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ON THE GREATEST COMMON DIVISOR OF n
AND THE nTH FIBONACCI NUMBER

PAOLO LEONETTI AND CARLO SANNA

ABSTRACT. Let A be the set of all integers of the form
ged(n, Fr), where n is a positive integer and F, denotes
the nth Fibonacci number. We prove that #(AN[1,z]) >
z/logz for all x > 2 and that A has zero asymptotic density.
Our proofs rely upon a recent result of Cubre and Rouse [5]
which gives, for each positive integer n, an explicit formula
for the density of primes p such that n divides the rank of
appearance of p, that is, the smallest positive integer k such
that p divides F}.

1. Introduction. Let (F,),>1 be the sequence of Fibonacci num-
bers, defined as usual by Fy; = Fp, = 1 and Fj, 4o = F,,41 + F,, for all
positive integers n. Moreover, let g be the arithmetic function defined
by g(n) := ged(n, F,), for each positive integer n. The first values of g
are listed in [13].

The set B of fixed points of g, i.e., the set of positive integers n
such that n divides Fj,, has been studied by several authors. For
instance, André-Jeannin [2] and Somer [14] investigated the arithmetic
properties of the elements of B. Furthermore, Luca and Tron [8] proved
that

(11) #B(x) < x17(1/2+o(1)) log log log z/ log logm,

when © — +o00, and Sanna [12] generalized their result to Lucas
sequences. More generally, the study of the distribution of positive
integers n dividing the nth term of a linear recurrence has been studied
by Alba Gonzéilez, et al. [1], while, Corvaja and Zannier [4] and
Sanna [10] considered the distribution of positive integers n such that
the nth term of a linear recurrence divides the nth term of another
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linear recurrence. Also, it follows from a result of Sanna [11] that the
set g71(1), i.e., the set of positive integers n such that n and F,, are
relatively prime, has a positive asymptotic density.

Define A := {g(n) : n > 1}. Note that, in particular, B C A.
The aim of this article is to study the structural properties and the
distribution of the elements of A. Note that it is not immediately clear
whether or not a given positive integer belongs to A. Toward this
aim, we provide in Section 2 an effective criterion which allows us to
enumerate the elements of A, in increasing order, as:

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, ....

Our first result is a lower bound for the counting function of A.

Theorem 1.1. #A(z) > x/logz, for all x > 2.

It is worth noting that it follows at once from Theorem 1.1 and (1.1)
that B has zero asymptotic density relative to A (we omit the details).

Corollary 1.2. #B(z) = o(#A(x)), as x — +o0.

Our second result is that 4 has zero asymptotic density:

Theorem 1.3. #A(z) = o(x), as x — +o0.

It would be nice to have an effective upper bound for #A(z) or,
even better, to obtain its asymptotic order of growth. We leave these
as open questions for the interested readers.

Notation. Throughout, we reserve the letters p and ¢ for prime
numbers. Moreover, given a set S of positive integers, we define
S(z) := SNJ[l,z] for all z > 1. We employ the Landau-Bachmann
“Big Oh” and “little oh” notation O and o, as well as the associated
Vinogradov symbols <« and >. In particular, all of the implied
constants are intended to be absolute.
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2. Preliminaries. This section is devoted to some preliminary re-
sults necessary for the later proofs. For each positive integer n, let
z(n) be rank of appearance of n in the sequence of Fibonacci numbers,
that is, z(n) is the smallest positive integer k such that n divides F}.
It is well known that z(n) exists. All of the statements in the next
lemma are well known, and we will use them implicitly without further
mention.

Lemma 2.1. For all positive integers m, n and all prime numbers p,
we have:

i) Fpn | Fn, whenever m | n;

(ii) m | Fy, if and only if z(m) | n;

(iii) z(m) | z(n) whenever m | n;

(iv) z(p) | p— (p/5), where (p/5) is a Legendre symbol.

For each positive integer n, define ¢(n) := lem(n, z(n)). The next
lemma shows some elementary properties of the functions g, ¢, z, and
their relationship with A.

Lemma 2.2. For all positive integers m, n and all prime numbers p,
we have:

g(m) | g(n) whenever m | n;
n | g(m) if and only if £(n) | m;
n

)
)
(iii) n € A if and only if n = g(¢(n));
(iv) p | n whenever £(p) | £(n) and n € A;
(v) L(p) = pz(p) whenever p # 5, and {(5) = 5;
(vi) pe A ifp#3 and l(q) 1 z(p) for all prime numbers q.

Proof. Facts (i) and (ii) easily follow from the definitions of g and ¢
and the properties of z. In order to prove (iii), note that n divides
both £(n) and Fy,); hence, n | g(¢(n)) for all positive integers n.
Conversely, if n € A, then n = g(m) for some positive integer m, n
particular, n | g(m), which is equivalent to ¢(n) | m by (ii). Therefore,
g(€(n)) | g(m) = n, due to(i), and in conclusion, g(¢(n)) = n. Fact (iv)
follows at once from (ii) and (iii).
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A quick computation shows that ¢(5) = 5, while, for all prime
numbers p # 5 we have ged(p, z(p)) = 1, since z(p) | p £ 1, so that
£(p) = pz(p), and this proves (v).

Lastly, we suppose that p # 3 is a prime number such that £(q) 1 z(p)
for all prime numbers ¢. In particular, p # 5 since £(5) = z(5) = 5, by
(v). Also, the claim (vi) is easily seen to hold for p = 2. Hence,
let us suppose hereafter that p > 7. Since z(p) | p £ 1, it easily
follows that p || g(¢(p)). At this point, if ¢ | g(¢(p)) for some prime
q # p, then {(q) | £(p) = pz(p) due to (ii). However, £(q) 1 z(p);
hence, p | ¢(¢) = lem(q,2(q)) so that p | 2(¢) < ¢+ 1. Similarly,
q | g(t(p)) | £(p) implies ¢ | z(p) < p+ 1. Hence, |p —g| < 1, which
is impossible since p > 7. Therefore, g t g(¢(p)), with the consequence
that p = g(4(p)), i.e., p € A by (ili). This concludes the proof of
(vi). O

It is worth noting that Lemma 2.2 (iii) provides an effective criterion
to establish whether or not a given positive integer belongs to A. This
is how the elements of A listed in the introduction were evaluated.

It follows from a result of Lagarias [6, 7] that the set of prime
numbers p such that z(p) is even has a relative density of 2/3 in the
set of all prime numbers. Bruckman and Anderson [3, Conjecture 3.1]
conjectured, for each positive integer m, a formula for the limit

o #p<aim])
C(m) := ng}oo x/logx ’

Their conjecture was proven by Cubre and Rouse [5, Theorem 2], who
obtained the following result.

Theorem 2.3. For any positive integer m, we have
q27e
-1

q¢llm

where ¢¢ runs over the prime powers in the factorization of m, while

1 if104m,
p(m) = ¢5/4 if m =10 mod 20,
1/2 if 20 | m.
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Note that the arithmetic function ¢ is not multiplicative. However,
the restriction of ¢ to the odd positive integers is multiplicative. This
fact will be useful later.

Let ¢ be Euler’s totient function. We need the following technical
lemma.

Lemma 2.4. We have

1 < 1
2 : /4’
>y ©(4(q)) Y

for all y > 0.

Proof. For v > 0, set Q, :={p: z(p) < p7}. Clearly,
9#Q+ () < H P H F, < 92y < 20(952"')7
peQ.(z) n<z
from which it follows that Q. (z) < z*7.

Also fix € € ]0,1 — 2y[. For the remainder of this proof, all of the
implied constants may depend upon v and €. Since p(n) > n/loglogn
for all positive integers n [15, Chapter 1.5, Theorem 4], while, by
Lemma 2.2 (v), £(q) < ¢? for all prime numbers ¢, we have

1 loglog ¢(q) log log q
@) Yo <X < < S

>y >y >y >y

for all y > 0.

On one hand, again by Lemma 2.2 (v),
(2.2)

1 T at 1

S sy e mm <o

= (Q) = Z( ) T et y Y

g Qy q¢Qy

On the other hand, by partial summation,
(2.3)

1 #9()
g 1 e tl-e

q>y q>y

qEQy qeEQy

- +(1—e¢) /+OO #&0) 4

2—e¢
t=y Yy t
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— {2—¢ $2—2v—¢ y172’77€ :

+oo +oo
</ #&, (1) dt <</ dt < !
Y Y

The claim follows by combining (2.1), (2.2) and (2.3), and by choosing
vy=1/3and e = 1/12. O

We remark that, with little effort, the exponent 1/4 of y in Lem-
ma 2.4 can be replaced with a limiting exponent 1/3 + o(1) as y — oo
(thus, in particular, by any fixed exponent ¢ < 1/3).

Lastly, for all relatively prime integers a and m, define
m(x,m,a) :=#{p < x:p=amodm}.

We need the following version of the Brun-Titchmarsh theorem [9,
Theorem 2].

Theorem 2.5. If a and m are relatively prime integers and m > 0,
then

2x
mlrm.a) < Y oglam)”

for all x > m.

3. Proof of Theorem 1.1. First, since 1 € A, it is sufficient to
prove the claim only for all sufficiently large x. Let y > 5 be a real
number to be chosen later. Define the following sets of primes:

Pri={p:qtz(p), forall g € [3,y]},
Py := {p : there exists ¢ >y, ¢(q) | z(p)},
P =P\ P

We have P C AU{3}. Indeed, since 3 | £(2) and ¢ | £(q) for each prime
number ¢, it easily follows that, if p € P, then ¢(q) 1 z(p) for all prime
numbers ¢, which, by Lemma 2.2 (vi), implies that p € A or p = 3.

Now, we give a lower bound for #P;(z). Let P, be the product of
all prime numbers in [3,y], and let 1 be the Mobius function. By using
the inclusion-exclusion principle and Theorem 2.3, we obtain that

#Pi(@) _ p(m) . P =z im ] 2@)}

a—+oo x/logr  a—+oo oy x/logx
Y
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= um)cm)= ] (1_4(‘1)): 11 (1_612(1—1)’

m|P, 3<q<y 3<q<y
where we also made use of the fact that the restriction of ¢ to the odd
positive integers is multiplicative.

As a consequence, for all sufficiently large x depending only upon y,
say © > xo(y), we have

1 q x 1z
> I (- : :
#P1(z) = 9 ( q2_1> 10gx>>10gy log 2’

3<q<y

where the last inequality follows from Mertens’ third theorem [15,
Chapter 1.1, Theorem 11].

We also need an upper bound for #Ps(z). Since z(p) | p £ 1 for all
primes p > 5, we have

(3.1)  #Paw) <Y #{p<w:llg)|2(p)} <D wlallg

q>y q>y

for all x > 0, where, for the sake of brevity, we set

m(x,0(q),+1) := 7(x, €(q),—1) + 7(x,£(q),1).

On one hand, by Theorem 2.5 and Lemma 2.4, we have

1 T
(3.2) > wlw,lg), £1) < Z logx € Togs

y<g<zl/2 q>y q

On the other hand, by the trivial estimate for m(x,#(q),+1) and Lem-
ma 2.4, we obtain

w z"/8,
(33) > w(x,lg),*1) < 2/25 Zm Sy <

q>zl/2 >

Therefore, combining (3.1), (3.2) and (3.3), we find that

+ 2778,

1
#7)2(36) < W ’ log x

In conclusion, there exist two absolute constants ¢;, ¢ > 0 such that
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(3.4)
#A() > #P(2) > #P, (t)—#Pa(z) > (

c1 co  cologx T
logy y'/4  21/8 logz’
for all x > xo(y).

Finally, we can choose y to be sufficiently large so that
C1 C2
-—>
logy  yt/4

Hence, from (3.4), it follows that #A(z) > z/logz, for all sufficiently
large x.

4. Proof of Theorem 1.3. Fix € > 0, and choose a prime number
g such that 1/q < e. Let P be the set of prime numbers p such that
£(q) | z(p). From Theorem 2.3, we know that P has a positive relative
density in the set of primes. As a consequence, we can pick a sufficiently

large y > 0 so that
1
H (1 - ) < €.
p

PEP(y)

Let B be the set of positive integers with no prime factors in P(y). We
split A into two subsets: A; :== AN B and Ay := A\ A;. If n € Ay,
then n has a prime factor p such that £(q) | z(p). Hence, ¢(q) | £(n)
and, by Lemma 2.2 (iv), we obtain that ¢ | n. Thus, all elements of A,
are multiples of ¢q. In conclusion,

lim sup #A(2) < lim sup #A1() + lim sup M
z—+00 X z—+00 X z—+00 x
1 1
< 1—— 4+ - <2
H < p) q

PEP(y)

and, by the arbitrariness of ¢, it follows that A has zero asymptotic
density.
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