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ON DING INJECTIVE, DING PROJECTIVE
AND DING FLAT MODULES AND COMPLEXES

JAMES GILLESPIE

ABSTRACT. We characterize Ding modules and com-
plexes over Ding-Chen rings. We show that, over a Ding-
Chen ring R, the Ding projective (respectively, Ding injec-
tive, respectively, Ding flat) R-modules coincide with the
Gorenstein projective (respectively, Gorenstein injective, re-
spectively, Gorenstein flat) modules, which, in turn, are
nothing more than modules appearing as a cycle of an ex-
act complex of projective (respectively, injective, respectively,
flat) modules. We prove a similar characterization for chain
complexes of R-modules: a complex X is Ding projective
(respectively, Ding injective, respectively, Ding flat) if and
only if each component Xn is Ding projective (respectively,
Ding injective, respectively, Ding flat). Along the way, we
generalize some results of Stovicek and Bravo, Gillespie and
Hovey to obtain other interesting corollaries. For example,
we show that, over any Noetherian ring, any exact chain
complex with Gorenstein injective components must have all
cotorsion cycle modules, that is, Ext1R(F,ZnI) = 0 for any
such complex I and flat module F . On the other hand, over
any coherent ring, the cycles of any exact complex P with
projective components must satisfy Ext1R(ZnP,A) = 0 for
any absolutely pure module A.

1. Introduction. Let R be a Gorenstein ring in the sense of [22,
23]. This is a left and right Noetherian ring R having finite injec-
tive dimension as both a left and right module over itself. Over such
rings, exact chain complexes of projective, injective and flat R-modules
each have very nice homological properties. In particular, for an exact
complex P of projectives, the complex HomR(P,Q) is also exact for
any projective module Q. In general, such complexes are called totally
acyclic complexes of projectives, and the modules appearing as a cycle
ZnP of such a complex are called Gorenstein projective. Therefore, over
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Gorenstein rings, any exact complex of projectives is totally acyclic, and
their cycles are all Gorenstein projective. Similar statements hold for
exact complexes of injectives and flats, and the corresponding Goren-
stein injective and Gorenstein flat modules. Gorenstein homological
algebra is the study of these modules and complexes, and the theory
is particularly satisfying over Gorenstein rings. In this case, most re-
sults from traditional homological algebra have an analog in Gorenstein
homological algebra. The book [13] is a standard reference; however,
many authors have studied the subject.

Stovicek recently proved the coherent analog of the above result
concerning totally acyclic complexes of injectives [27, Proposition 7.9].
It raises the same question for projective and flat analogs, which is
answered in this paper. Before explaining further, first recall that a
(left) coherent ring is one in which all finitely generated (left) ideals are
finitely presented. A ring that is both left and right coherent is called
coherent, and these include all Noetherian and Von Neumann regular
rings. A lesson learned from [25] is that many results in homological
algebra extend from Noetherian to coherent rings by replacing finitely
generated modules with finitely presented modules. In the process,
injective modules are replaced with FP-injective, i.e., absolutely pure,
modules. In this way, a Ding-Chen ring is a coherent ring R which
has finite absolutely pure, i.e., FP-injective, dimension as both a left
and right module over itself. They were introduced in [4, 5]. Since
a coherent ring is Noetherian if and only if the FP-injective modules
coincide with the injective modules, the Ding-Chen rings are nothing
more than Gorenstein rings whenever R is Noetherian.

In [17], the author noted that the work of Ding, Mao and Li, see
especially [6, 7, 8, 9], provides a natural way to extend notions from
Gorenstein homological algebra from Noetherian to coherent rings. In
the process, the Gorenstein modules are replaced by Ding’s modules.
For example, we say a module is Ding projective if it is a cycle module
of some exact complex P of projectives such that HomR(P, F ) remains
exact for all flat modules F . See Definitions 4.1, 6.1, and 7.1. It
admittedly seems strange to require that HomR(P, F ) remain exact
for all flat modules F rather than just all projectives. After all, it
feels like we are requiring too much. However, it was shown [3] that
the Ding projectives are the cofibrant objects of an especially nice
Quillen model structure on R-Mod, the category of (left) R-modules,
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whenever R is coherent. It implies that every module M can be ap-
proximated by a Ding projective and that the full subcategory of all
Ding projective modules naturally form a Frobenius category. We think
of the associated stable category as the (projective) stable module
category of R. The analog of all of this for the usual Gorenstein
projectives has not been shown to be universally true, even assuming
R to be Noetherian.

The first result of this paper is an extension, to Ding-Chen rings,
of the well-known result concerning Gorenstein rings described in the
first paragraph. Part (2) is the result of Stovicek which motivated the
analogous question for Ding projectives and Ding flats.

Theorem 1.1. Let R be a Ding-Chen ring, that is, a left and right
coherent ring R such that RR and RR each have finite absolutely pure
dimension. Let X be an exact chain complex.

(1) If each component Xn is projective, then each cycle ZnX is Ding
projective. Indeed, HomR(X,F ) remains exact for all flat mod-
ules F .

(2) If each component Xn is injective, then each cycle ZnX is Ding
injective. Indeed, HomR(A,X) remains exact for all absolutely pure
A.

(3) If each component Xn is flat, then each cycle ZnX is Ding flat.
Indeed, A⊗R X remains exact for all absolutely pure A.

Consequently, the Gorenstein modules coincide with the Ding modules
whenever R is a Ding-Chen ring.

Before discussing the methods of our proof, we note that Gorenstein
chain complexes have also been prolifically studied. For example, it
has been known for some time that, over Gorenstein rings, a chain
complex X is Gorenstein injective (respectively, Gorenstein projective)
if and only if each component is Gorenstein injective (respectively,
Gorenstein projective). See [10, 14, 29]. In [30, 31], Yang, Liu, and
Liang characterize the Ding complexes over a Ding-Chen ring. The
next result is a surprising refinement of their characterization.

Theorem 1.2. Let R be a Ding-Chen ring and X a chain complex of
R-modules.
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(1) X is Ding projective in Ch(R) if and only if each component Xn

is a Ding projective R-module.
(2) X is Ding injective in Ch(R) if and only if each component Xn is

a Ding injective R-module.
(3) X is Ding flat in Ch(R) if and only if each component Xn is a

Ding flat R-module.

Consequently, the Gorenstein complexes coincide with the Ding com-
plexes whenever R is a Ding-Chen ring.

We now briefly describe our methods used and highlight other results
in the paper. First, the injective cases are proved in a completely
different fashion than their projective analogs, (while the flat analogs
are relatively easy). For the injective case, we generalize the approach
of Stovicek to record a useful result concerning cotorsion pairs and
direct limits. If (W,F) is a cotorsion pair, thenW is closed under direct
limits wheneverW satisfies the two out of three property on short exact
sequences; see Proposition 3.1. The injective cases of Theorems 1.1
and 1.2 follow as corollaries; however, the approach leads to a string of
other interesting corollaries appearing in Sections 3 and 4. Perhaps the
most interesting is Corollary 3.5. It implies that over any Noetherian
ring, any exact chain complex with Gorenstein injective components
must have all cotorsion cycle modules, that is, Ext1R(F,ZnI) = 0 for
any such complex I and flat module F .

The projective case requires a completely different approach than
that of the injective. Our proof of the projective part of Theorem 1.1
relies on a result proven in [3, Theorem A.6]. In order to obtain the
projective statement in Theorem 1.2, we in fact need to generalize this
result to the category of chain complexes. Section 5 is devoted to
this, with Theorem 5.9 being the main result. Finally, the following
interesting result is proved in Theorem 3.6.

Theorem 1.3. Let R be a coherent ring and P any exact complex of
projectives. Then, Ext1R(ZnP,A) = 0 for any absolutely pure module A.

Regarding the structure of the paper, after some preliminaries in
Section 2, the injective cases are first addressed in Sections 3 and 4.
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Sections 5 and 6 are devoted to the projective case and Section 7 to
the flat case.

2. Preliminaries. Throughout the paper, R denotes a general ring
with identity. An R-module will mean a left R-module, unless stated
otherwise. The category of R-modules will be denoted R-Mod. It is an
abelian category.

2.1. Chain complexes in abelian categories. Let A be an abelian
category. We denote the corresponding category of chain complexes
by Ch(A). In the case A = R-Mod, we denote it by Ch(R). Our
convention is that the differentials of our chain complexes will lower
the degree; thus,

· · · −→ Xn+1
dn+1−→ Xn

dn−→ Xn−1 −→ · · ·

is a chain complex. We also have the chain homotopy category of A,
denoted K(A). Its objects are also chain complexes, but its morphisms
are chain homotopy classes of chain maps. Given a chain complex X,
the nth suspension of X, denoted ΣnX, is the complex given by
(ΣnX)k = Xk−n and (dΣnX)k = (−1)ndk−n. For a given object
A ∈ A, we denote the n-disk on A by Dn(A). This is the complex

consisting only of A
1A−−→ A, concentrated in degrees n and n− 1, and 0

elsewhere. We denote the n-sphere on A by Sn(A), and this is the
complex consisting only of A in degree n and 0 elsewhere.

Given two chain complexes X,Y ∈ Ch(A) we define Hom(X,Y ) to
be the complex of abelian groups

· · · −→
∏
k∈Z

HomA(Xk, Yk+n)
δn−→

∏
k∈Z

HomA(Xk, Yk+n−1) −→ · · · ,

where (δnf)k = dk+nfk − (−1)nfk−1dk. We obtain a functor

Hom(X,−) : Ch(A) −→ Ch(Z).

Note that this functor takes exact sequences to left exact sequences,
and it is exact if each Xn is projective. Similarly, the contravariant
functor Hom(−, Y ) sends exact sequences to left exact sequences and
is exact if each Yn is injective.
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Since it is an abelian category, Ch(A) comes with Yoneda Ext
groups. In particular, Ext1Ch(A)(X,Y ) will denote the group of (equiv-

alences classes) of short exact sequences

0 −→ Y −→ Z −→ X −→ 0

under the Baer sum operation. There is a subgroup

Ext1dw(X,Y ) ⊆ Ext1Ch(A)(X,Y )

consisting of the “degreewise split” short exact sequences, that is, those
for which each

0 −→ Yn −→ Zn −→ Xn −→ 0

is split exact.

The next lemma gives a well-known connection among Ext1dw, the
above Hom, and morphism sets in K(A).

Lemma 2.1. For chain complexes X and Y , we have isomorphisms:

Ext1dw(X,Σ(−n−1)Y ) ∼= Hn Hom(X,Y ) = K(A)(X,Σ−nY ).

In particular, for chain complexes X and Y , Hom(X,Y ) is exact if and
only if, for any n ∈ Z, any chain map

f : ΣnX −→ Y

is homotopic to 0 (or if and only if any chain map

f : X −→ ΣnY

is homotopic to 0).

In the case of A = R-Mod, we recall the usual tensor product of
chain complexes. Given that X (respectively, Y ) is a complex of right
(respectively, left) R-modules, the tensor product X ⊗ Y is defined by

(X ⊗ Y )n =
⊕

Xi ⊗R Yj

in degree n. The boundary map δn is defined on the generators by

δn(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy,

where |x| is the degree of the element x.
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2.2. The modified Hom and tensor complexes. Here again,
Ch(R) denotes the category of chain complexes of R-modules. The
above Hom is often referred to as the internal hom, for, in the case
that R is commutative, Hom(X,Y ) is again an object of Ch(R). Note
that the cycles in degree 0 of the internal hom coincide with the ex-
ternal hom functor: Z0[Hom(X,Y )] ∼= HomCh(R)(X,Y ). This idea in
fact is useful to define an alternate internal hom as follows. Given
X,Y ∈ Ch(R), we define Hom(X,Y ) to be the complex

Hom(X,Y )n = Zn Hom(X,Y )

with differential

λn : Hom(X,Y )n −→ Hom(X,Y )n−1

defined by (λf)k = (−1)ndk+nfk. Note that the degree n component of
Hom(X,Y ) is exactly HomCh(R)(X,Σ−nY ). In this manner, we obtain

an internal hom Hom which is useful for categorical considerations in
Ch(R). For example, Hom(X,−) is a left exact functor and is exact if
and only if X is projective in the category Ch(R). On the other hand,
Hom(−, Y ) is exact if and only if Y is injective in Ch(R). There are
corresponding derived functors which we denote by Exti. They satisfy
that Exti(X,Y ) is a complex whose degree n is ExtiCh(R)(X,Σ−nY ).

Similarly, the usual tensor product of chain complexes does not
characterize categorical flatness. For this, we need the modified tensor
product and its left derived torsion functor from [11, 14]. We will
denote it by ⊗, and it is defined in terms of the usual tensor product
⊗ as follows. Given a complex X of right R-modules and a complex Y
of left R-modules, we define X⊗Y to be the complex whose nth entry
is (X ⊗ Y )n/Bn(X ⊗ Y ) with boundary map

(X ⊗ Y )n/Bn(X ⊗ Y ) −→ (X ⊗ Y )n−1/Bn−1(X ⊗ Y )

given by
x⊗ y 7−→ dx⊗ y.

This defines a complex, and we get a bifunctor−⊗− which is right exact
in each variable. We denote the corresponding left derived functors by
Tori. The reader is referred to [14] for more details.

2.3. Finitely generated projective complexes. A standard char-
acterization of projective objects in Ch(R) is the following: A com-
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plex P is projective if and only if it is an exact complex with each cycle
ZnP a projective R-module. We also recall that, by definition, a chain
complex X is finitely generated if, whenever X = Σi∈ISi, for some col-
lection {Si}i∈I of subcomplexes of X, then there exists a finite subset
J ⊆ I for which X = Σi∈JSi. It is a standard fact that X is finitely
generated if and only if it is bounded (above and below) and each Xn

is finitely generated. We say that a chain complex X is of type FP∞
if it has a projective resolution by finitely generated projective com-
plexes. Certainly, any such X is finitely presented, and hence, finitely
generated.

2.4. Absolutely clean and level complexes; Character duality.
The so-called level and absolutely clean modules were introduced in [3]
as generalizations of flat modules over coherent rings and injective
modules over Noetherian rings. The same notions in the category
Ch(R) were also studied in [2]. Here, we recall some definitions and
results from [2].

Definition 2.2. We call a chain complex A absolutely clean if

Ext1Ch(R)(X,A) = 0

for all chain complexesX of type FP∞. Equivalently, if Ext1(X,A) = 0
for all chain complexes X of type FP∞. On the other hand, we call a
chain complex L level if Tor1(X,L) = 0 for all chain complexes X (of
right R-modules) of type FP∞.

We refer to [2, Propositions 2.6, 4.6] for proof of the following.

Proposition 2.3. A chain complex A is absolutely clean if and only
if A is exact and each ZnA is an absolutely clean R-module. A chain
complex L is level if and only if L is exact and each ZnL is a level
R-module.

Recall that the character module of M is defined as M+ =
HomZ(M,Q/Z) and that M+ is a right (respectively, left) R-module
whenever M is a left (respectively, right) R-module. The construc-
tion extends to chain complexes: given a chain complex X, we have
X+ = HomZ(X,Q/Z). Since Q/Z is an injective cogenerator for the
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category of abelian groups, the functor HomZ(−,Q/Z) preserves and
reflects exactness. Thus, Proposition 2.3 immediately gives us the fol-
lowing corollary due to the perfect character module duality between
absolutely clean and level modules [3, Theorem 2.10].

Corollary 2.4. A chain complex L of left (respectively, right) modules
is level if and only if L+ = HomZ(L,Q/Z) is an absolutely clean
complex of right (respectively, left) modules. And, a chain complex A
of left (respectively, right) modules is absolutely clean if and only if
A+ = HomZ(A,Q/Z) is a level complex of right (respectively, left)
modules.

2.5. Cotorsion pairs. Let A be an abelian category. By definition,
a pair of classes (X ,Y) in A is called a cotorsion pair if Y = X⊥ and
X = ⊥Y. Here, given a class of objects C in A, the right orthogonal
C⊥ is defined to be the class of all objects X such that Ext1A(C,X) = 0
for all C ∈ C. Similarly, we define the left orthogonal ⊥C. We call the
cotorsion pair hereditary if ExtiA(X,Y ) = 0 for all X ∈ X , Y ∈ Y, and
i ≥ 1. The cotorsion pair is complete if it has enough injectives and
projectives. This means that, for each A ∈ A, there exist short exact
sequences

0 −→ A −→ Y −→ X −→ 0 and 0 −→ Y ′ −→ X ′ −→ A −→ 0

with X,X ′ ∈ X and Y, Y ′ ∈ Y. Standard references include [13, 20],
and connections to abelian model categories may be found in [18, 21].

Recall that a Grothendieck category is a cocomplete abelian category
with a set of generators and such that direct limits are exact. By an
injective cotorsion pair (W,F) in a Grothendieck category G, we mean
a complete cotorsion pair for whichW is thick andW∩F is the class of
injective objects. Since Grothendieck categories have enough injectives,
it turns out that such a cotorsion pair is equivalent to an injective model
structure on G. By this, we mean the model structure is abelian in the
sense of [21], and all objects are cofibrant. The fibrant objects in this
case are exactly those in F , and the trivial objects are exactly those
in W. See [19] for more on injective cotorsion pairs. We also have the
dual notion of projective cotorsion pairs (C,W) which give us projective
model structures on abelian categories with enough projectives.



2650 JAMES GILLESPIE

3. Injective cotorsion pairs and direct limits. Let (W,F) be
a cotorsion pair in R-Mod, or Ch(R), or some other Grothendieck
category. Also assume thatW is thick, that is, assume thatW satisfies
the two out of three property on short exact sequences. In this section,
we show that W must be closed under direct limits. This leads to
several interesting corollaries. The proof of the proposition below is
adapted from Stovicek’s [27, Proposition 5.3]. After studying the
proof, the author simply realized that it can be reinterpreted to yield
the following convenient result.

Proposition 3.1. Let (W,F) be a cotorsion pair in R-Mod with W
thick. Then, W is closed under direct limits.

Proof. The proof will be given in two steps.

(i) We show thatW is closed under direct unions. It is in fact enough
to prove this for well-ordered continuous direct unions. Thus, assume λ
is an ordinal and that we have a λ-sequence of module monomorphisms

X0 ↩→ X1 ↩→ X2 ↩→ · · · ↩→ Xi ↩→ Xi+1 ↩→ · · ·

withXi ∈ W for each i < λ. Then, eachXi+1/Xi ∈ W by the thickness
hypothesis. Since the diagram of modules is assumed continuous we
see that its colimit is the same thing as the transfinite extension of the
X0, Xi+1/Xi. Thus, its colimit is in W by Eklof’s lemma (assuming λ
is a limit ordinal; if it is a successor ordinal λ = α+1, then the colimit
coincides with Xα ∈ W).

(ii) We show that W is closed under direct limits. Again, it is
enough to prove this for well-ordered continuous direct limits. (See [1,
subsection 1.6], especially Corollary 1.7 and the remark that follows it
where well-ordered direct limits are referred to as chains and continuous
well-ordered direct limits as smooth chains.) Hence, we consider a λ-
diagram

X0
f0,1−−→ X1

f1,2−−→ X2
f2,3−−→ · · ·Xi

fi,i+1−−−−→ Xi+1 −→ · · ·

with each Xi ∈ W and Xγ = lim−→i<γ
{Xi, fi,i+1} for each limit ordinal

γ < λ. Our job is to show that lim−→i<λ
Xi ∈ W. We will assume that λ

is a limit ordinal, for otherwise, the direct limit just equals Xλ−1 ∈ W.
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Following a standard method for defining direct limits (for example,
see [26, page 100, Proposition IV.8.4]), lim−→i<λ

Xi is the cokernel of the

following homomorphism:⊕
i<j

Xij −→
⊕
i<λ

Xi,

where the first direct sum is taken over all pairs i < j < λ, andXij = Xi

is merely a copy of the domain of the map Xi
fij−−→ Xj . The map is

defined on the ith coordinate by

xi 7−→ eixi − ejfijxi,

where the ei denotes the canonical injection into the coproduct, in other
words, the direct limit is (

⊕
i<λ Xi)/K where K is the image of this

map:
K = ⟨eixi − ejfijxi | xi ∈ Xi and i < j < λ⟩.

Note that, since the maps ei and fij are linear, we have that K is the
set of all finite sums of the form eixi − ejfijxi, where the xi range
through Xi and i < j ranges through all i < j < λ. There is a short
exact sequence:

0 −→ K
⊆−→

⊕
i<λ

Xi −→ lim−→
i<λ

Xi −→ 0,

and, since W is closed under direct sums and is thick, it is sufficient to
show that K ∈ W.

We now show that K is a direct union (not well ordered, but still
a direct union) of modules in W. Thus, the proof will follow from
Step (i).

Thinking of λ as the set of all of its smaller ordinals we define, for
each finite subset J ⊆ λ with |J | > 1, the mapping

ϕJ :
⊕

i∈J\{j}

Xi −→
⊕
i<λ

Xi

where j denotes the maximum element of the finite subset J , and the
map is defined on the ith coordinate via

xi 7−→ eixi − ejfijxi.

Each of the following may now be verified:
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(a) S = {J ⊆ λ | 1 < |J | < ω} is a directed poset, and there is a
functor D : S −→ R-Mod defined on objects by

J 7−→
⊕

i∈J\{j}

Xi,

and on arrows by taking an inclusion J ⊆ J ′ to the map DJJ ′ defined
on the ith coordinate as follows:

xi 7−→ eixi if j = j′

(that is, just a natural inclusion if J and J ′ have the same maximal
element), but via

xi 7−→ eixi − ejfijxi if j < j′.

(b) Each DJJ ′ is a monomorphism. In fact, it is a split monomor-
phism with the retraction map a canonical projection.

(c) Each ϕJ is also a split monomorphism with similar retraction.
The image of ϕJ identifies ⊕

i∈J\{j}

Xi

with the submodule

KJ = ⟨eixi − ejfijxi | xi ∈ Xi and i ∈ J\{j}⟩,

that is, KJ is the set of all finite sums of elements of the form
eixi − ejfijxi as i ranges through J\{j} and xi ranges through Xi.

(d) The direct system of monomorphisms

D : S −→ R-Mod

is isomorphic via the natural transformation {ϕJ} to the direct system
of submodules KJ . The direct limit lim−→i<λ

D identifies with the direct

union of submodules ∪
J∈S

KJ ⊆
⊕
i<λ

Xi.

(e) K =
∪

J∈S KJ .

Now, since each
⊕

i∈J\{j} Xi ∈ W , we conclude from (c), (d), (e)

and Step (i) that K ∈ W. This completes the proof. �
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Of course, generalizations of Proposition 3.1 to categories beyond
R-Mod are possible and will be important for applications. The reader
should note that the above proof holds in any Grothendieck category,
giving the following generalization.

Proposition 3.2. Let (W,F) be a cotorsion pair in a Grothendieck
category G with W thick. Then, W is closed under direct limits. In
particular, the class W of trivial objects is closed under direct limits
whenever (W,F) is an injective cotorsion pair.

Proposition 3.2 has some interesting consequences which apply to
each of the injective cotorsion pairs recently appearing in [3, 19].
For example, it is shown in [3] that, for any ring R, we have an
injective cotorsion pair (W,GI) in R-Mod where GI is the class of
Gorenstein AC-injective modules. The next corollary states that all
modules of finite flat dimension are sent to zero in the corresponding
stable homotopy category. Consequently, any Gorenstein AC-injective
module is cotorsion and must be injective if it has finite flat dimension.

Corollary 3.3. Let (W,F) be an injective cotorsion pair in R-Mod or
Ch(R). Then W contains all objects of finite flat dimension. Conse-
quently, any fibrant object is cotorsion and must be injective whenever
it is of finite flat dimension.

Proof. Certainly W contains all projectives, and hence, all flat
objects since these are precisely direct limits of projectives. Due to
the fact that W is thick and contains flat objects, it also contains all
objects of finite flat dimension. The final statement follows sinceW∩F
coincides with the class of injective objects. �

Recall that a chain complex is flat if it is exact and each cycle module
is a flat R-module. These complexes are categorically flat in Ch(R);
they are direct limits of finitely generated projective complexes [14,
Theorem 4.1.3]. A complex X is called DG-flat if each Xn is flat,
and E ⊗ X is exact whenever E is an exact chain complex of (right)
R-modules. E ⊗ X is the usual tensor product of chain complexes
recalled in subsection 2.1. Again, the book [14] is a standard reference
for DG-flat complexes.
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Corollary 3.4. Let (W,F) be an injective cotorsion pair in Ch(R).
Then, each of the following statements hold.

(1) Any exact complex Y ∈ F has all cotorsion cycle modules, that is,
each ZnY , and hence each Yn, is a cotorsion module.

(2) If every complex in F is exact, then each DG-flat complex is in W.

Here, we will use the notation from [15], where dgC̃ denotes the class
of all complexes C with each Cn cotorsion and with the property that
all chain maps F −→ C are null homotopic whenever F is a flat chain

complex. It turns out that dgC̃ is precisely the right Ext orthogonal to

the class of flat complexes, that is, dgC̃ is really the class of cotorsion
objects in the category of complexes.

Proof. For (1), we have that Y is cotorsion by Corollary 3.3, that is,

Y ∈ dgC̃. The result now follows from [15, Theorem 3.12], which states

that the exact complexes in dgC̃ are precisely those with cotorsion cycle
modules.

For (2), in the case that every complex Y ∈ F is exact, we have

Ext1Ch(R)(S
n(P ), Y ) ∼= Ext1R(P,ZnY ) = 0

for each projective module P . Thus, Sn(P ) ∈ W for each projective P ,
and hence, Sn(F ) ∈ W for each flat module F . However, it follows
from [16, Proposition 3.8] that each DG-flat complex is a retract of
a transfinite extension of complexes of the form Sn(F ) with F flat.
Applying Eklof’s well-known lemma, we conclude that all DG-flat
complexes are in W, proving (2). �

Returning to the Gorenstein AC-injective modules appearing before
Corollary 3.3, we obtain the following corollary.

Corollary 3.5. Any chain complex X of Gorenstein AC-injective

modules is in dgC̃. Consequently, any exact complex of Gorenstein
AC-injectives must have cotorsion cycle modules.

Proof. We refer to [19, Proposition 7.2]. It shows that there is an
injective cotorsion pair in Ch(R) whose right side consists of the class
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of all complexes of Gorenstein AC-injective modules. The rest follows
from what was already observed above. �

Note that Corollary 3.5 implies Stovicek’s original result that any
exact complex of injectives must have cotorsion cycle modules. How-
ever, the reader familiar with [27] will realize that our methods are
merely a generalization of those employed by Stovicek. These methods
however do not dualize. Thus, the following result is quite interesting.
It is the dual of Stovicek’s result, assuming R is a coherent ring.

Theorem 3.6. Let R be a coherent ring and P an exact complex of
projectives. Then, Ext1R(ZnP,A) = 0 for any absolutely pure module A.
Consequently, any cycle ZnP must be a retract of a transfinite extension
of finitely presented modules.

Proof. It is enough to show that Hom(P, S0(A)) = HomR(P,A) is
exact whenever P is an exact complex of projectives and A is absolutely
pure. Let D denote the class of all absolutely pure R-modules, and let
C denote the class of all flat (right) R-modules. Since R is coherent,
we have that (C,D) forms a perfect duality pair with respect to the
character modules of subsection 2.4. Therefore, from [3, Theorem A.6],
HomR(P,A) is exact for all absolutely pure A if and only if F ⊗R P is
exact for all flat F . Therefore, certainly this is true.

The last statement holds since the “set” S, of all finitely presented
modules, cogenerates the complete cotorsion pair (⊥(S⊥),S⊥), and S⊥
is precisely the class of all absolutely pure modules. �

Remark 3.7. Suppose that R is any ring in which all level modules
have finite flat dimension. Then, the above argument will extend to
show that Ext1R(ZnP,A) = 0 for all absolutely clean modules A and
exact complexes of projectives P .

4. Applications to Ding injective modules and complexes.
This section is devoted to studying Ding injective modules and chain
complexes over Ding-Chen rings. As in [17], a Ding-Chen ring is a (left
and right) coherent ring with RR and RR, each of finite FP-injective
(absolutely pure) dimension. We refer to [17] for more on Ding-Chen
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rings and Ding injective modules although the definitions below should
suffice for our purposes.

Definition 4.1. We call an R-module M Ding injective if there exists
an exact complex of injectives

· · · −→ I1 −→ I0 −→ I0 −→ I1 −→ · · ·

with M = ker (I0 → I1) and which remains exact after applying
HomR(A,−) for any absolutely pure module A.

In the same manner, we call a chain complex X Ding injective if
there exists an exact complex of injective complexes

· · · −→ I1 −→ I0 −→ I0 −→ I1 −→ · · ·

with X = ker (I0 → I1) and which remains exact after applying
HomCh(R)(A,−) for any absolutely pure chain complex A. Recall that
a chain complex I is injective (respectively, absolutely pure) in Ch(R)
if and only if it is exact and each cycle ZnI is an injective (respectively,
absolutely pure) module.

The content of Corollaries 4.3 and 4.4 is that the Hom condition
follows automatically in the above definitions when R is a Ding-Chen
ring. In fact, for the module case, we have the following, stronger
statement.

Theorem 4.2. Let R be a Ding-Chen ring. Then, M is Ding injective
if and only if M = Z0I for some exact complex I of Ding injective
R-modules. In particular, any exact complex of Ding injectives auto-
matically has Ding injective cycles.

Proof. Since R is Ding-Chen, the modules of finite flat dimension
coincide with the modules of finite absolutely pure dimension [4].
Denote this class byW. We have that (W,DI) is an injective cotorsion
pair, where DI is the class of all Ding injective modules (see [8,
Theorem 3.4] and [17, Corollary 4.5]). From [19, Proposition 7.2],

it lifts to another injective cotorsion pair (⊥exD̃I, exD̃I) on Ch(R),

where exD̃I is the class of all exact complexes of Ding injectives. From

Corollary 3.4 (2), we have that Sn(F ) ∈ ⊥exD̃I for each flat module F ,



DING MODULES AND COMPLEXES 2657

and hence, for each F of finite flat dimension. Thus, for all W ∈ W
and I ∈ exD̃I we have

0 = Ext1(Sn(W ), I) = Ext1R(W,ZnI).

Hence, each ZnI must be Ding injective. �

Since injective modules are Ding injective, the following corollary
may be deduced.

Corollary 4.3 ([27, Proposition 7.9]). Let R be a Ding-Chen ring.
Then, M is Ding injective if and only if M = Z0I for some exact
complex I of injective R-modules. Therefore, for any absolutely pure A,
any exact complex I of injectives will remain exact after applying
HomR(A,−).

It was shown by Yang, Liu, and Liang in [31] that the Ding injective
complexes are precisely the complexes X for which each Xn is Ding
injective and all chain maps

A −→ X

are null homotopic whenever A is an absolutely pure (FP-injective)
chain complex.

We now show that the null homotopy condition is automatic when R
is a Ding-Chen ring.

Corollary 4.4. Let R be a Ding-Chen ring. Then, a complex X is
Ding injective if and only if each Xn is a Ding injective R-module.

Proof. The “only if” part is easy from the definition of Ding injec-
tive. For the converse, we use that, for any coherent ring R, the Ding
injective cotorsion pair (W,DI) on R-Mod lifts to an injective model

structure (⊥dwD̃I, dwD̃I) on Ch(R), by [19, Proposition 7.2]. Here,

dwD̃I is the class of all complexes of Ding injective modules. From
Corollary 3.3, we have that each complex of finite flat dimension is in
⊥dwD̃I. However, in the case where R is Ding-Chen, it is easy to see
that any absolutely pure complex A has finite flat dimension. Indeed,
such an A is an exact complex with each cycle module ZnA absolutely
pure. Thus, each ZnA has finite flat dimension. Now, taking a flat
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resolution of A, the upper bound on the flat dimensions implies that A

itself has finite flat dimension. Hence, A ∈ ⊥dwD̃I for each absolutely
pure A. It follows that Hom(A,X) is exact for any absolutely pure A

and any complex X ∈ dwD̃I, whenever R is Ding-Chen. �

Remark 4.5. It was shown by Yang, Liu and Liang in [31] that the

class of Ding injective complexes is precisely dgD̃I whenever R is Ding-
Chen. Thus, we now have shown that both

dgD̃I = dwD̃I and exD̃I = D̃I,

whenever R is a Ding-Chen ring. (Again, we are using the notation
from [15].)

5. Complexes of projective complexes. Our main purpose here
is to prove Theorem 5.9, which will be our tool in Section 6 for char-
acterizing Ding projective complexes. This is obtained by generalizing
results in [3, Appendix A], from modules to chain complexes.

Since Ch(R) is itself an abelian category, we can of course consider
Ch(Ch(R)), the category of chain complexes of chain complexes. Us-
ing [28, Sign Trick 1.2.5], the category Ch(Ch(R)) can be identified
with the category of bicomplexes. However, for our purposes here, it is
somewhat easier to remain with the category Ch(Ch(R)).

5.1. Free chain complexes. A free R-module is one that is isomor-
phic to a direct sum of copies of R. Analogously, we say that a chain
complex F ∈ Ch(R) is free if it is isomorphic to a direct sum⊕

i∈I

Dni(R),

where each ni is some integer. Clearly, this is equivalent to saying
that F is isomorphic to ⊕

n∈Z

Dn(Fn),

where each Fn is some free R-module. It is also equivalent to define F
to be an exact complex with each ZnF a free R-module. However, it
will be sufficient and most convenient for us to use the representations
⊕i∈ID

ni(R).
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Evidently, free complexes are closed under arbitrary direct sums.
It is also easy to verify that free complexes are projective objects
in Ch(R), and that each projective complex P is a retract of a free
complex.

Lemma 5.1 (Eilenberg’s swindle). Given any projective chain com-
plex P , there exists a free chain complex F such that P ⊕ F ∼= F .

Proof. We follow [24, Corollary 2.7]. Since P is projective, as noted
above, we can find another (projective) complex Q such that P ⊕Q is
a free complex. Setting

F = (P ⊕Q)⊕ (P ⊕Q)⊕ (P ⊕Q)⊕ · · ·

will produce a free complex as desired. Indeed,

F ∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ (Q⊕ P ) · · · ∼= P ⊕ F. �

We now need to study chain complexes of projective chain com-
plexes, that is, objects of Ch(Ch(R)) with each component a projective
complex.

Lemma 5.2. Let R be any ring, and let P ∈ Ch(Ch(R)) be a complex
of projective chain complexes. Then, P is a direct summand of a
complex F of free chain complexes. Furthermore, if P is exact, then F
can be taken to be exact.

Proof. From Lemma 5.1, we may, for each Pn, find a free chain
complex Fn such that Pn ⊕ Fn ∼= Fn. We form

F = P⊕
(⊕

n∈Z

Dn(Fn)

)
.

This is a complex of complexes which in degree n is the chain complex

Pn ⊕ Fn ⊕ Fn+1 ∼= Fn ⊕ Fn+1,

and thus, a free chain complex. We are finished since P is a direct
summand of

P⊕
(⊕

n∈Z

Dn(Fn)

)
.



2660 JAMES GILLESPIE

Moreover,

P⊕
(⊕

n∈Z

Dn(Fn)

)
is exact whenever P is exact. �

Theorem 5.3. Let R be any ring, and let S be the set of all bounded
above complexes of finitely generated free complexes. The cotorsion pair
(⊥(S⊥), S⊥) in Ch(Ch(R)), cogenerated by S, is functorially complete.
Moreover, C = ⊥(S⊥) is the class of all complexes of projective com-
plexes.

Proof. Since Ch(Ch(R)) is a Grothendieck category with enough
projectives, it follows from [21, Corollary 6.8] that S cogenerates a
functorially complete cotorsion pair (⊥(S⊥), S⊥) in Ch(Ch(R)). Set-
ting C = ⊥(S⊥), our aim is to show that this is precisely the class
of all complexes of projective complexes. We note that S contains
a set of projective generators for Ch(Ch(R)); for example, the set
{Dn(Dm(R))}n,m∈Z. Thus, it follows from [21, Corollary 6.9, Proof
of 6.5] that ⊥(S⊥) is precisely the class of all direct summands of trans-
finite extensions of objects in S. From Lemma 5.2, we only need to show
that a complex of free complexes is a transfinite extension of bounded
above complexes of finitely generated free complexes. Therefore, let F
be a complex of free complexes, and write each

Fn =
⊕
i∈In

Dni(Ri)

for some indexing set In with each Ri = R. We assume that F is
not (isomorphic to) a complex in S; thus, we can certainly find a
nonzero Fn, and we then take just one summand Dnj (Rj) for some
j ∈ In. We begin to build a bounded above subcomplex X ⊆ F by
setting Xn = Dnj (Rj) and setting Xi = 0 for all i > n. Now, note
d(Dnj (Rj)) ⊆ ⊕i∈In−1D

ni(Ri) and that we can find a finite subset
Ln−1 ⊆ In−1 such that

d(Dnj (Rj)) ⊆
⊕

i∈Ln−1

Dni(Ri).
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We set
Xn−1 =

⊕
i∈Ln−1

Dni(Ri).

We can continue in the same way finding Ln−2 ⊆ In−2 with |Ln−2|
finite and with

d

( ⊕
i∈Ln−1

Dni(Ri)

)
⊆

⊕
i∈Ln−2

Dni(Ri).

In this manner, we can construct the subcomplex

X = · · · −→ 0 −→ Dnj (Rj) −→
⊕

i∈Ln−1

Dni(Ri)

−→
⊕

i∈Ln−2

Dni(Ri) −→ · · · .

Note that X is a nonzero bounded above complex of finitely generated
free complexes, that is, X ∈ S.

We set X0 = X. In order to finish the proof we argue that we can
write F as the union of a continuous chain

0 ̸= X0 ( X1 ( · · · ( Xα ( Xα+1 ( · · ·

with each Xα+1/Xα ∈ S. Hence, we consider F/X0, and in the same
way as above, we find a bounded above subcomplex X1/X0 ⊆ F/X0

consisting of finitely generated free complexes in each degree. However,
we are careful to construct X1 as follows: Let L0

n denote the indexing
sets of the previously constructed complex X0

n = ⊕i∈L0
n
Dni(Ri). Note

that we can identify the quotient F/X0 with a complex whose degree n
entry is ⊕i∈In−L0

n
Dni(Ri). And, therefore, we may take X1 so that

X1
n = ⊕i∈L1

n
Dni(Ri) with each L1

n finite and L0
n ⊆ L1

n ⊆ In for each n.
Continuing this process, we continue to construct an increasing union
0 ̸= X0 ( X1 ( X2 ( · · · , corresponding to a nested union of subsets
L0
n ⊆ L1

n ⊆ L2
n ⊆ · · · for each n. Assuming this process does not

terminate, we set Xω = ∪α<ωX
α and note that Xω

n = ⊕i∈Lω
n
Dni(Ri)

where Lω
n = ∪α<ωL

α
n. Of course, Xω and F/Xω are complexes of free

complexes and, continuing this process, we can obtain an ordinal λ and
a continuous chain
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0 ̸= X0 ( X1 ( · · · ( Xα ( Xα+1 ( · · ·

with F = ∪α<λX
α and X0,Xα+1/Xα ∈ S. �

5.2. Pure exact complexes of complexes. Let

E : 0 −→ X −→ Y −→ Z −→ 0

be a short exact sequence in Ch(R). We say that E is pure if, for
each finitely presented complex F , the sequence of abelian groups
HomCh(R)(F, E), that is,

0 −→ HomCh(R)(F,X) −→ HomCh(R)(F, Y )

−→ HomCh(R)(F,Z) −→ 0,

is also exact. Pure exact sequences of complexes can be characterized in
terms of the functors Hom and ⊗ from subsection 2.2. In particular, E
is pure exact if and only if Hom(F, E) is a short exact sequence of
complexes for each finitely presented complex F if and only if F⊗E is a
short exact sequence of complexes for each finitely presented complex F
(or just any complex F ). See [14, Theorem 5.1.3]. This leads us to
the following notion of a pure exact complex of complexes.

Definition 5.4. Let X ∈ Ch(Ch(R)). We say that X is a pure exact
complex of complexes if the following equivalent conditions are satisfied:

(1) HomCh(R)(F,X) = Hom(S0(F ),X) is an exact complex of
abelian groups for each finitely presented chain complex F .

(2) Hom(F,X) is an exact complex (of complexes of abelian
groups) for each finitely presented chain complex F .

(3) F ⊗X is an exact complex (of complexes of abelian groups) for
each finitely presented chain complex F .

(4) F ⊗X is an exact complex (of complexes of abelian groups) for
each chain complex F .

Lemma 5.5. Suppose that X is a bounded complex of finitely presented
complexes and Y is a pure exact complex of complexes. Then, every
chain map

f : X −→ Y

is chain homotopic to 0.
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Proof. Note that it is equivalent to show Hom(X,Y) is exact, where
Hom is the usual hom-complex of subsection 2.1 (however, applied
instead to the case of A = Ch(R) rather than the more typical appli-
cation of A = R-Mod).

Let m be the largest degree i for which Xi is nonzero, and let A be
the subcomplex of X with Ai = Xi for i < m and Am = 0. We have
a degreewise split short exact sequence

0 −→ A −→ X −→ Sm(Xm) −→ 0

which, for the given Y, induces the short exact sequence

0 −→ Hom(Sm(Xm),Y) −→ Hom(X,Y) −→ Hom(A,Y) −→ 0.

Now, Hom(Sm(Xm),Y) is exact by Definition 5.4 (1). The long exact
sequence in homology now gives us the result by induction on m. �

Let (C,W) denote the cotorsion pair of Theorem 5.3. The next result
tells us that pure exact complexes of complexes are in W.

Theorem 5.6. Let R be any ring, and let C be a complex of projective
complexes. If Y is a pure exact complex of complexes, then Hom(C,Y)
is exact, or equivalently, Y ∈ W = C⊥.

Proof. In view of Theorem 5.3, it suffices to assume that C is a
bounded above complex of finitely generated free complexes and to
show that any chain map f : C −→ Y is chain homotopic to 0. We
construct a chain homotopy

Dn : Cn −→ Yn+1

with
dDn +Dn−1d =fn

by downwards induction on n. Since C is bounded above, we can take
Dn = 0 for large n to begin the induction. Therefore, we suppose that
Di has been defined for i ≥ n and that dDn+1 +Dnd = fn+1.

The idea is to replace Dn with a new map D̃n still having dDn+1 +

D̃nd = fn+1, and also to find a mapDn−1 such that dD̃n+Dn−1d = fn.
First, note that

(fn − dDn) d = d(fn+1 −Dnd) = d2Dn+1 = 0;
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thus, there is an induced map

gn : Cn/BnC −→ Yn

such that the composite

Cn
π−→ Cn/BnC

gn−→ Yn

equals fn − dDn. Now, consider the bounded complex X of finitely
presented complexes with Xn = Cn/BnC, Xn−1 = Cn−1, Xn−2 =
Cn−1/Bn−1C and Xi = 0 for all other i. There is a chain map
g : X −→ Y that is gn in degree n, fn−1 in degree n − 1 and fn−2d
in degree n − 2. From Lemma 5.5, this chain map must be chain
homotopic to 0. This gives us maps

D′
n : Cn/BnC −→ Yn+1 and Dn−1 : Cn−1 −→ Yn

such that dD′
n +Dn−1d = gn. Upon composing with

Cn
π−→ Cn/BnC,

this becomes
dD′

nπ +Dn−1d = fn − dDn.

Now, setting D̃n = Dn+D′
nπ, we still have the required relation dDn+1

+ D̃nd = fn+1 since

dDn+1 + (Dn +D′
nπ) d = dDn+1 +Dnd+ 0 = fn+1.

Moreover, we have the other promised relation:

dD̃n +Dn−1d = fn.

Indeed,

dD̃n +Dn−1d = d(Dn +D′
nπ) +Dn−1d = dDn + (dD′

nπ +Dn−1d)

= dDn + (fn − dDn) = fn. �

Recall that, for a complex X, we have its character dual X+ =
HomZ(X,Q/Z), see subsection 2.4.

Lemma 5.7. Let C be a complex of complexes and X a complex of
right R-modules. Then, X ⊗C is exact if and only if Hom(C, X+) is
exact.
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Proof. X ⊗C is exact if and only if (X ⊗C)+ is exact. However,
using parts (1) and (6) b) of [14, Proposition 4.2.1], we obtain

(X ⊗C)+ = HomZ(X ⊗C,Q/Z) = Hom(X ⊗C, D1(Q/Z))

∼= Hom(C,Hom(X,D1(Q/Z)))

∼= Hom(C, X+). �

We only need one more lemma before proving the main theorem.

Lemma 5.8. Let Y ∈ Ch(R) be a complex and C ∈ Ch(Ch(R))
a complex of complexes. Then, Hom(C, Y ) is exact if and only if
Hom(C, Sn(Y )) is exact for each n.

Proof. Pondering definitions, we see that Hom(C, Y ) is the cochain
complex, of complexes of abelian groups, whose degree zero entry is the
complex of abelian groups

· · · ←− HomCh(R)(Σ
n−1C0, Y )←− HomCh(R)(Σ

nC0, Y )←− · · ·

(where HomCh(R)(Σ
nC0, Y ) is the degree n component of this com-

plex). Thus, to say that the overall complex is exact means that the
cochain complex of abelian groups, HomCh(R)(Σ

nC, Y ), is exact for
each n.

On the other hand, by again following definitions, Hom(C, Sn(Y ))
is isomorphic to the cochain complex, HomCh(R)(Σ

−nC, Y ), of abelian
groups. Therefore, exactness of Hom(C, Sn(Y )) for all n is equivalent
to exactness of Hom(C, Y ). �

Now, if C is a collection of chain complexes of right R-modules, andD
is a collection of chain complexes of left R-modules, we say that (C,D)
is a duality pair if X ∈ C if and only if X+ ∈ D, and Y ∈ D if and
only if Y + ∈ C. It is immediate from Corollary 2.4 that the absolutely
clean and level complexes give rise to two duality pairs: one where C
is the class of all absolutely clean complexes of right R-modules, and
another where C is the class of all level complexes of right R-modules.

Theorem 5.9. Suppose that (C,D) is a duality pair in Ch(R) such
that D is closed under pure quotients. Let C be a complex of projective
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complexes. Then, X ⊗C is exact for all X ∈ C if and only if
Hom(C, Y ) is exact for all Y ∈ D. In particular,

(1) A⊗C is exact for all absolutely clean complexes A if and only if
Hom(C, L) is exact for all level complexes L.

(2) L⊗C is exact for all level complexes L if and only if Hom(C, A)
is exact for all absolutely clean complexes A.

Proof. In view of Lemma 5.7, if Hom(C, Y ) is exact for all Y ∈ D,
then X ⊗ C is exact for all X ∈ C. Conversely, suppose that X ⊗C is
exact for all X ∈ C. Now, if Y ∈ D, Y +⊗C is exact, then Lemma 5.7
tells us that Hom(C, Y ++) is exact. We conclude that Hom(C, D) is
exact for all D ∈ D++, and we note that D++ ⊆ D since (C,D) is a
duality pair.

Now, for any complex Y , the natural map

Y −→ Y ++

is a pure monomorphism of complexes [14, Proposition 5.1.4 (4)].
Thus, if Y ∈ D, the quotient Y ++/Y is also in D since D is closed
under pure quotients. We can, therefore, create a resolution of Y ∈ D
by elements of D++, that is, we can find a pure exact resolution of Y
by complexes in D++. This gives us a short exact sequence

0 −→ Sn(Y ) −→ D −→ P −→ 0,

in which P is pure exact and D is a bounded above complex with
entries in D++. Theorem 5.6 tells us that Hom(C,P) is exact. Hence,
Hom(C,D) ∼= Hom(C, Sn(Y )). Therefore, by Lemma 5.8, it only
remains to show that Hom(C,D) is exact wheneverD is bounded above
with components in D++.

However, showing that Hom(C,X) is exact for all complexes of
projective complexes C is equivalent to showing that Ext1(C,X) = 0
for all such C. From Lemma 5.8 and the first paragraph we conclude
that Ext1(C, Sn(D)) = 0 whenever D ∈ D++. Now, any bounded
above complex D with entries in D++ can be seen to be an inverse
transfinite extension of spheres Sn(D) for some D ∈ D++. By the dual
of the Eklof lemma, we know that Ext1(C,−) is closed under inverse
transfinite extensions [12, Theorem 1.6]. Therefore, Ext1(C,D) = 0,
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whence Hom(C,D) is exact for all complexes of projective complexesC.
This completes the proof.

As noted above, the absolutely clean complexes and level complexes
give rise to two duality pairs. Moreover, each class is closed under pure
quotients by [2, Propositions 2.7, 4.7]. �

6. Applications to Ding projective modules and complexes.
We now prove the duals to Corollaries 4.3 and 4.4, Theorem 6.2 and
Corollary 6.3 below.

Definition 6.1. We call an R-module M Ding projective if there exists
an exact complex of projectives

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·

with M = ker (P 0 → P 1) and which remains exact after applying
HomR(−, F ) for any flat module F .

In the same manner, we call a chain complex X Ding projective if
there exists an exact complex of projective complexes

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·

with X = ker (P 0 → P 1) and which remains exact after applying
HomCh(R)(−, F ) for any flat chain complex F . Recall that a chain
complex P is projective (respectively, flat) in Ch(R) if and only if it is
exact and each cycle ZnP is a projective (respectively, flat) module.

Theorem 6.2. Let R be a Ding-Chen ring. Then, a module M is
Ding projective if and only if M = Z0P for some exact complex P
of projective R-modules. In the same way, a chain complex X is
Ding projective if and only if X = Z0P for some exact complex P
of projective complexes.

Proof. First, we look at the R-module case. Let P be any exact
complex of projectives. We need to show that HomR(P, F ) remains
exact for any flat (left) module F . However, by [3, Theorem 6.7], and
since R is coherent, it is enough to show that A ⊗R P is exact for all
absolutely pure (right) modules A. Note that, clearly, F ⊗R P is exact
for any flat (right) module F . It follows that M⊗RP is exact for all M
of finite flat dimension. However, since R is a Ding-Chen ring, any
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absolutely pure module A does have finite flat dimension. Therefore,
we are done. We note that a similar but alternate proof could be given,
using Theorem 3.6 instead.

Next, we see that the proof holds for chain complexes due to the
results of Section 5. Thus, now let P be any exact complex of projective
complexes. We must show that HomCh(R)(P, F ) remains exact for any

flat (left) chain complex F . However, looking at the definition of Hom,
it is clear that this is equivalent to the statement that Hom(P, F )
remains exact for any flat complex F . Now, by Theorem 5.9 and since R
is coherent, this is equivalent to the statement that A ⊗ P is exact for
all absolutely pure (right) complexes A. We note that F ⊗ P is exact
for any flat (right) complex F by [14, Proposition 5.1.2]. It follows that
X ⊗ P is exact for all complexes X of finite flat dimension. However,
since R is a Ding-Chen ring, any absolutely pure complex A is an exact
complex with an upper bound on the flat dimensions of the ZnA. It
follows that A itself is a complex of finite flat dimension. Therefore, we
are finished. �

Corollary 6.3. Let R be a Ding-Chen ring. Then, a complex X is
Ding projective if and only if each Xn is a Ding projective R-module.

Proof. The “only if” part is easy to show. For the converse, The-
orem 6.2 ensures that we only need to show that X equals the zero
cycles of some exact complex of projective complexes. Certainly, we
can find an exact complex

· · · d3−→ P2
d2−→ P1

d1−→ P0
ϵ−→ X −→ 0

with each Pi a projective complex. Thus, it is left to extend this
complex to the right. First, note that there is an obvious (degreewise
split) short exact sequence

0 −→ X
(1,d)−−−→

⊕
n∈Z

Dn+1(Xn)
−d+1−−−−→ ΣX −→ 0.

Now, each Xn is Ding projective. Thus, we certainly can find a short
exact sequence

0 −→ Xn
αn−→ Qn

βn−→ Yn −→ 0,
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where Qn is projective and Yn is also Ding projective. This gives us
another short exact sequence

0 −→
⊕
n∈Z

Dn+1(Xn)

⊕
n∈Z Dn+1(αn)−−−−−−−−−−−→

⊕
n∈Z

Dn+1(Qn)

⊕
n∈Z Dn+1(βn)−−−−−−−−−−−→

⊕
n∈Z

Dn+1(Yn) −→ 0.

Note that
⊕

n∈Z Dn+1(Qn) is a projective complex, which will be

denoted by P 0. Furthermore, let

η : X −→ P 0

be the composite

X
(1,d)−−−→

⊕
n∈Z

Dn+1(Xn)

⊕
n∈Z Dn+1(αn)−−−−−−−−−−−→

⊕
n∈Z

Dn+1(Qn).

Then, η is a monomorphism since it is the composite of two monomor-
phisms. Moreover, setting C0 = cok η, it follows from the Snake lemma
that C0 sits in the short exact sequence

0 −→ ΣX −→ C0 −→
⊕
n∈Z

Dn+1(Yn) −→ 0.

In particular, C0 is an extension of
⊕

n∈Z Dn+1(Yn) and ΣX, and

thus, C0 must be Ding projective in each degree since both of⊕
n∈Z Dn+1(Yn) and ΣX are such. Since C0 has the same properties

as X, we may continue inductively to obtain the desired resolution

0 −→ X
η−→ P 0 d0

−→ P 1 d1

−→ P 2 d2

−→ · · ·

Finally, we paste the resolution together with

· · · −→ P2
d2−→ P1

d1−→ P0
ϵ−→ X −→ 0

by setting d0 = ηϵ, and the proof is complete. �

7. Ding flat modules and complexes. As pointed out in [17],
there is also a natural notion of a Ding flat module, but it turns out to
be equivalent to the notion of a Gorenstein flat module. We recall the
definition.
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Definition 7.1. We call an R-module M Ding flat if there exists an
exact complex of flat modules

· · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

with M = ker (F 0 → F 1) and which remains exact after applying
A⊗R − for any absolutely pure (right) R-module A.

In the same manner, we call a chain complex X Ding flat if there
exists an exact complex of flat complexes

· · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

with X = ker (F 0 → F 1) and which remains exact after applying A⊗−
for any absolutely pure complex A.

Proposition 7.2. Let R be any ring. A Ding flat module is nothing
more than a Gorenstein flat module. Similarly, a chain complex X is
Ding flat if and only if it is Gorenstein flat.

A proof of the above proposition, for modules, goes back to [9,
Lemma 2.8]. We provide a new proof, which is very quick and easy.

Proof. We give the proof for complexes; however, the same proof
works for modules. Note that Ding flat complexes are clearly Goren-
stein flat since injective complexes are absolutely pure. Conversely,
suppose that X is a Gorenstein flat complex. By definition, this means
that there exists an exact complex

F = · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

of flat complexes with X = ker (F 0 → F 1) which remains exact after
applying I ⊗− for any injective complex I. We will show that this com-
plex does in fact remain exact after applying A⊗− for any absolutely
pure (right) chain complex A. Therefore, let such an A be given, and
note that it is equivalent to showing that the map of complexes

A⊗ZnF −→ A⊗Fn

is a monomorphism for each n. Now, let A ↩→ I be an embedding into
an injective complex I, and note that this must be a pure monomor-
phism since A is an absolutely pure complex. For each n, we have the
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commutative diagram:

A⊗ZnF −−−−→ I ⊗ZnFy y
A⊗Fn −−−−→ I ⊗Fn.

The two horizontal arrows are monomorphisms since A ↩→ I is pure.
The right vertical arrow is also a monomorphism since I⊗F is exact. It
follows that the left vertical arrow must also be a monomorphism. �

Proposition 7.3. Let R be a Ding-Chen ring. Then, a module M is
Ding flat if and only if M = Z0F for some exact complex F of flat
R-modules. In the same manner, a chain complex X is Ding flat if
and only if X = ZnF for some exact complex F of flat complexes.

Proof. The proof is simple and very similar to the last few sentences
of the proof of Theorem 6.2. Briefly, F is an exact complex of flat
complexes; we wish to show that A⊗F is exact for any absolutely pure
complex A. Certainly, F ⊗F is exact for any flat complex F , and,
since R is a Ding-Chen ring, any absolutely pure complex A has finite
flat dimension. We argue that A⊗F is exact for any such A. �

Corollary 7.4. Let R be a Ding-Chen ring. Then, a complex X is
Ding flat if and only if each Xn is a Ding flat R-module.

Proof. Using Proposition 7.3, the proof of Corollary 6.3 carries over.
Merely replace the word projective with the word flat throughout the
proof. �
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11. E. Enochs and J.R. Garćıa-Rozas, Tensor products of chain complexes,
Math J. Okayama Univ. 39 (1997), 19–42.

12. E. Enochs, A. Iacob, and O.M.G. Jenda, Closure under transfinite

extensions, Illinois J. Math. 51 (2007), 561–569.

13. Edgar E. Enochs and Overtoun M.G. Jenda, Relative homological alge-
bra, de Gruyter Expos. Math. 30, Walter de Gruyter & Co., Berlin, 2000.
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27. Jan Šťov́ıček, On purity and applications to coderived and singularity

categories, arXiv:1412.1615.

28. Charles A. Weibel, An introduction to homological algebra, Cambr. Stud.

Adv. Math. 38, Cambridge University Press, Cambridge, 1994.

29. Gang Yang and Zhongkui Liu, Cotorsion pairs and model structures on
Ch(R), Proc. Edinburgh Math. Soc. 54 (2011), 783–797.

30. Gang Yang, Zhongkui Liu and Li Liang, Ding projective and Ding
injective modules, Alg. Colloq. 20 (2013), 601–612.

31. , Model structures on categories of complexes over Ding-Chen
rings, Comm. Alg. 41 (2013), 50–69.

Ramapo College of New Jersey, School of Theoretical and Applied Sci-
ence, 505 Ramapo Valley Road, Mahwah, NJ 07430
Email address: jgillesp@ramapo.edu


