

and c < σe < (5/3)c. Therefore, this contradicts to the fact R′(T ) ≤ 0.
Hence, the left hand side of inequality (2.14) is true. Let d0 = min
(d1, d2). This completes the proof. �

Lemma 2.5. Let (σ(r, t), R(t)) be the solution to (1.1)–(1.7). Assume
that the initial value function φ satisfies δ1 ≤ φ(t) ≤ δ2 for all
−τ ≤ t ≤ 0, where δ1 and δ2 are positive constants and

δ2 <

√
6σe
a

1
3
√
1 + σeτ

e−bτ/3, b = σe + c.

If c < σe < (5/3)c, then there exist positive constants d0, θ, T0 and C
independent of d such that the following assertions hold : if 0 < d ≤ d0,
for any α ∈ (0, α0], if the inequalities

(2.19) |R(t)−Rs| ≤ α, |σ(r, t)− σs(r)| ≤ α

hold for all 0 ≤ r ≤ R(t), t ≥ −τ and |R′(t)| ≤ α hold for all 0 ≤
r ≤ R(t), t ≥ 0, where (Rs, σs(r)) denotes the unique positive station-
ary solution to problem (1.1)–(1.7), then also the inequalities

|R(t)−Rs| ≤ Cα(d+ e−θt),(2.20)

R′(t)| ≤ Cα(d+ e−θt),

|σ(r, t)− σs(r)| ≤ Cα(d+ e−θt)

hold for all 0 ≤ r ≤ R(t), t ≥ T0 + τ .
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Proof. Since the initial value function φ satisfies δ1 ≤ φ(t) ≤ δ2 for
all −τ ≤ t ≤ 0, where δ1 and δ2 are positive constants and

δ2 <

√
6σe
a

1
3
√
1 + σeτ

e−bτ/3,

by Lemma 2.4, we can obtain that

1

2
min(Rs, φ(0)e

−cτ/3) < R(t) <

√
6σe
a

for arbitrary t > 0, 0 < d < d0, where Rs =
√
15(σe − c)/a. Direct

computation yields
(2.21)

1

R2(t)

[ R(t−τ)∫
0

v(r, t− τ)r2dr −
R(t)∫
0

cr2dr

]
= R(t)G(R(t), R(t− τ)),

where

G(R(t), R(t− τ)) =
1

3

[(
σe −

a

15
R2(t− τ)

)
R3(t− τ)

R3(t)
− c

]
.

From Lemma 2.2, (1.2) and the fact that |R′(t)| ≤ α holds for all 0 ≤
r ≤ R(t), t ≥ 0, we can get for t > τ :

|R′(t)−R(t)G(R(t), R(t− τ))|

=

∣∣∣∣ 1

R2(t)

R(t−τ)∫
0

[σ(r, t− τ)− v(r, t− τ)]r2dr

∣∣∣∣
≤ R(t)

[
2σe
a
Cαd

(
R(t− τ)

R(t)

)3]
≤ C1αdR(t),

where

C1 =
2σe
a
C

(
1

2
min(Rs, φ(0)e

−cτ/3)

)−3
√

6σe
a

3

and where C1 is a positive constant independent of α and d. It follows
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that, for t > τ :

R(t)[G(R(t), R(t− τ))− C1αd] ≤ R′(t)

(2.22)

≤ R(t)[G(R(t), R(t− τ)) + C1αd],

where C1 is a positive constant independent of α and d. Hereafter, for
ease of notation, we use the same variable C to denote various different
positive constants independent of d and α. Consider the initial value
problems

R′±(t) = R±(t)[G(R±(t), R±(t− τ))± Cαd], t > τ,(2.23)

R±(t) = R(t), 0 ≤ t ≤ τ.(2.24)

Since G(x, x) = 0 has a unique positive constant solution x =√
15(σe − c)/a if c < σe < (5/3)c, we can obtain that there exist pos-

itive constants α0 and d0 such that, for α ∈ (0, α0] and d ∈ (0, d0] the
equation G(x, x)± Cαc = 0 has respectively unique solutions R±

s . By
similar arguments as [26, Lemma 2.4 (2)], the corresponding solutions
of the equations to the above initial problem, which we respectively
denote as R±(t), converge respectively to R±

s as t→ ∞.

From the fact G(x, x) is monotone decreasing for all x > 0, we can
get

(2.25) |R±
s −Rs| ≤ Cαd.

Actually, since R±
s respectively satisfies the equations G(x, x) = ∓Cαc

and Rs satisfies the equation G(x, x) = 0, by (2.14) and the fact
that G(x, x) is monotone decreasing for all x > 0, we readily obtain
|R±

s −Rs| ≤ Cαd.

Noting that

G(x, y) =
1

3

[(
σe −

a

15
y2
)
y3

x3
− c

]
, x, y ≤

√
6σe
a
,

we can get

(2.26)
∂G

∂y
=
y2

x3

(
σe −

a

9
y2
)
> 0.

The comparison principle (see [10, Lemma 3.1]) implies, for all t ≥ 0,

(2.27) R−(t) ≤ R(t) ≤ R+(t).
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By linearizing (2.23) at the stationary point R+
s , we have

(2.28) R′+(t) = −aR+(t) + bR+(t− τ),

where

a =

[
σe −

a

15
(R+

s )
2

]
, b =

[
σe −

a

9
(R+

s )
2

]
.

The characteristic equation of (2.28) is

(2.29) z = −a+ be−τz.

Similarly, by linearizing equation (2.23) at the stationary point R−
s , we

have

(2.30) R′−(t) = −AR−(t) +BR−(t− τ),

where

A =

[
σe −

a

15
(R−

s )
2

]
, B =

[
σe −

a

9
(R−

s )
2

]
.

The characteristic equation of (2.30) is

(2.31) z = −A+Be−τz.

Since a − b = (2/45)(R+
s )

2 and A − B = (2/45)(R−
s )

2, we have
a > b > 0 and A > B > 0, provided d ∈ (0, d0] and α ∈ (0, α0]. This
implies that all complex roots of equations (2.29) and (2.31) are located
in the left-half plane. Then, we have that there exist positive constants
K, θ and T0 (≥ τ) such that, for any t ≥ T0,

|R±(t)−R±
s | ≤ Ke−θt||φ| −R±

s |,

where |φ| = max−τ≤t≤0 φ(t). Then, noting (2.25), for any t ≥ T0:

|R(t)−Rs| ≤ max | R±(t)−Rs|
≤ max[|R±(t)−R±

s |+ |R±
s −Rs|]

≤ max[Ke−θt| |φ| −R±
s |] + Cαd

≤ max[Ke−θt(| |φ| −Rs|+ |Rs −R±
s |)] + Cαd

≤ Cα(d+ e−θt).
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By the mean value theorem, the fact that vs(r) = σs(r), and noting
(2.14), we have

|v(r, t)− σs(r)| = |v(r, t)− vs(r)| ≤ C|R(t)−Rs| ≤ Cα

for 0 ≤ r ≤ R(t), t ≥ 0. It follows that

|σ(r, t)− v(r, t)| ≤ |σ(r, t)− σs(r)|+ |v(r, t)− σs(r)| ≤ Cα

for 0 ≤ r ≤ R(t), t ≥ 0. In particular, |σ0(r) − v(r, 0)| ≤ Cα for 0 ≤
r ≤ R(0). Since |R′(t)| ≤ α for all t ≥ 0, by Lemma 2.2, we have that
there exists a positive constant d0 independent of d and α such that

(2.32) |σ(r, t)− v(r, t)| ≤ Cαd

(
6σe
a

− r2
)

≤ Cαd
6σe
a

for arbitrary 0 ≤ r ≤ R(t), t ≥ 0 and 0 < d ≤ d0.

Set

f(t) =
1

R3(t)

[ R(t−τ)∫
0

σ(r, t− τ)r2dr −
R(t)∫
0

cr2dr

]
.

Then, we have, for t ≥ τ :

|R(t)f(t)−R(t)G(R(t), R(t− τ))|

=

∣∣∣∣∣ 1

R2(t)

R(t−τ)∫
0

[σ(r, t− τ)− v(r, t− τ)]r2dr

∣∣∣∣∣
≤ R(t)

[
2σe
a
Cd

(
R(t− τ)

R(t)

)3]
.

Noting (2.14), we have, for t ≥ 2τ ,

(2.33) |R(t)f(t)−R(t)G(R(t), R(t− τ))| ≤ Cαd.

By the mean value theorem and (2.14), we have, for t ≥ T0 + τ ,

|G(R(t), R(t− τ))−G(Rs, Rs)| ≤ C(|R(t)−Rs|+ |R(t− τ)−Rs|)

≤ Cα(d+ e−θt).
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Then, using equations R′(t) = R(t)f(t), inequality (2.14) and (2.33),
it follows that |R′(t)| ≤ Cα(d+ e−θt). From (2.32), we have

|σ(r, t)− σs(r)| ≤ Cα(d+ e−θt).

The proof of Lemma 2.5 is complete. �

Proof of Theorem 2.1. From Lemma 2.4, we see that there exists a
positive constant d0 such that, if 0 < d ≤ d0, then, for all t ≥ 0,

C∗ ≤ R(t) ≤ C∗,

where C∗ = (1/2)min(Rs, φ(0)e
−cτ/3), C∗ =

√
6σe/a. It follows that

|R(t) − Rs| ≤ C∗ + Rs =: α1 for all t ≥ 0. By Lemma 2.3 (i), we
know that σ ≤ σe, and, from (1.2), we have, for all t ≥ 0, |R′(t)|
≤ s(σe + c)(C∗)3/C2

∗ := α2. Obviously, |σ(r, t) − σs(r)| ≤ 2σe holds
for all 0 ≤ r ≤ R(t), t ≥ −τ . We see that the conditions of Lemma 2.5
hold for α = α0 =: max{α1, α2, 2σe}. Then, by Lemma 2.5, and letting
C and θ be as in (2.20) with T0 larger (if necessary), we can obtain

|R(t)−Rs| ≤ Cα(d+ e−θt) ≤ 2Cdα,

|R′(t)| ≤ Cα(d+ e−θt) ≤ 2Cdα,

|σ(r, t)− σs(r)| ≤ Cα(d+ e−θt) ≤ 2Cdα

hold for all 0 ≤ r ≤ R(t), t ≥ T0 + τ . Taking d0 smaller (if necessary),
for any given d (< d0) such that 2Cd < 1, we define T0 by

e−θ(T0+τ) = d.

Iterating this result yields

|R(t)−Rs| ≤ C(2Cd)n−1α(d+ e−θ(t−(n−1)T0)) ≤ (2Cd)nα,

|R′(t)| ≤ C(2Cd)n−1α(d+ e−θ(t−(n−1)T0)) ≤ (2Cd)nα,

|σ(r, t)− σs(r)| ≤ C(2Cd)n−1α(d+ e−θ(t−(n−1)T0)) ≤ (2Cd)nα

hold for all 0 ≤ r ≤ R(t), t ≥ nT0 + τ .

Finally, defining γ > 0 by

2Cd = e−γT0 < 1
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and, for a given t > 0, letting n be the largest integer that satisfies
nT0 + τ ≤ t ≤ (n+ 1)T0 + τ , then it follows that

|R(t)−Rs| ≤ α(2Cd)nα = αe−γnT0 = αe−γte−γ(nT0−t)

≤ αeγ(T0+τ)e−γt = Ce−γt.

Similar arguments yield |R′(t)| ≤ Ce−γt, |σ(r, t)−σs(r)| ≤ Ce−γt for all
t ≥ T0+τ , 0 ≤ r ≤ R(t). This completes the proof of Theorem 2.1. �

3. Conclusions. In this paper, we studied the global stability of a
free boundary problem modeling solid avascular tumor growth. The
model studied is a PDE (d > 0) model describing tumor growth, which
is a generalization of the existing ODE (d = 0) model in [13]. The
ODE model is the quasi steady-state approximation of the PDE model.
Using the Banach fixed point theorem, a comparison method and other
mathematical techniques, the existence and uniqueness of the global
solution to the problem was proven in [26]. In this paper, we mainly
studied the asymptotic behavior of the solution and proved that, in
the case where d (the ratio of the diffusion time scale to the tumor
doubling time scale) is sufficiently small, it will evolve to a dormant
state as t→ ∞.

From a biology standpoint, our main results (see Theorem 2.1) mean
that, if the supply of nutrient σe that the tumor receives from its
surface satisfying c < σe < (5/3)c, with initial radius φ(t) satisfying
φ ∈ (δ1, δ2), where

0 < δ1, δ2 <

√
6σe
a

1
3
√
1 + σeτ

e−bτ/3,

b = σe + c, the tumor will not disappear, and its radius will tend
to the unique positive constant steady state if d is sufficiently small.
The results show that, under the conditions of Theorem 2.1, dynamical
behavior of solutions to the model are similar to that of solutions for
that of the corresponding problem d = 0 (refer to [26, Lemma 2.4 (2)]
and Theorem 2.1).
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13. U. Foryś and M. Bodnar, Time delays in proliferation process for solid

avascular tumour, Math. Comp. Model. 37 (2003), 1201–1209.

14. , Time delays in regulatory apoptosis for solid avascular tumour,

Math. Comp. Model. 37 (2003), 1211–1220.

15. U. Foryś and M. Kolev, Time delays in proliferation and apoptosis for solid
avascular tumour, Math. Model. Population Dynam. 63 (2004), 187–196.

16. A. Friedman and F. Reitich, Analysis of a mathematical model for the growth
of tumors, J. Math. Biol. 38 (1999), 262–284.

17. H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl.
Math. 51 (1972), 317–340.

18. , On the growth and stability of cell cultures and solid tumors, J.

Theoret. Biol. 56 (1976), 229–242.

19. J. Nagy, The ecology and evolutionary biology of cancer : A review of math-
ematical models of necrosis and tumor cell diversity, Math. Biosci. Eng. 2 (2005),

381-418.



1702 SHIHE XU AND FANGWEI ZHANG

20. M.J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model
with two discrete delays, Math. Comp. Model. 47 (2008), 597–603.

21. R.R. Sarkar and S. Banerjee, A time delay model for control of malignant
tumor growth, National Conf. Nonlin. Syst. Dynam. (2006), 1–5.

22. K. Thompson and H. Byrne, Modelling the internalisation of labelled cells

in tumor spheroids, Bull. Math. Biol. 61 (1999), 601–623.

23. J. Ward and J. King, Mathematical modelling of avascular-tumor growth II:

Modelling growth saturation, IMA J. Math. Appl. Med. Biol. 15 (1998), 1–42.

24. X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free
boundary problem modeling tumor growth, Math. Acta. Scientia. 26 (2006), 1–8, in

Chinese.

25. S. Xu, Analysis of tumor growth under direct effect of inhibitors with time
delays in proliferation, Nonlin. Anal. 11 (2010), 401–406.

26. S. Xu, M. Bai and X. Zhao, Analysis of a solid avascular tumor growth
model with time delays in proliferation process, J. Math. Anal. Appl. 391 (2012),
38–47.

Zhaoqing University, School of Mathematics and Statistics, Zhaoqing,

Guangdong 526061, P.R. China
Email address: shihe56789@163.com

Shanghai Maritime University, College of Transport and Communications,
Shanghai 201306, P.R. China
Email address: fangweizhang@aliyun.com


