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DIFFERENTIAL SUBORDINATION OF A
HARMONIC MEAN TO A LINEAR FUNCTION

OLIWIA CHOJNACKA AND ADAM LECKO

ABSTRACT. In this paper, we examine differential sub-
ordination related to the harmonic mean in the case where
a dominant is a linear function. A result for the first order
Euler differential subordination of the nonlinear type is also
discussed.

1. Introduction. Let H be the class of all analytic functions f in
D := D1, where Dr := {z ∈ C : |z| < r} for each r > 0. A function
f ∈ H is said to be subordinate to a function F ∈ H if there exists an
ω ∈ H such that ω(0) := 0, ω(D) ⊂ D and f = F ◦ ω in D. Then, we
write f ≺ F . When F is univalent, then

(1.1) f ≺ F ⇐⇒ (f(0) = F (0) ∧ f(D) ⊂ F (D)).

Let β ∈ [0, 1] and a, b ∈ C. When b + β(b − a) ̸= 0, the harmonic
mean of a and b is given as

ab

b+ β(a− b)
.

Definition 1.1. Let β ∈ (0, 1) and Ψ ∈ H. By H(β,Ψ), we denote the
subclass of H of all nonconstant functions p such that the function

D ∋ z 7−→ p(z)(p(z) + zp′(z)Ψ(z))

p(z) + (1− β)zp′(z)Ψ(z)

is either analytic or has only removable singularities with an analytic
extension on D.
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In [2, 3], studies of the differential subordination related to the
harmonic mean were begun. Particularly, in [3] for β ∈ (0, 1], Ψ ∈
H, p ∈ H(β,Ψ) and a univalent function h ∈ H, the differential
subordination related to the harmonic mean of the type

(1.2)
p(z)(p(z) + zp′(z)Ψ(z))

p(z) + (1− β)zp′(z)Ψ(z)
≺ h(z), z ∈ D,

was examined. The above formula with β := 1/2 and selected functions
Ψ and h was also considered in [7]. A univalent function q ∈ H is called
a dominant of differential subordination (1.2) if p ≺ q for all functions
p ∈ H(β,Ψ) satisfying (1.2). A dominant q̃ of (1.2) is called the best
dominant of (1.2) if q̃ ≺ q for all dominants q of (1.2) (for the general
case, see [11, page 16]).

We recall that differential subordinations related to the arithmetic
mean as well as to the geometric mean have been studied by various
authors. Given α ∈ [0, 1], the simplest form of the differential subordi-
nation related to the arithmetic mean is given as follows:

p(z) + αzp′(z) ≺ h(z), z ∈ D.

For details and further references, see [11, pages 121–131]. The
differential subordination related to the geometric mean was introduced
in [6]. For further results in this direction, see e.g., [1, 4, 8, 9, 10].

A function f ∈ H is said to be convex if it is univalent and f(D) is
a convex domain.

Here, we introduce the subclass Q (for details on corners of curves,
see e.g., [12, pages 51–65]). Let T := {z ∈ C : |z| = 1}.

Definition 1.2. By Q, we denote the class of convex functions h with
the following properties:

(a) h(D) is bound by finitely many smooth arcs which form corners
at their end points (including corners at infinity);

(b) E(h) is the set of all points ζ ∈ T which corresponds to corners
h(ζ) of ∂h(D);

(c) h′(ζ) ̸= 0 exists at every ζ ∈ T \ E(h).

In [3], the following was shown:
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Theorem 1.3. Let β ∈ (0, 1], h∈Q with 0∈h(D) and Ψ∈H be such
that

ReΨ(z) ≥ 0, Ψ(z) ̸= 0, z ∈ D.

If p ∈ H(β,Ψ), p(0) = h(0) and

p(z)(p(z) + zp′(z)Ψ(z))

p(z) + (1− β)zp′(z)Ψ(z)
≺ h(z), z ∈ D,

then
p ≺ h.

In this paper, we continue the research on differential subordination
of the form (1.2) when Ψ is a constant function and h is a linear func-
tion. The linearity of h is the simplest, however especially interesting,
case to study. It shows that Theorem 1.3 can essentially be improved,
which leads to consideration of other selected convex functions h for
comparison with the general case. Moreover, the differential subordi-
nation of the harmonic mean with a linear function h generalizes the
first order Euler differential subordination (see [11, pages 334–336])
for the nonlinear case. Corollary 2.8 contains such a generalization and
the importance of the result being sharp, i.e., with the best dominant.

The next lemma is a special case of [11, page 22, Lemma 2.2d] and
is necessary for the proof of the main result.

Lemma 1.4. Let h ∈ Q and p ∈ H be nonconstant functions with
p(0) := h(0). If p is not subordinate to h, then there exist z0 ∈ D \ {0}
and ζ0 ∈ T \ E(h) such that

(1.3) p(D|z0|) ⊂ h(D);

(1.4) p(z0) = h(ζ0)

and, for some m ≥ 1,

(1.5) z0p
′(z0) = mζ0h

′(ζ0).

2. Main result. Given α ∈ C \ {0}, let Ψ(z) := α, z ∈ D. Let
H(β, α) := H(β,Ψ).
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Theorem 2.1. Let a ≥ 0 and α, β ∈ (0, 1]. Let M ≥ a when a > 0
and M > 0 when a = 0. If p ∈ H(β, α), p(0) := a, and
(2.1)∣∣∣∣ p(z)(p(z) + αzp′(z))

p(z) + (1− β)αzp′(z)
− a

∣∣∣∣ < M
(1 + αβ)a+ (1 + α)M

a+ (1 + (1− β)α)M
, z ∈ D,

then

(2.2) |p(z)− a| < M, z ∈ D.

Proof. Let h(z) := a + Mz, z ∈ D. Since h is univalent, p(0) =
h(0) = a, and (2.2) can be replaced by the inclusion p(D) ⊂ h(D); by
using (1.1), condition (2.2) is equivalent to the subordination p ≺ h.

Suppose, on the contrary, that p is not subordinate to h. Since h ∈ Q
with E(h) = ∅, by Lemma 1.4, there exist z0 ∈ D \ {0} and ζ0 ∈ T
such that (1.3)–(1.5) hold. Thus,

p(z0) = a+Mζ0

and, for some m ≥ 1,
z0p

′(z0) = mMζ0.

Hence,

∣∣∣∣ p(z0)(p(z0) + αz0p
′(z0))

p(z0) + (1− β)αz0p′(z0)
− a

∣∣∣∣
(2.3)

=

∣∣∣∣p2(z0) + αp(z0)z0p
′(z0)− ap(z0)− a(1− β)αz0p

′(z0)

p(z0) + (1− β)αz0p′(z0)

∣∣∣∣
=

∣∣∣∣ (+Mζ0)
2+α(a+Mζ0)mMζ0−a2−aMζ0−a(1−β)αmMζ0

a+Mζ0 + (1− β)αmMζ0

∣∣∣∣
=

∣∣∣∣aMζ0 +M2ζ20 + αmM2ζ20 + aαβmMζ0
a+ (1 + (1− β)αm)Mζ0

∣∣∣∣
= M

∣∣∣∣a+ aβαm+ (1 + αm)Mζ0
a+ (1 + (1− β)αm)Mζ0

∣∣∣∣.
Since M ≥ a ≥ 0, thus for β ∈ (0, 1), we have

|a+ (1 + (1− β)αm)Mz| ≥ |a− (1 + (1− β)αm)M |z||
= M − a+ (1− β)αmM > 0, z ∈ T.
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Therefore, for each m ≥ 1 and β ∈ (0, 1), we can define

qm(z) :=
a+ aβαm+ (1 + αm)Mz

a+ (1 + (1− β)αm)Mz
, z ∈ T.

The case β = 1 reduces to

qm(z) = 1 + αm, z ∈ T.

Since qm is a linear-fractional mapping having real coefficients, qm(T)
is a circle symmetrical with respect to the real axis. Moreover,

qm(1) =
a+aβαm+(1+αm)M

a+(1+(1−β)αm)M
<

a+aβαm−(1+αm)M

a−(1+(1−β)αm)M
= qm(−1).

Indeed, the above inequality, after simplifying, is equivalent to the in-
equality

aM [(1 + αβm)(1 + (1− β)αm) + 1 + αm] > 0.

Thus,

(2.4) |qm(z)| ≥ qm(1) =
a+M + α(aβ +M)m

a+M + (1− β)αMm
, z ∈ T.

Observe now that the function r(m) := qm(1), m ≥ 1, is increasing
since

r′(m) =
αβ(a+M)2

(a+M + (1− β)αMm)2
> 0, m ≥ 1.

Consequently, by (2.4), we have

|qm(z)| ≥ r(m) ≥ r(1) =
(1 + αβ)a+ (1 + α)M

a+ (1 + (1− β)α)M
, z ∈ T.

Since, particularly, the above inequality holds for z := ζ0, by (2.3), we
have:∣∣∣∣ p(z0)(p(z0) + αz0p

′(z0))

p(z0) + (1− β)αz0p′(z0)
− a

∣∣∣∣ = M

∣∣∣∣a+ aβαm+ (1 + αm)Mζ0
a+ (1 + (1− β)αm)Mζ0

∣∣∣∣
≥ M

(1 + αβ)a+ (1 + α)M

a+ (1 + (1− β)α)M
,

which contradicts (2.1) and concludes the proof. �
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Remark 2.2. Under the assumptions on a and M , 0 ∈ h(D). More-
over,

(1 + αβ)a+ (1 + α)M

a+ (1 + (1− β)α)M
≥ 1.

Therefore, Theorem 1.3 follows from Theorem 2.1 for such chosen Ψ
and h.

Theorem 2.1 produces a sequence of corollaries, listed below. For
α = 1, we obtain:

Corollary 2.3. Let a ≥ 0 and β ∈ (0, 1]. Let M ≥ a when a > 0 and
M > 0 when a = 0. If p ∈ H(β, 1), p(0) := a and∣∣∣∣ p(z)(p(z) + zp′(z))

p(z) + (1− β)zp′(z)
− a

∣∣∣∣ < M
(1 + β)a+ 2M

a+ (2− β)M
, z ∈ D,

then
|p(z)− a| < M, z ∈ D.

For a = M , we have

Corollary 2.4. Let M > 0 and α, β ∈ (0, 1]. If p ∈ H(β, α),
p(0) := M and∣∣∣∣ p(z)(p(z) + αzp′(z))

p(z) + (1− β)αzp′(z)
−M

∣∣∣∣ < M
2 + (1 + β)α

2 + (1− β)α
, z ∈ D,

then
|p(z)−M | < M, z ∈ D.

The case M = 1 yields

Corollary 2.5. Let α, β ∈ (0, 1]. If p ∈ H(β, α), p(0) := 1 and∣∣∣∣ p(z)(p(z) + αzp′(z))

p(z) + (1− β)αzp′(z)
− 1

∣∣∣∣ < 2 + (1 + β)α

2 + (1− β)α
, z ∈ D,

then
|p(z)− 1| < 1, z ∈ D.
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The cases a = M and α = 1 are as follows.

Corollary 2.6. Let M > 0 and β ∈ (0, 1]. If p ∈ H(β, 1), p(0) := M
and ∣∣∣∣ p(z)(p(z) + zp′(z))

p(z) + (1− β)zp′(z)
−M

∣∣∣∣ < M
3 + β

3− β
, z ∈ D,

then
|p(z)−M | < M, z ∈ D.

Now, we deal with the case a = 0. We shall discuss the best
dominant for this case, also. We rewrite Theorem 2.1 in terms of the
differential subordination.

Corollary 2.7. Let α, β ∈ (0, 1] and M > 0. If p ∈ H(β, α), p(0) := 0
and

(2.5)
p(z)(p(z) + αzp′(z))

p(z) + (1− β)αzp′(z)
≺ Mz, z ∈ D,

then

(2.6) p(z) ≺
(
1− αβ

1 + α

)
Mz =: q̃(z), z ∈ D.

Moreover, the function q̃ is the best dominant of (2.5).

Proof. It remains to find the best dominant of (2.5). Toward this
end, we will find the univalent solution q of the differential equation

(2.7)
q(z)(q(z) + αzq′(z))

q(z) + (1− β)αzq′(z)
= Mz, z ∈ D,

such that q(0) := 0. We use the technique of power series to find an
analytic solution of (2.7) of the form

(2.8) q(z) =
∞∑

n=1

anz
n, z ∈ D.

Since q should be univalent, so

(2.9) a1 = q′(0) ̸= 0.
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From (2.7), equivalently, we have

αzq′(z)(q(z)− (1− β)Mz) = Mzq(z)− q2(z), z ∈ D.

Placing into the above equality the series from (2.8), we obtain

α(a1z + 2a2z
2 + 3a3z

3 + · · · )((a1−(1−β)M)z + a2z
2 + a3z

3 + · · · )
= (Ma1 − a21)z

2 + (Ma2 − 2a1a2)z
3

+ (Ma3 − (2a1a3 + a22))z
4 + · · · , z ∈ D,

i.e., equivalently,

(αa1(a1 − (1− β)M))z2 + α(a1a2 + 2a2(a1 − (1− β)M))z3

+ α(a1a3 + 2a22 + 3a3(a1 − (1− β)M))z4 + · · ·(2.10)

= (Ma1 − a21)z
2 + (Ma2 − 2a1a2)z

3

+ (Ma3 − 2a1a3 + a22)z
4 + · · · , z ∈ D.

Comparing the first coefficients, we have

αa1[a1 − (1− β)M ] = Ma1 − a21.

Hence, a1 = 0, which contradicts (2.9), or

(2.11) a1 =

(
1− αβ

1 + α

)
M.

Comparing the second coefficients in (2.10), we obtain

α[a1a2 + 2a2(a1 − (1− β)M ]] = Ma2 − 2a1a2.

Hence,

a1 =
1 + 2α(1− β)

3α+ 2
M,

which contradicts (2.11), or a2 = 0. Comparing the third coefficients
in (2.10), and taking into account that a2 = 0, we have

a1 =
1 + 3α(1− β)

4α+ 2
M,

which contradicts (2.11) or a3 = 0. Summarizing, in this way, we show
that an = 0 for n ≥ 2. Thus, from (2.8) and (2.11), it follows that

q(z) = a1z =

(
1− αβ

1 + α

)
Mz, z ∈ D.
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Since q is univalent and, by (2.7), it satisfies (2.6) with p := q, it follows
that q is the best dominant of (2.5). Clearly, q = q̃. �

Using the notation of [11, page 336], let

E(1)[p](z) := p(z) + zp′(z), p ∈ H, z ∈ D.

Now, the cases α = 1 and M = 1 in Corollary 2.7 are as follows.

Corollary 2.8. Let β ∈ (0, 1]. If p ∈ H(β, 1), p(0) := 0 and

(2.12)
p(z)E(1)[p](z)

βp(z) + (1− β)E(1)[p](z)
≺ z, z ∈ D,

then

p(z) ≺
(
1− β

2

)
z, z ∈ D.

Moreover, the function q̃(z) := (1−β/2)z, z ∈ D, is the best dominant
of (2.12).

Formula (2.12) generalizes the first order Euler differential subordi-
nation which holds for β = 1 (see [11, pages 334–336]) for the nonlinear
case. Thus, the above corollary generalizes the well-known result for
the first order Euler differential subordination recalled below (see [11,
page 335]).

Corollary 2.9. If p ∈ H, p(0) := 0 and

E(1)[p](z) ≺ z, z ∈ D,(2.13)

then
p(z) ≺ z

2
, z ∈ D.

Moreover, the function q̃(z) := z/2, z ∈ D, is the best dominant of
(2.13).

Corollary 2.9 is also a special case of the well-known Hallenbeck and
Ruscheweyh result [5].

To conclude, we write the case a = 0, α = 1 and β = 1 (see also [11,
page 36]).
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Corollary 2.10. Let M > 0. If p ∈ H, p(0) := 0 and

|p(z) + zp′(z)| < 2M, z ∈ D,

then
|p(z)| < M, z ∈ D.
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