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EQUIVARIANT PICARD GROUPS OF
C∗-ALGEBRAS WITH FINITE DIMENSIONAL

C∗-HOPF ALGEBRA COACTIONS

KAZUNORI KODAKA

ABSTRACT. Let A be a C∗-algebra and H a finite
dimensional C∗-Hopf algebra with its dual C∗-Hopf algebra
H0. Let (ρ, u) be a twisted coaction of H0 on A. We shall
define the (ρ, u,H)-equivariant Picard group of A, which is
denoted by Picρ,uH (A), and discuss the basic properties of

Picρ,uH (A). Also, we suppose that (ρ, u) is the coaction of

H0 on the unital C∗-algebra A, that is, u = 1 ⊗ 10. We
investigate the relation between Pic(As), the ordinary Picard

group of As, and Picρ
s

H (As), where As is the stable C∗-

algebra of A and ρs is the coaction of H0 on As induced

by ρ. Furthermore, we shall show that Picρ̂
H0 (A oρ,u H) is

isomorphic to Picρ,uH (A), where ρ̂ is the dual coaction of H
on the twisted crossed product A oρ,u H of A by the twisted
coaction (ρ, u) of H0 on A.

1. Introduction. Let A be a C∗-algebra and H a finite dimensional
C∗-Hopf algebra with its dual C∗-Hopf algebra H0. Let (ρ, u) be a
twisted coaction of H0 on A. We shall define the (ρ, u,H)-equivariant
Picard group of A, which is denoted Picρ,uH (A). Also, we shall give a
similar result to the ordinary Picard group as follows: let Autρ,uH (A) be
the group of all automorphisms α of A satisfying that (α⊗id)◦ρ = ρ◦α
and (α⊗ id⊗ id)(u) = u, and let Intρ,uH (A) be the normal subgroup of
Autρ,uH (A) consisting of all generalized inner automorphisms Ad(v) of A
satisfying that ρ(v) = v⊗10 and (v⊗10⊗10)u = u(v⊗10⊗10), where v
is a unitary element in the multiplier algebra M(A) of A. Then, we
have the following exact sequence:

1 −→ Intρ,uH (A) −→ Autρ,uH (A) −→ Picρ,uH (A).
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In particular, let As be a stable C∗-algebra of a unital C∗-algebra A
and ρ a coaction of H0 on A. Also, let ρs be the coaction of H0 on As

induced by a coaction ρ of H0 on A. Then, under a certain condition,
we can obtain the exact sequence

1 −→ Intρ
s

H (As) −→ Autρ
s

H (As) −→ Picρ
s

H (As) −→ 1.

In order to do this, we shall extend the definitions and results in
the case of unital C∗-algebras to those in the case of non unital C∗-
algebras in Section 2. Using this result, we shall investigate the relation

between Pic(As), the ordinary Picard group of As, and Picρ
s

H (As), the
(ρs, H)-equivariant Picard group of As. Furthermore, we shall show

that Picρ̂H0(A oρ,u H) is isomorphic to Picρ,uH (A), where ρ̂ is the dual
coaction of H on the twisted crossed product A oρ,u H of A by the
twisted coaction (ρ, u).

2. Preliminaries. Let H be a finite dimensional C∗-Hopf algebra.
We denote its comultiplication, counit and antipode by ∆, ϵ and S,
respectively. Sweedler’s notation ∆(h) = h(1) ⊗ h(2) is used for any
h ∈ H which suppresses a possible summation when comultiplications
are written. The dimension of H is denoted by N . Let H0 be the
dual C∗-Hopf algebra of H. We denote its comultiplication, counit
and antipode by ∆0, ϵ0 and S0, respectively. There is a distinguished
projection e in H. Note that e is the Haar trace on H0. Also, there
is a distinguished projection τ in H0 which is the Haar trace on H.
Since H is finite dimensional,

H ∼=
L⊕

k=1

Mfk(C) and H0 ∼=
K⊕

k=1

Mdk
(C)

hold as C∗-algebras. Let

{vkij | k = 1, 2, . . . , L, i, j = 1, 2, . . . , fk}

be a system of matrix units of H. Let

{wk
ij | k = 1, 2, . . . ,K, i, j = 1, 2, . . . , dk}

be a basis of H satisfying [25, Theorem 2.2,2], which is called a system
of comatrix units of H, that is, the dual basis of a system of matrix
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units of H0. Also, let

{ϕkij | k = 1, 2, . . . ,K, i, j = 1, 2, . . . , dk}

and

{ωk
ij | k = 1, 2, . . . , L, i, j = 1, 2, . . . , fk}

be systems of matrix and comatrix units of H0, respectively.

Let A be a C∗-algebra and M(A) its multiplier algebra. Let p, q
be projections in A. If p and q are Murray-von Neumann equivalent,
then we denote them by p ∼ q in A. We denote by idA and 1A the
identity map on A and the unit element in A, respectively. They are
simply denoted by id and 1, if no confusion arises. Modifying [3,
Definition 2.1], we shall define a weak coaction of H0 on A.

Definition 2.1. By a weak coaction of H0 on A we mean a ∗-homo-
morphism ρ : A→ A⊗H0 satisfying the following conditions:

(1) ρ(A)(A⊗H0) = A⊗H0,

(2) (id⊗ ϵ0)(ρ(x)) = x for any x ∈ A.

By a coaction of H0 on A, we mean a weak coaction ρ such that

(3) (ρ⊗ id) ◦ ρ = (id⊗∆0) ◦ ρ.

By Definition 2.1 (1), for any approximate unit {uα} of A and x ∈
A⊗H0, ρ(uα)x→ x (α→ ∞). Hence, ρ(1) = 1⊗ 10 when A is unital.
Since H0 is finite dimensional, M(A⊗H0) ∼=M(A)⊗H0. We identify
M(A⊗H0) with M(A)⊗H0. We also identify M(A⊗H0 ⊗H0) with
M(A) ⊗ H0 ⊗ H0. Let ρ be a weak coaction of H0 on A. By [12,
Corollary 1.1.15], there is a unique strictly continuous homomorphism
ρ :M(A) →M(A)⊗H0 extending ρ.

Lemma 2.2. Using the above notation, ρ is a weak coaction of H0 on
M(A).

Proof. Clearly, ρ is a ∗-homomorphism of M(A) to M(A)⊗H0. Let
{uα} be an approximate unit of A. Then, by Definition 2.1 (1), {ρ(uα)}
is an approximate unit of A ⊗H0. Hence, ρ(1) = 1 ⊗ 10. Since H0 is
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finite dimensional, id ⊗ ϵ0 is strictly continuous. Therefore, ρ satisfies
Definition 2.1 (2). �

Let ρ be a weak coaction of H0 on A and u a unitary element in
M(A)⊗H0 ⊗H0. Following [19, Section 3], we shall define a twisted
coaction of H0 on A.

Definition 2.3. The pair (ρ, u) is a twisted coaction of H0 on A if the
following conditions hold:

(1) (ρ⊗ id) ◦ ρ = Ad(u) ◦ (id⊗∆0) ◦ ρ,
(2) (u⊗ 10)(id⊗∆0 ⊗ id)(u) = (ρ⊗ id⊗ id)(u)(id⊗ id⊗∆0)(u),

(3) (id⊗ id⊗ ϵ0)(u) = (id⊗ ϵ0 ⊗ id)(u) = 1⊗ 10.

Remark 2.4. Let (ρ, u) be a twisted coaction of H0 on A. Since
H0 is finite dimensional, idM(A) ⊗∆0 is strictly continuous. Thus, by
Lemma 2.2, (ρ, u) satisfies Definition 2.3. Therefore, (ρ, u) is a twisted

coaction of H0 on M(A). Hence, if ρ is a coaction of H0 on A, ρ is a

coaction of H0 on M(A).

Let Hom(H,M(A)) be the linear space of all linear maps from H
to M(A). Then, by [24, pages 69–70], it becomes a unital convolution
*-algebra. Similarly, we define Hom(H × H,M(A)). Note that ϵ and
ϵ⊗ ϵ are the unit elements in Hom(H,M(A)) and Hom(H×H,M(A)),
respectively.

Modifying [3, Definition 1.1], we shall define a weak action of H
on A.

Definition 2.5. By a weak action of H on A we mean a bilinear map
(h, x) 7→ h · x of H ×A to A satisfying the following conditions:

(1) h · (xy) = [h(1) · x][h(2) · y] for any h ∈ H, x, y ∈ A,

(2) [h ·uα]x→ ϵ(h)x for any approximate unit {uα} of A and x ∈ A,

(3) 1 · x = x for any x ∈ A,

(4) [h · x]∗ = S(h)∗ · x∗ for any h ∈ H, x ∈ A.

By an action of H on A, we mean a weak action of H on A such that

(5) h · [l · x] = (hl) · x for any x ∈ A and h, l ∈ H.
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Since H is finite dimensional, as mentioned in [3, page 163], there
is an isomorphism ı of M(A) ⊗ H0 onto Hom(H,M(A)) defined by
ı(x ⊗ ϕ)(h) = ϕ(h)x for any x ∈ M(A), h ∈ H, ϕ ∈ H0. Also, we can
define an isomorphism ȷ of M(A)⊗H0 ⊗H0 onto Hom(H ×H,M(A))
in a similar manner to the above. We note that

ı(A⊗H0) = Hom(H,A) and ȷ(A⊗H0 ⊗H0) = Hom(H ⊗H,A).

For any x ∈M(A)⊗H0 and y ∈M(A)⊗H0⊗H0, we denote ı(x) and
ȷ(y) by x̂ and ŷ, respectively.

Let a bilinear map (h, x) 7→ h ·x from H ×A to A be a weak action.
For any x ∈ A, let fx be the linear map from H to A defined by
fx(h) = h ·x for any h ∈ H. Let ρ be the linear map from A to A⊗H0

defined by ρ(x) = ı−1(fx) for any x ∈ A.

Lemma 2.6. Using the above notation, ρ is a weak coaction of H0

on A.

Proof. By definition, ρ is a ∗-homomorphism of A to A ⊗ H0

satisfying Definition 2.1 (2). Thus, we only have to show that ρ satisfies
Definition 2.1 (1). Let {uα} be an approximate unit of A. We write
that ρ(uα) =

∑
j uαj ⊗ ϕj , where uαj ∈ A, and {ϕj} is a basis of H0

with ∑
j

ϕj = 10.

Let {hj} be the dual basis of H corresponding to {ϕj}. Then, for any
x ∈ A and j,

[hj · uα]x −→ ϵ(hj)x,

by Definition 2.5. Since [hj · uα]x = (id⊗ hj)(ρ(uα))x = uαjx,

uαjx −→ ϵ(hj)x for any j.

Also, since
∑

j ϕj = 10,

1 = ϕj(hj) =
∑
i

ϕi(hj) = 10(hj) = ϵ(hj)

for any j. Hence, uαjx → x for any j. Therefore, for any x ∈ A and
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ϕ ∈ H0,

ρ(uα)(x⊗ ϕ) =
∑
j

uαjx⊗ ϕjϕ −→
∑
j

x⊗ ϕjϕ = x⊗ ϕ.

Thus, ρ(A)(A⊗H0) = A⊗H0. �

For any weak coaction ρ of H0 on A, we define the bilinear map
(h, x) 7→ h ·ρ x from H ×A to A by

h ·ρ x = (id⊗ h)(ρ(x)) = ρ(x)̂(h).

We shall prove that the above map is a weak action of H on A.

Lemma 2.7. With the above notation, the linear map (h, x) 7→ h ·ρ x
from H ×A to A is a weak action of H on A.

Proof. We only have to show that the above linear map satisfies
Definition 2.5 (2). Let {uα} be an approximate unit of A. Then, for
any x ∈ A ⊗ H0, ρ(uα)x → x by the proof of Lemma 2.2. We write
that

ρ(uα) =
∑
j

uαj ⊗ ϕj ,

where uαj ∈ A and {ϕj} is a basis of H0. Then, for any a ∈ A,

[h ·ρ uα]a = (id⊗ h)(ρ(uα))a =
∑
j

uαjϕj(h)a

= (id⊗ h)(ρ(uα)(a⊗ 10)) −→ ϵ(h)a

since id⊗ h is a bounded operator from A⊗H0 to A. �

Remark 2.8. By the proofs of Lemmas 2.6 and 2.7, Definition 2.5 (2)
is equivalent to the following:

(2)′ [h·uα]x→ ϵ(h)x for some approximate unit of A and any x ∈ A.
Also, if A is unital, Definition 2.5 (2) means that h · 1 = ϵ(h) for any
h ∈ H.

Let ρ be a weak coaction of H0 on A. Then, by Lemma 2.7, there is
a weak action of H on A. We call it the weak action of H on A induced
by ρ. Also, by Lemma 2.2, the weak coaction ρ of H0 exists on M(A),
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which is an extension of ρ to M(A). Hence, we can obtain the action
of H on M(A) induced by ρ. We see that this action is an extension of
the action induced by ρ to M(A).

Definition 2.9. Let σ : H × H → M(A) be a bilinear map. σ is a
unitary cocycle for a weak action of H on A if σ satisfies the following
conditions:

(1) σ is a unitary element in Hom(H ×H,M(A));

(2) σ is normal, that is, for any h ∈ H, σ(h, 1) = σ(1, h) = ϵ(h)1;

(3) (Cocycle condition). For any h, l,m ∈ H, [h(1)·σ(l(1),m(1))]σ(h(2),
l(2)m(2)) = σ(h(1), l(1))σ(h(2)l(2),m);

(4) (Twisted modular condition). For any h, l ∈ H, x ∈ A, [h(1) ·
[l(1) · x]]σ(h(2), l(2)) = σ(h(1), l(1))[(h(2)l(2)) · x] where, if necessary, we
consider the extension of the weak action to M(A).

We call a pair which consists of a weak action of H on A and its
unitary cocycle a twisted action of H on A.

Let (ρ, u) be a twisted coaction of H0 on A. Then, we consider the
twisted action of H on A and its unitary cocycle û, defined by

h ·ρ,u x = ρ(x)̂(h) = (id⊗ h)(ρ(x))

for any x ∈ A and h ∈ H. We call it the twisted action induced by
(ρ, u).

Further, we consider the twisted coaction (ρ, u) of H0 on M(A) and
the twisted action of H on M(A) induced by (ρ, u). Let M(A)oρ,u H

be the twisted crossed product by the twisted action of H on M(A)
induced by (ρ, u). Let xoρ,u h be the element in M(A)oρ,uH induced

by elements x ∈ M(A), h ∈ H. Let A oρ,u H be the set of all
finite sums of elements in the form x oρ,u h, where x ∈ A, h ∈ H.

Simple computation shows that Aoρ,uH is a closed two-sided ideal of
M(A)oρ,u H. We call it the twisted crossed product by (ρ, u), and its

element is denoted by x oρ,u h, where x ∈ A and h ∈ H. Let E
ρ,u

1 be
the canonical conditional expectation from M(A) oρ,u H onto M(A),

defined by
E

ρ,u

1 (xoρ,u h) = τ(h)x
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for any x ∈ M(A) and h ∈ H. Let Λ be the set of all triplets (i, j, k),
where i, j = 1, 2, . . . , dk and k = 1, 2, . . . ,K with

K∑
k=1

d2k = N.

Let WI =
√
dk oρ,u w

k
ij for any I = (i, j, k) ∈ Λ. By [15, Proposition

3.18], {(W ∗
I , WI)}I∈Λ is a quasi-basis for E

ρ,u

1 . We assume that A
faithfully and nondegenerately acts on a Hilbert space.

Lemma 2.10. With the above notation, M(A)oρ,uH =M(Aoρ,uH).

Proof. By the definition of multiplier algebras M(A) and M(A
oρ,u H), it is clear that

M(A)oρ,u H ⊂M(Aoρ,u H)

since M(A) oρ,u H and M(A oρ,u H) act on the same Hilbert space.

We now show another inclusion. Let x ∈M(Aoρ,uH). Then, there is
a bounded net {xα}α∈Γ ⊂ Aoρ,uH such that {xα}α∈Γ converges to x
strictly. Since xα ∈ Aoρ,u H,

xα =
∑
I

E
ρ,u

1 (xαW
∗
I )WI .

By the definition of E
ρ,u

1 , E
ρ,u

1 (xαW
∗
I ) ∈ A. Also, for any a ∈ A,

lim
α→∞

E
ρ,u

1 (xαW
∗
I )a = lim

α→∞
E

ρ,u

1 (xαW
∗
I a)

= E
ρ,u

1 (xW ∗
I a) = E

ρ,u

1 (xW ∗
I )a.

Similarly, limα→∞ aE
ρ,u

1 (xαW
∗
I ) = aE

ρ,u

1 (xW ∗
I ). Hence, E

ρ,u

1 (xW ∗
I ) ∈

M(A). In addition, by the above discussion, we can see that E
ρ,u

1

( ·W ∗
I ) is strictly continuous for any I ∈ Λ. For any a ∈ A and h ∈ H,

(aoρ,u h)E
ρ,u

1 (xαW
∗
I ) = a[h(1) ·ρ,u E

ρ,u

1 (xαW
∗
I )]oρ,u h(2)

= a((id⊗h(1))◦(ρ⊗id))(E
ρ,u

1 (xαW
∗
I ))oρ,u h(2).

Since id ⊗ h(1), ρ ⊗ id and E
ρ,u

1 ( ·WI) are strictly continuous for any
I ∈ Λ, we see that

lim
α→∞

(aoρ,u h)E
ρ,u

1 (xαW
∗
I ) = (aoρ,u h)E

ρ,u

1 (xW ∗
I ).
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Similarly, we see that, for any a ∈ A, h ∈ H,

lim
α→∞

E
ρ,u

1 (xαW
∗
I )(aoρ,u h) = E

ρ,u

1 (xW ∗
I )(aoρ,u h).

Thus, E
ρ,u

1 (xαW
∗
I ) strictly converges to E

ρ,u

1 (xW ∗
I ) in M(A oρ,u H).

Therefore,

x =
∑
I

E
ρ,u

1 (xW ∗
I )WI

since
xα =

∑
I

E
ρ,u

1 (xαW
∗
I )WI .

It follows that x ∈M(A)oρ,u H. �

Remark 2.11. Let (ρ)̂ be the dual coaction of ρ of H onM(A)oρ,uH

and (ρ̂) the coaction of H on M(A oρ,u H) induced by the dual

coaction ρ̂ ofH on Aoρ,uH. By Lemma 2.10, we can see that (ρ)̂ = (ρ̂).

Indeed, by Lemma 2.10, it suffices to show that (ρ̂)(x oρ,u h) =

(ρ)̂(xoρ,u h) for any x ∈M(A) and h ∈ H. Since x ∈M(A), there is a

bounded net {xα} ⊂ A such that xα strictly converges to x in M(A).
Then, since xα oρ,u h strictly converges to x oρ,u h in M(A) oρ,u H

and (ρ̂) is strictly continuous,

(ρ̂)(xoρ,u h) = lim
α→∞

ρ̂(xα oρ,u h)

= lim
α→∞

(xα oρ,u h(1))⊗ h(2)

= (xoρ,u h(1))⊗ h(2) = (ρ)̂(xoρ,u h),

where the limits are taken under the strict topology. We denote this
by ρ̂.

Next, we extend [16, Theorem 3.3] to a twisted coaction of H0 on
a (non-unital) C∗-algebra A. Before doing so, we define the exter-
ior equivalence for twisted coactions of a finite dimensional C∗-Hopf
algebra H0 on a C∗-algebra A.

Definition 2.12. Let (ρ, u) and (σ, v) be twisted coactions of H0 on A.
We say that (ρ, u) is exterior equivalent to (σ, v) if there is a unitary
element w ∈M(A)⊗H0 satisfying the following conditions:
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(1) σ = Ad(w) ◦ ρ,
(2) v = (w ⊗ 10)(ρ⊗ id)(w)u(id⊗∆0)(w∗).

Conditions (1) and (2) are equivalent to the following, respectively:

(1)′ h ·σ,v a = ŵ(h(1))[h(2) ·ρ,u a]ŵ∗(h(3)) for any a ∈ A and h ∈ H,
(2)′ v̂(h, l) = ŵ(h(1))[h(2) ·ρ,u ŵ(l(1))]û(h(3), l(2))ŵ∗(h(4)l(3)) for any

h, l ∈ H0.

If ρ and σ are coactions of H0 on A, (1), (2) and (1)′, (2)′ are as follows:

(i) σ = Ad(w) ◦ ρ,
(ii) (w ⊗ 10)(ρ⊗ id)(w) = (id⊗∆0)(w),

(i)′ h ·σ a = ŵ(h(1))[h(2) ·ρ a]ŵ∗(h(3)) for any a ∈ A, h ∈ H0,

(ii)′ ŵ(h(1))[h(2) ·ρ ŵ(l)] = ŵ(hl) for any h, l ∈ H0.

Furthermore, let (ρ, u) be a twisted coaction of H0 on A, and let w be
any unitary element in M(A)⊗H0 with (id⊗ ϵ0)(w) = 10. Let

σ = Ad(w) ◦ ρ, v = (w ⊗ 10)(ρ⊗ id)(w)u(id⊗∆0)(w∗).

Then (σ, v) is a twisted coaction of H0 on A by simple computation.

In the case of twisted coactions on von Neumann algebras, Vaes and
Vanierman [26] and, in the case of ordinary coactions on C∗-algebras,
Baaj and Skandalis [1] have already obtained much more generalized
results than the following. We give a proof related to Watatani index–
finite-type inclusions of unital C∗-algebras.

Proposition 2.13. Let A be a C∗-algebra and H a finite dimensional
C∗-Hopf algebra with its dual C∗-Hopf algebra H0. Let (ρ, u) be a
twisted coaction of H0 on A. Then there is an isomorphism Ψ of
M(A) ⊗ MN (C) onto M(A) oρ,u H oρ̂ H

0 and a unitary element

U ∈ (M(A)oρ,u H oρ̂ H
0)⊗H0 such that

Ad(U) ◦ ̂̂ρ = (Ψ⊗ idH0) ◦ (ρ⊗ idMN (C)) ◦Ψ−1,

(Ψ⊗ idH0 ⊗ idH0)(u⊗ IN ) = (U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗),

Ψ(A⊗MN (C)) = Aoρ,u H oρ̂ H
0,

that is, the coaction ̂̂ρ of H0 on Aoρ,u oρ̂H
0 is exterior equivalent to
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the twisted coaction

((Ψ⊗ idH0) ◦ (ρ⊗ idMN (C)) ◦Ψ−1, (Ψ⊗ idH0 ⊗ idH0)(u⊗ IN )),

where we identify A⊗H0⊗H0⊗MN (C) with A⊗MN (C)⊗H0⊗H0.

Proof. By [16, Theorem 3.3], there is an isomorphism Ψ of M(A)⊗
MN (C) ontoM(A)oρ,uHoρ̂H

0 and a unitary element U ∈ (M(A)oρ,u

H oρ̂H
0)⊗H0 satisfying the required conditions, except for the equa-

tion
Ψ(A⊗MN (C)) = Aoρ,u H oρ̂ H

0.

Therefore, we show the equation. By [16, Section 3],

Ψ([aIJ ]) =
∑
I,J

V ∗
I (aIJ oρ,u 1oρ̂ 1

0)VJ

for any [aIJ ] ∈ A⊗MN (C), where

VI = (1oρ̂ τ)(WI oρ̂ 1
0)

for any I ∈ Λ. Since VI ∈M(A)oρ,u H oρ̂ H
0 for any I ∈ Λ,

Ψ(A⊗MN (C)) ⊂ Aoρ,u oρ̂H
0.

For any z ∈ Aoρ,u H oρ̂ H
0, we write that

z =
n∑

i=1

(xi oρ̂ 1
0)(1oρ̂ τ)(yi oρ̂ 1

0),

where xi, yi ∈M(A)oρ,uH for any i. Let {uα} be an approximate unit

of A. Then (uα oρ,u 1oρ̂ 1
0)(xi oρ̂ 1

0) and (yi oρ̂ 1
0)(uα oρ,u 1oρ̂ 1

0)
are in Aoρ,u H oρ̂ H

0 for any i and α. Hence,

(Aoρ,u H oρ̂ 1
0)(1oρ̂ τ)(Aoρ,u H oρ̂ 1

0)

is dense in Aoρ,uHoρ̂H
0. On the other hand, for any x, y ∈ Aoρ,uH,

Ψ([E
ρ,u

1 (WIx)E
ρ,u

1 (yW ∗
J )]I,J) = (xoρ̂ 1

0)(1oρ̂ τ)(y oρ̂ 1
0)

by the proof of [16, Theorem 3.3]. Since E
ρ,u

1 (Aoρ,uH) = A and E
ρ,u

1

is continuous by definition,

Aoρ,u H oρ̂ H
0 ⊂ Ψ(A⊗MN (C)). �
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We extend [15, Theorem 6.4] to coactions of H0 on a (non-unital)
C∗-algebra. First, we recall a saturated coaction. We say that a
coaction ρ of H0 on a unital C∗-algebra A is saturated if the induced
action from ρ of H on A is saturated in the sense of [25, Definition 4.2].

Let B be a C∗-algebra and σ a coaction of H0 on B. Let

Bσ = {b ∈ B | σ(b) = b⊗ 10}

be the fixed point C∗-subalgebra of B for the coaction σ. We suppose
that B acts non-degenerately and faithfully on a Hilbert space H. Also,
we suppose that σ is saturated. Then, the canonical conditional
expectation Eσ from M(B) onto M(B)σ defined by Eσ(x) = e ·σ x for
any x ∈ M(B) is of Watatani index-finite type by [25, Theorem 4.3].
Thus, there is a quasi-basis {(ui, u∗i )}ni=1 of Eσ. Let {vα} be an
approximate unit of Bσ. For any x ∈ B,

vαx = vα

n∑
i=1

Eσ(xui)u
∗
i −→

n∑
i=1

Eσ(xui)u
∗
i = x, α→ ∞,

since Eσ(xui) ∈ Bσ. Similarly, xvα → x, α→ ∞, since

x =
n∑

i=1

uiE
σ(u∗i x).

Thus, {vα} is an approximate unit of B. Hence, Bσ acts non-degener-
ately and faithfully on H.

Lemma 2.14. With the above notation, we suppose that σ is saturated.
Then, M(Bσ) =M(B)σ.

Proof. By the above discussion, we may suppose that B and Bσ act
non-degenerately and faithfully on a Hilbert space. Let x ∈ M(Bσ).
Then, there is a bounded net {aα} ⊂ Bσ such that aα → x, α → ∞,
strictly inM(Bσ). Since any approximate unit of Bσ is an approximate
unit of B by the above discussion, for any y ∈ Bσ,

σ(x)(y ⊗ 10) = σ(xy) = σ( lim
α→∞

aαy) = lim
α→∞

σ(aαy)

= lim
α→∞

aαy ⊗ 10 = xy ⊗ 10.
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Thus, x ∈ M(B)σ. Next, let x ∈ M(B)σ. Then, for any b ∈ Bσ, xb
and bx are in B. Thus,

σ(xb) = σ(x)σ(b) = (x⊗ 10)(b⊗ 10) = xb⊗ 10,

σ(bx) = σ(b)σ(x) = (b⊗ 10)(x⊗ 10) = bx⊗ 10.

Hence, x ∈M(Bσ). �

We suppose that σ̂(1 oσ e) ∼ (1 oσ e) ⊗ 1 in (M(B) oσ H) ⊗ H.
As mentioned in [16, Section 2], without the assumption of saturation
for an action, all the statements in [15, Sections 4, 5, 6] hold. Hence,
by [15, Sections 4, 5], σ is saturated, and there is a unitary element
wσ ∈M(B)⊗H satisfying

wσ∗((1oσ e)⊗ 1)wσ = σ̂(1oσ e).

Let Uσ = wσ(zσ∗ ⊗ 1), where zσ = (idM(B) ⊗ ϵ)(wσ) ∈M(B)σ. Then,
Uσ ∈M(B)⊗H satisfies

Ûσ(10) = 1, Ûσ(ϕ(1))aÛ
σ∗(ϕ(2)) ∈M(B)σ

for any a ∈ M(B)σ, ϕ ∈ H0. Let ûσ be a bilinear map from H0 ×H0

to M(B), defined by

ûσ(ϕ, ψ) = Ûσ(ϕ(1))Û
σ(ψ(1))Û

σ∗(ϕ(2)ψ(2))

for any ϕ, ψ ∈ H0. Then, by [15, Lemma 5.4], ûσ(ϕ, ψ) ∈ M(B)σ for
any ϕ, ψ ∈ H0 and, by [15, Corollary 5.3], the map

H0 ×M(B)σ −→M(B)σ : (ϕ, a) 7−→ Ûσ(ϕ(1))aÛ
σ∗(ϕ(2))

is a weak action of H0 on M(B)σ. Furthermore, by [15, Proposi-
tion 5.6], ûσ is a unitary cocycle for the above weak action. Let uσ be
the unitary element in M(B)σ ⊗H⊗H induced by ûσ and ρ′ the weak
coaction of H on M(B)σ induced by the above weak action. Thus, we
obtain a twisted coaction (ρ′, uσ) of H on M(B)σ. Let π′ be the map
from M(B)σ oρ′,uσ H0 to M(B), defined by

π′(aoρ′,uσ ϕ) = aÛσ(ϕ)

for any a ∈ M(B)σ, ϕ ∈ H0. Then, by [15, Proposition 6.1,
Theorem 6.4], π′ is an isomorphism of M(B)σ oρ′,uσ H0 onto M(B)
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satisfying

σ ◦ π′ = (π′ ⊗ idH0) ◦ ρ̂′, Eρ′,uσ

1 = Eσ ◦ π′,

where Eρ′,uσ

1 is the canonical conditional expectation fromM(B)σoρ′,uσ

H0 onto M(B)σ and Eσ is the canonical conditional expectation from
M(B) onto M(B)σ. Let ρ = ρ′|Bσ .

Lemma 2.15. With the above notation, (ρ, uσ) is a twisted coaction
of H on Bσ and ρ = ρ′.

Proof. By the definition of ρ, for any a ∈ Bσ,

ρ(a) = Uσ(a⊗ 1)Uσ∗.

Since a ∈ Bσ ⊂M(Bσ) =M(B)σ, by Lemma 2.14, ρ(a) ∈M(B)σ⊗H.
On the other hand, since Uσ ∈M(B)⊗H, ρ(a) ∈ B⊗H. Thus, ρ(a) ∈
(M(B)σ⊗H)∩(B⊗H) = Bσ⊗H. Hence, ρ is a homomorphism of Bσ

to Bσ⊗H. Since (ρ′⊗id)◦ρ′ = Ad(uσ)◦(id⊗∆)◦ρ′ and ρ(a) ∈ Bσ⊗H
for any a ∈ Bσ, we see that (ρ ⊗ id) ◦ ρ = Ad(uσ) ◦ (id ⊗ ∆) ◦ ρ. By
the definition of ρ′, ρ′ is strictly continuous on M(B)σ. Hence, for any
approximate unit {uα} of Bσ,

1⊗ 1 = ρ′(1) = ρ′( lim
α→∞

uα) = lim
α→∞

ρ′(uα) = lim
α→∞

ρ(uα),

where the limits are taken under strict topologies in M(Bσ) and
M(Bσ)⊗H, respectively. This means that

ρ(Bσ)(Bσ ⊗H) = Bσ ⊗H.

It follows that (ρ, uσ) is a twisted coaction of H on Bσ. Furthermore,
since ρ′ is strictly continuous, ρ′ = ρ on M(Bσ). �

Let π = π′|Bσoρ,uσH0 .

Lemma 2.16. With the above notation, π is an isomorphism of Bσ

oρ,uσ H0 onto B, satisfying

σ ◦ π = (π ⊗ idH0) ◦ ρ̂, Eρ,uσ

1 = Eσ ◦ π,

where Eρ,uσ

1 is the canonical conditional expectation from Bσ oρ,uσ H0

onto Bσ, and Eσ is the canonical conditional expectation from B onto
Bσ. Furthermore, π′ = π.
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Proof. Let Eσ be the canonical conditional expectation from M(B)
onto M(B)σ. By [15, Proposition 4.3, Remark 4.9],

{(
√
fkÛ

σ(ωk
ij)

∗,
√
fkÛ

σ(ωk
ij))}i,j,k

is a quasi-basis for Eσ. Hence, for any b ∈ B,

b =
∑
i,j,k

fkE
σ(bÛσ(ωk

ij)
∗)Ûσ(ωk

ij).

Since Ûσ(ωk
ij) ∈M(B) for any i, j, k,

Eσ(bÛσ(ωk
ij)

∗) ∈ Bσ

for any i, j, k and b ∈ B. Let

a =
∑
i,j,k

fkE
σ(bÛσ(ωk

ij)
∗)oρ,uσ ωk

ij .

Then a ∈ Bσ oρ,uσ H0 and π(a) = b. Thus, π is surjective. Since π′

is an isomorphism of M(B)σ oρ,uσ H0 onto M(B), we see that π is an

isomorphism of Bσoρ,uσH0 onto B. Also, since σ◦π′ = (π′⊗id)◦ρ̂ and
E

ρ,uσ

1 = Eσ ◦ π′, we see that

σ ◦ π = (π ⊗ id) ◦ ρ̂, Eρ,uσ

1 = Eσ ◦ π.

Furthermore, by the definition of π′, π′ is strictly continuous. Thus,
π′ = π. �

Combining Lemmas 2.14, 2.15 and 2.16, we obtain the next propo-
sition.

Proposition 2.17. Let B be a C∗-algebra and σ a coaction of H0

on B. We suppose that σ̂(1oσ e) ∼ (1oσ e)⊗1 in (M(B)oσ H)⊗ H.
Then, there are a twisted coaction (ρ, uσ) of H on Bσ and an isomor-
phism π of Bσ oρ,uσ H0 onto B satisfying

σ ◦ π = (π ⊗ idH) ◦ ρ̂, Eρ,uσ

1 = Eσ ◦ π,

where Bσ is the fixed point C∗-subalgebra of B for σ, and Eρ,uσ

1 and
Eσ are the canonical conditional expectations from B and Bσ oρ,uσ H0

onto Bσ, respectively.
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3. Twisted coactions on a Hilbert C∗-bimodule and strong
Morita equivalence for twisted coactions. First, we shall define
crossed products of Hilbert C∗-bimodules in the sense of Brown, Mingo
and Shen [6] and show their duality theorem, which is similar to [17,
Theorem 5.7]. The definition of a Hilbert C∗-bimodule is as follows:
Let A and B be C∗-algebras. Let X be a left pre-Hilbert A-bimodule
and a right pre-Hilbert B-module. Its left A-valued inner and right B-
valued inner products are denoted by A⟨· , ·⟩ and ⟨· , ·⟩B , respectively.

Definition 3.1. We call X a pre-Hilbert A−B-bimodule if X satisfies
the condition

A⟨x, y⟩z = x⟨y, z⟩B
for any x, y, z ∈ X. We callX a Hilbert A−B-bimodule ifX is complete
with the norms.

Remark 3.2. We suppose that X is a pre-Hilbert A − B-bimodule.
Then, by [6, Remark 1.9], we have the following:

(1) for any x ∈ x, ∥A⟨x, x⟩∥ = ∥⟨x, x⟩B∥;
(2) for any a ∈ A, b ∈ B and x, y ∈ X,

A⟨x, yb⟩ = A⟨xb∗, y⟩, ⟨ax, y⟩B = ⟨x, a∗y⟩B ;

(3) if X is complete with the norm and full with both-sided inner
products, then X is an A−B-equivalence bimodule.

In this paper, by “pre-Hilbert C∗-bimodules” and “Hilbert C∗-
bimodules,” we mean pre-Hilbert C∗-bimodules and Hilbert C∗-bimod-
ules in the sense of [6], respectively.

Let A and B be C∗-algebras. Let X be a Hilbert A − B-bimodule,
and let BB(X) be the C∗-algebra of all right B-linear operators on X
for which there is a right adjoint B-linear operator on X. We note
that a right B-linear operator on X is bounded. For each x, y ∈ X, let
θx,y be a rank 1 operator on X defined by θx,y(z) = x⟨y, z⟩B for any
z ∈ X. Then, θx,y is a right B-linear operator on X. Let KB(X) be
the closure of all linear spans of such θx,y. Then, KB(X) is a closed
two-sided ideal of BB(X).

Similarly, we define AB(X) and AK(X). If X is an A − B-
equivalence bimodule, we identify A and M(A) with KB(X) and
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BB(X), respectively, and B and M(B) with AB(X) and AK(X),
respectively. For any a ∈M(A), we regard a ∈M(A) as an element in
BB(X) as follows: for any b ∈ A, x ∈ X,

a(bx) = (ab)x.

SinceX = AX, by [6, Proposition 1.7], we obtain an element inBB(X)
induced by a ∈ M(A). Similarly, we can obtain an element in AB(X)
induced by any b ∈M(B).

Lemma 3.3. With the above notation, we suppose that X is a
Hilbert A − B-bimodule. For any a ∈ M(A), there is a bounded net
{aα}α∈Γ ⊂ A such that ax = limα→∞ aαx for any x ∈ X.

Proof. Since a ∈ M(A), there is a bounded net {aα}α∈Γ ⊂ A
such that {aα}α∈Γ converges to a strictly. We can prove that ax =
limα→∞ aαx for any x ∈ X in a routine manner since X = AX by [6,
Proposition 1.7]. �

Let (ρ, u) and (σ, v) be twisted coactions of H0 on A and B,
respectively.

Definition 3.4. Let λ be a linear map from a Hilbert A−B-bimodule
X to X ⊗ H0. Then we say that λ is a twisted coaction of H0 on X
with respect to (A,B, ρ, u, σ, v) if the following conditions hold:

(1) λ(ax) = ρ(a)λ(x) for any a ∈ A, x ∈ X;
(2) λ(xb) = λ(x)σ(b) for any b ∈ B, x ∈ X;
(3) ρ(A⟨x, y⟩) = A⊗H0⟨λ(x), λ(y)⟩ for any x, y ∈ X;
(4) σ(⟨x, y⟩B) = ⟨λ(x), λ(y)⟩B⊗H0 for any x, y ∈ X;
(5) (idX ⊗ ϵ0) ◦ λ = idX ;
(6) (λ⊗ id)(λ(x)) = u(id⊗∆0)(λ(x))v∗ for any x ∈ X; where u and v

are regarded as elements in BB(X) and AB(X), respectively.

Note that the twisted coaction λ of H0 on the Hilbert A − B-
bimodule X with respect to (A,B, ρ, u, σ, v) is isometric. Indeed, for
any x ∈ X,

∥λ(x)∥2 = ∥A⊗H0⟨λ(x), λ(x)⟩∥ = ∥ρ(A⟨x, y⟩)∥ = ∥A⟨x, y⟩∥ = ∥x∥2.
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Let λ be a twisted coaction of H0 on a Hilbert A−B-bimodule X with
respect to (A,B, ρ, u, σ, v). We define the twisted action of H on X
induced by λ as follows: for any x ∈ X, h ∈ H,

h ·λ x = (id⊗ h)(λ(x)) = λ(x)̂(h),

where λ(x)̂ is the element in Hom(H,X) induced by λ(x) in X ⊗H0.
Then, we obtain the following conditions which are equivalent to
Definition 3.4 (1)–(6), respectively:

(1)′ h ·λ ax = [h(1) ·ρ,u a][h(2) ·λ x] for any a ∈ A, x ∈ X;

(2)′ h ·λ xb = [h(1) ·λ x][h(2) ·σ,v b] for any b ∈ B, x ∈ X;

(3)′ h ·ρ A⟨x, y⟩ = A⟨[h(1) ·λ x], [S(h∗(2)) ·λ y]⟩ for any x, y ∈ X;

(4)′ h ·σ ⟨x, y⟩B = ⟨[S(h∗(1)) ·λ x], [h(2) ·λ y]⟩B for any x, y ∈ X;

(5)′ 1H ·λ x = x for any x ∈ X;

(6)′ h ·λ [l ·λ x] = û(h(1), l(1))[h(2)l(2) ·λ x]v̂∗(h(3), l(3)) for any x ∈ X,
h, l ∈ H; where û and v̂ are elements in Hom(H × H,M(A)) and
Hom(H ×H,M(B)) induced by u ∈M(A)⊗H0 ⊗H0 and v ∈M(B)
⊗H0 ⊗H0, respectively.

Remark 3.5. In Definition 3.4, if ρ and σ are coactions of H0 on A
and B, respectively, then Definition 3.4 (6) and its equivalent (6)′ are
the following, respectively:

(6) (λ⊗ id) ◦ λ = (id⊗∆0) ◦ λ;

(6)′ h ·λ [l ·λ x] = hl ·λ x for any x ∈ X.

In this case, we call λ a coaction of H0 on X with respect to
(A,B, ρ, σ).

Next, we shall define crossed products of Hilbert C∗-bimodules by
twisted coactions in the same way as in [17, Section 4] and give a
duality theorem for them.

Let (ρ, u) and (σ, v) be twisted coactions of H0 on C∗-algebras A
and B, respectively. Let λ be a twisted coaction of H0 on a Hilbert
A−B-bimodule X with respect to (A,B, ρ, u, σ, v). We define XoλH,
a Hilbert A oρ,u H − B oσ,v H-bimodule as follows: let (X oλ H)0
merely be X ⊗H (the algebraic tensor product) as vector spaces. Its
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left and right actions are given by

(aoρ,u h)(xoλ l) = a[h(1) ·λ x]v̂(h(2), l(1))oλ h(3)l(2),

(xoλ l)(boσ,v m) = x[l(1) ·σ,v b]v̂(l(2),m(1))oλ l(3)m(2)

for any a ∈ A, b ∈ B, x ∈ X and h, l,m ∈ H. Also, its left A oρ,u H-
valued and right B oσ,v H-valued inner products are given by

Aoρ,uH⟨xoλ h, y oλ l⟩ = A⟨x, [S(h(2)l∗(3))
∗ ·λ y]v̂(S(h(1)l∗(2))

∗, l(1))⟩
oρ,u h(3)l

∗
(4),

⟨xoλ h, y oλ l⟩Boσ,vH = v̂∗(h∗(2), S(h(1))
∗)[h∗(3) ·σ,v ⟨x, y⟩B ]v̂(h

∗
(4), l(1))

oσ,v h
∗
(5)l(2)

for any x, y ∈ X and h, l ∈ H. In the same manner as in [17,
Section 4], we see that (XoλH)0 is a pre-Hilbert Aoρ,uH−Boσ,vH-
bimodule. Let XoλH be the completion of (XoλH)0. It is a Hilbert

Aoρ,uH −Boσ,vH-bimodule. Let λ̂ be a linear map from (XoλH)0
to (X oλ H)0 ⊗H, defined by

λ̂(xoλ h) = (xoλ h(1))⊗ h(2)

for any x ∈ X, h ∈ H. By simple computation, we can see that λ̂ is a
linear map fromH to (XoλH)0⊗H satisfying in Definition 3.4 (1)–(6).
Thus, for any x ∈ (X oλ H)0,

∥λ̂(x)∥2 = ∥(Aoρ.uH)⊗H⟨λ̂(x), λ̂(x)⟩∥ = ∥ρ̂(A⟨x, x⟩)∥
= ∥A⟨x, x⟩∥ = ∥x∥2.

Hence, λ̂ is an isometry. We extend λ̂ to XoλH. We see that the ext-

ension of λ̂ is a coaction of H on X oλ H with respect to (A oρ,u

H,B oσ,v H, ρ̂, σ̂). We also denote it by the same symbol λ̂ and call it
the dual coaction of λ.

Similarly, we define the second dual coaction of λ, which is a coaction
of H0 on X oλ H oλ̂ H0. Let Λ be as in Section 2. For any
I = (i, j, k) ∈ Λ, let W ρ

I and V ρ
I be elements in M(A) oρ,u H oρ̂ H

0,

defined by

W ρ
I =

√
dk oρ,u w

k
ij , V ρ

I = (1oρ,u 1oρ̂ τ)(W
ρ
I oρ̂ 1

0).
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Similarly, for any I = (i, j, k) ∈ Λ, we define the elements

Wσ
I =

√
dk oσ,v w

k
ij , V σ

I = (1oσ,v 1oσ̂ τ)(W
σ
I oσ̂ 10)

inM(B)oσ,vHoσ̂H
0. We regardMN (C) as an equivalenceMN (C)−

MN (C)-bimodule in the usual way. Let X ⊗MN (C) be the exterior
tensor product of X and MN (C), which is a Hilbert A⊗MN (C)−B
⊗ MN (C)-bimodule. Let {fIJ}I,J∈Λ be a system of matrix units of
MN (C). Let ΨX be a linear map from X ⊗MN (C) to X oλH oλ̂H

0,
defined by

ΨX

(∑
I,J

xIJ ⊗ fIJ

)
=
∑
I,J

V ρ∗
I (xIJ oλ 1oλ̂ 10)V σ

J .

Let ΨA and ΨB be the isomorphisms of A⊗MN (C) and B ⊗MN (C)
onto Aoρ,uH oρ̂H

0 and Boσ,v H oσ̂ H
0 defined in Proposition 2.13,

respectively. Then, we have the same lemmas as [17, Lemmas 5.1, 5.5].
Hence, ΨX is an isometry from X ⊗MN (C) to X oλ H oλ̂ H

0 whose
image is (X oλ H)0 oλ̂ H

0, the linear span of the set

{xoλ hoλ̂ ϕ | x ∈ X,h ∈ H,ϕ ∈ H0}.

Since X⊗MN (C) is complete, so is (XoλH)0oλ̂H
0. Furthermore, we

claim that (X oλ H)0 is also complete. In order to show this, we need
the following lemma: let Eλ

1 be a linear map from (X oλ H)0 onto X
defined by

Eλ
1 (xoλ h) = τ(h)x

for any x ∈ X, h ∈ H.

Lemma 3.6. With the above notation, Eλ
1 is continuous.

Proof. In the same manner as in the proof of [17, Lemma 5.6], we
see that

Eλ
1 (xoλ h) = τ ·λ̂ (xoλ h) = V̂ ρ̂(τ(1))(xoλ hoλ̂ 10)V̂ σ̂∗(τ(2)),

where we identify X oλ H oλ̂ 10 with X oλ H and

V̂ ρ̂(ϕ) = 1oρ,u 1oρ̂ ϕ, V̂ σ̂(ϕ) = 1oσ,v 1oσ̂ ϕ

for any ϕ ∈ H0. Hence, Eλ
1 is continuous. �
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Let Eλ
2 be a linear map from (X oλ H oλ̂ H

0)0 to X oλ H, defined
by

Eλ
2 (xoλ̂ ϕ) = ϕ(e)x

for any x ∈ X oλ H, ϕ ∈ H0.

Lemma 3.7. With the above notation, (X oλ H)0 is complete.

Proof. Let {xn} be a Cauchy sequence in (X oλ H)0. Using
Lemma 3.6 and the linear map Eλ

2 , we can see that {xn} is conver-
gent in (X oλ H)0. �

By Lemma 3.7, X oλ H = (X oλ H)0. In the same way as in the
proof of [17, Theorem 5.7], we obtain the following proposition using
Lemma 3.7.

Proposition 3.8. Let A and B be C∗-algebras and H a finite dimen-
sional C∗-Hopf algebra with its dual C∗-Hopf algebra H0. Let (ρ, u) and
(σ, v) be twisted coactions of H0 on A and B, respectively. Let λ be a
twisted coaction of H0 on a Hilbert A− B-bimodule X with respect to
(A,B, ρ, u, σ, v). Then, there is an isomorphism ΨX from X ⊗MN (C)
onto X oλ H oλ̂ H

0 satisfying that

(1) ΨX

((∑
I,J

aIJ ⊗ fIJ

)(∑
I,J

xIJ ⊗ fIJ

))

= ΨA

(∑
I,J

aIJ ⊗ fIJ

)
ΨX

(∑
I,J

xIJ ⊗ fIJ

)
,

(2) ΨX

((∑
I,J

xIJ ⊗ fIJ

)(∑
I,J

bIJ ⊗ fIJ

))

= ΨX

(∑
I,J

xIJ ⊗ fIJ

)
ΨB

(∑
I,J

bIJ ⊗ fIJ

)
,

(3) Aoρ,uHoρ̂H0

⟨
ΨX

(∑
I,J

xIJ ⊗ fIJ

)
,ΨX

(∑
I,J

yIJ ⊗ fIJ

)⟩
= ΨA

(
A⊗MN (C)

⟨∑
I,J

xIJ ⊗ fIJ ,
∑
I,J

yIJ ⊗ fIJ

⟩)
,
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(4)
⟨
ΨX

(∑
I,J

xIJ ⊗ fIJ

)
,ΨX

(∑
I,J

yIJ ⊗ fIJ

)⟩
Boσ,vHoσ̂H0

= ΨB

(⟨∑
I,J

xIJ ⊗ fIJ ,
∑
I,J

yIJ ⊗ fIJ

⟩
B⊗MN (C)

)
for any aIJ ∈ A, bIJ ∈ B, xIJ , yIJ ∈ X, I and J ∈ Λ, where
XoλHoλ̂H

0 is a Hilbert Aoρ,uHoρ̂H
0−Boσ,vHoσ̂H

0- bimodule,
X⊗MN (C) is an exterior tensor product of X and the HilbertMN (C)−
MN (C)-bimodule MN (C). Furthermore, there are unitary elements
U ∈ (M(A)oρ,uH oρ̂H

0)⊗H0 and V ∈ (M(B)oσ,v H oσ̂ H
0)⊗H0

such that

U
̂̂
λ(x)V = ((ΨX ⊗ id) ◦ (λ⊗ idMN (C)) ◦Ψ−1

X )(x)

for any x ∈ X ⊗MN (C).

Proposition 3.8 has already been obtained in the case of Kac systems
by Guo and Zhang [10], which is a generalization of the above result.
Also, we have the following lemmas:

Lemma 3.9. With the above notation, if X is full with both-sided inner
products, then so is X oλ H.

Proof. Modifying the proof of [17, Lemma 4.5], yields the proof of
Lemma 3.9. �

Lemma 3.10. With the above notation, if X oλ H is full with both-
sided inner products, then so is X.

Proof. Since X oλ H is full with both-sided inner products, so is
X oλ H oλ̂ H

0 by Lemma 3.9. Thus, X ⊗MN (C) is full with both-
sided inner products by Proposition 3.8. Let f be a minimal projection
in MN (C). Then,

A⊗ f = (1M(A) ⊗ f)(A⊗MN (C))(1M(A) ⊗ f)

= (1⊗ f)A⊗MN (C)⟨X ⊗MN (C), X ⊗MN (C)⟩(1⊗ f)

= A⟨X, X⟩ ⊗ fMN (C)f = A⟨X, X⟩ ⊗ f.
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Hence, X is full with the left-sided inner product. Similarly, we can see
that X is full with the right-sided inner product. Therefore, we obtain
the conclusion. �

Definition 3.11. Let (ρ, u) and (σ, v) be twisted coactions of H0 on
C∗-algebras A and B, respectively. Then, (ρ, u) is strongly Morita
equivalent to (σ, v) if there are an A−B-equivalence bimodule X and
a twisted coaction λ of H0 on X with respect to (A,B, ρ, u, σ, v).

In the same manner as in [17, Section 3], we see that the strong
Morita equivalence for twisted coactions of H0 on C∗-algebras is an
equivalence relation. Also, we obtain the following lemma in a similar
manner to [17, Lemma 3.12] using approximate units in a C∗-algebra.
It is given without its proof.

Lemma 3.12. Let (ρ, u) and (σ, v) be twisted coactions of H0 on A.
Then, the following conditions are equivalent :

(1) the twisted coactions (ρ, u) and (σ, v) are exterior equivalent ;
(2) the twisted coactions (ρ, u) and (σ, v) are strongly Morita equivalent

by a twisted coaction λ of H0 on AAA, which is a linear map from

AAA to A⊗H0A ⊗ H0
A⊗H0 where AAA and A⊗H0A ⊗ H0

A⊗H0 are

regarded as an A−A-equivalence bimodule and an A⊗H0−A⊗H0-
equivalence bimodule in the usual way.

Remark 3.13. Let A and B be C∗-algebras and σ a coaction of H0

on B. Let X be an A − B-equivalence bimodule and λ a linear map
from X to X ⊗H0 satisfying

(1) λ(xb) = λ(x)σ(b) for any b ∈ B, x ∈ X;
(2) σ(⟨x, y⟩B) = ⟨λ(x), λ(y)⟩B⊗H0 for any x, y ∈ X;
(3) (idX ⊗ ϵ0) ◦ λ = idX ;
(4) (λ⊗ id) ◦ λ = (id⊗∆0) ◦ λ.

We call (B,X, σ, λ,H0) a right covariant system, see [17, Defini-
tion 3.4]. Then, we construct an action “ · ” of H on KB(X) as follows.
For any a ∈ BB(X), h ∈ H and x ∈ X,

[h · a]x = h(1) ·λ a[S(h(2)) ·λ x].
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If a ∈ KB(X), we see that h · a ∈ KB(X). Thus, identifying A with
KB(X), we obtain an action of H on A.

4. Linking C∗-algebras and coactions on C∗-algebras. Let
(ρ, u) and (σ, v) be twisted coactions of H0 on C∗-algebras A and B,
respectively. Suppose that there are a Hilbert A−B- bimodule X and
a twisted coaction λ of H0 on X with respect to (A,B, ρ, u, σ, v). Let C
be the linking C∗-algebra for X defined in [6]. By [6, Proposition 2.3],
C is the C∗-algebra consisting of all 2× 2-matrices[

a x
ỹ b

]
, a ∈ A, b ∈ B, x, y ∈ X,

where ỹ denotes y as an element in X̃, the dual Hilbert C∗-bimodule
of X. Before defining the coaction of H0 on C induced by the twisted
coaction λ of H0 on X, with respect to (A,B, ρ, u, σ, v), we give the
next remark.

Remark 4.1. We identify the H0−H0-equivalence bimodule H̃0 with
H0 as the H0 −H0-equivalence bimodule by the map

H̃0 −→ H0 : ϕ̃ 7−→ ϕ∗.

Also, we identify the Hilbert B⊗H0 −A⊗H0-bimodule X̃ ⊗H0 with

X̃ ⊗H0 by the map

X̃ ⊗H0 −→ X̃ ⊗H0 : x̃⊗ ϕ 7−→ x̃⊗ ϕ∗.

Furthermore, we identify the linking C∗-algebra for X⊗H0, the Hilbert
A⊗H0 −B ⊗H0-bimodule with C ⊗H0 by the isomorphism defined
by

Φ

([
a⊗ ϕ11 x⊗ ϕ12
˜y ⊗ ϕ21 b⊗ ϕ22

])

=

[
a 0
0 0

]
⊗ ϕ11 +

[
0 x
0 0

]
⊗ ϕ12 +

[
0 0
ỹ 0

]
⊗ ϕ∗21 +

[
0 0
0 b

]
⊗ ϕ22,

where a ∈ A, b ∈ B, x, y ∈ X and ϕij ∈ H0, i, j = 1, 2.
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Let γ be the homomorphism of C to C ⊗ H0 defined by, for any
a ∈ A, b ∈ B, x, y ∈ X,

γ

([
a x
ỹ b

])
=

[
ρ(a) λ(x)

λ̃(y) σ(b)

]
.

Let w be the unitary element inM(C) defined by w = [ u 0
0 v ]. By routine

computation, (γ,w) is a twisted coaction of H0 on C.

Remark 4.2.

(1) We note the twisted action of H on C induced by (γ,w) as
follows: for any a ∈ A, b ∈ B, x, y ∈ X and h ∈ H,

h ·γ
[
a x
ỹ b

]
=

[
h ·ρ,u a h ·λ x
˜S(h)∗ ·λ y h ·σ,v b

]
.

(2) Let λ̃ be a linear map from X̃ to X̃ ⊗ H0 defined by, for any
x ∈ X,

λ̃(x̃) = λ̃(x).

Then, λ̃ is the twisted coaction of H0 on X̃ induced by λ. Also,

the twisted action of H on X̃ induced by λ̃ is as follows: for any
x ∈ X,h ∈ H,

h ·λ̃ x̃ = ˜S(h∗) ·λ x.

Let C1 be the linking C∗-algebra for the Hilbert AoρH −B oσ H-
bimodule X oλ H. Then, we obtain the next lemma by Remarks 4.1
and 4.2.

Lemma 4.3. With the above notation, there is an isomorphism π1 of
C oγ,w H onto C1.

Proof. Let π1 be the map from C oγ,w H to C1, defined by

π1

([
a x
ỹ b

]
oγ,wh

)
=

[
aoρ,u h xoλ h

{û(S(h(2)), h(1))∗[h∗(3) ·λ y]oλ h
∗
(4)}̃ boσ,v h

]
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for any a ∈ A, b ∈ B, x, y ∈ X and h ∈ H. Let θ1 be the map from C1

to C oγ,w H, defined by

θ1

([
aoρ,u h xoλ l

ỹ oλ k boσ,v m

])
=

[
a 0
0 0

]
oγ,w h+

[
0 x
0 0

]
oγ,w l

+

[
0 0

{[S(k(3) ·λ y)]v̂(S(k(2)), k(1))}̃ 0

]
oγ,w k

∗
(4) +

[
0 0
0 b

]
oγ,w m

for any a ∈ A, b ∈ B, x, y ∈ X and h, k, l,m ∈ H. Then, by routine
computation, π1 is a homomorphism of C oγ,w H to C1, and θ1 is a
homomorphism of C1 to C oγ,w H, Moreover, we see that θ1 is the
inverse map of π1. Therefore, we obtain the conclusion. �

By the proof of Lemma 4.3, we obtain the following corollary.

Corollary 4.4. With the above notation, there is a Hilbert B oσ H −
Aoρ H-bimodule isomorphism π of X̃ oλ H onto X̃ oλ̃ H.

Remark 4.5. Let γ1 be a coaction of H on C1, defined by

γ1 = (π1 ⊗ idH) ◦ γ̂ ◦ π−1
1 .

Then, by routine computation, for any a ∈ A, b ∈ B, x, y ∈ X and
h, l, k,m ∈ H,

γ1

([
aoρ,u h xoλ l

ỹ oλ k boσ,v m

])
=

[
aoρ,u h(1) 0

0 0

]
⊗ h(2) +

[
0 xoλ l(1)
0 0

]
⊗ l(2) +

[
0 0

(y oλ k(1))̃ 0

]
⊗ k∗(2) +

[
0 0
0 boσ,v m(1)

]
⊗m(2).

We give a result similar to [15, Theorem 6.4] for coactions of H0

on a Hilbert C∗-bimodule, applying Proposition 2.17 to a linking C∗-
algebra. Let ρ and σ be coactions of H0 on A and B, respectively,
and let X be a Hilbert A−B-bimodule. Let λ be a coaction of H0 on
X with respect to (A,B, ρ, σ). Let C be the linking C∗-algebra for X
and γ the coaction of H0 on C induced by ρ, σ and λ. As defined in
Section 3, let

Xλ = {x ∈ X | λ(x) = x⊗ 10}.
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Then, by Lemma 3.10, Xλ is a Hilbert Aρ −Bσ- bimodule. Let C0 be
the linking C∗-algebra for Xλ.

We prove the next lemma in a straightforward way. Therefore, we
give it with no proof.

Lemma 4.6. With the above notation and assumptions, Cγ = C0,
where Cγ is the fixed point C∗-subalgebra of C for γ.

Lemma 4.7. With the above notation, if ρ̂(1 oρ e) ∼ (1 oρ e) ⊗ 1 in

(M(A)oρH)⊗H and σ̂(1oρ e) ∼ (1oσ e)⊗ 1 in (M(B)oσ H)⊗H,

then γ̂(1M(C) oγ e) ∼ (1M(C) oγ e)⊗ 1 in (M(C)oγ H)⊗H.

Proof. By Remark 4.3, we identify C oγ H with C1, the linking C∗-
algebra for the Hilbert A oρ H − A oρ H-bimodule X oλ H. Also,
we identify γ̂ with γ1, the coaction of H on C1 defined in Remark 4.5.
Hence,

γ̂(1oγ e) =

[
1oρ e(1) 0

0 0

]
⊗ e(2) +

[
0 0
0 1oσ e(1)

]
⊗ e(2).

By the assumptions,[
1oρ e(1) 0

0 0

]
⊗ e(2) ∼

[
1oρ e 0

0 0

]
⊗ 1 in

[
M(A)oρ H 0

0 0

]
⊗H,[

0 0
0 1oσ e(1)

]
⊗ e(2) ∼

[
0 0
0 1oσ e

]
⊗ 1 in

[
0 0
0 M(A)oσ H

]
⊗H.

Since
[
M(A)oρH 0

0 0

]
and

[
0 0
0 M(A)oσH

]
are C∗-subalgebras of M(C1) by

the proof of Echterhoff and Raeburn [9, Proposition A.1],[
1oρ e(1) 0

0 0

]
⊗ e(2) +

[
0 0
0 1oσ e(1)

]
⊗ e(2) ∼

[
1oρ e 0

0 1oσ e

]
⊗ 1

in M(C1)⊗H. Therefore, we obtain the conclusion since M(C1)⊗H
is identified with (M(C)oγ H)⊗H. �
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By [15, Section 4], there is a unitary element wρ ∈ M(A) ⊗ H
satisfying

wρ∗((1oρ e)⊗ 1)wρ = ρ̂(1oρ e),

Uρ = wρ(zρ∗ ⊗ 1),

zρ = (idM(A) ⊗ ϵ)(wρ) ∈M(A)ρ.

Also, there is a unitary element wσ ∈M(B)⊗H satisfying

wσ∗((1oσ e)⊗ 1)wσ = σ̂(1oσ e),

Uσ = wσ(zσ∗ ⊗ 1),

zσ = (idM(A) ⊗ ϵ)(wσ) ∈M(A)σ.

Let wγ =
[
wρ 0
0 wσ

]
∈ M(C) ⊗ H. Then, wγ is a unitary element

satisfying wγ∗((1oγ e)⊗)wγ = γ̂(1oγ e). Let U
γ = wγ(zγ∗⊗1), where

zγ = (idM(C) ⊗ ϵ)(wγ) ∈M(C)γ . Then, by Section 2, Uγ satisfies

Ûγ(10) = 1, Ûγ(ϕ(1))cÛ
γ∗(ϕ(2)) ∈M(C)γ

for any c ∈M(C)γ , ϕ ∈ H0. Let (η, uγ) be a twisted coaction of H on
Cγ induced by Uγ , which is defined in Section 2. Then, by the proof of
Proposition 2.17, there is an isomorphism πC of Cγ oη,uγ H0 onto C,
defined by

πC(coη,uγ ϕ) = cÛγ(ϕ)

for any c ∈ Cγ , ϕ ∈ H0, which satisfies

γ ◦ πC = (πC ⊗ idH) ◦ η̂, Eη.uγ

= Eγ ◦ πC ,

where Eη,uγ

and Eγ are the canonical conditional expectations from
Cγ oη,uγ H0 and C onto Cγ , respectively. Let p =

[
1A 0
0 0

]
, q =

[
0 0
0 1B

]
.

Then p and q are projections inM(Cγ). We note thatM(Cγ) =M(C)γ

by Lemma 2.14.

Lemma 4.8. With the above notation and assumptions,

πC(poη,uγ 10) = p, uγ(p⊗ 1⊗ 1) = (p⊗ 1⊗ 1)uγ ,

πC(q oη,uγ 10) = q, uγ(q ⊗ 1⊗ 1) = (q ⊗ 1⊗ 1)uγ ,
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Proof. Note that Cγ is identified with the C∗-subalgebra Cγoη,uγ10

of Cγ oη,uγ H0. Then, by [25, Proposition 2.12],

p = Eη,uγ

1 (poη,uγ 10) = Eγ(πC(poη,uγ 10))

= e ·γ πC(poη,uγ 10) = πC(e ·η̂ (poη,uγ 10))

= πC(p) = πC(poη,uγ 10)

since γ ◦ πC = (πC ⊗ idH) ◦ η̂. Similarly, we obtain that πC(qoη,uγ 10)

= q. Furthermore, by the definition of Uγ , Uγ =
[
Uρ 0
0 Uσ

]
∈M(C)⊗H.

Hence, Uγ(p⊗ 1) = (p⊗ 1)Uγ . Since

ûγ(ϕ, ψ) = Ûγ(ϕ(1))Û
γ(ψ(1))Û

γ∗(ϕ(2)ψ(2))

for any ϕ, ψ ∈ H0, we see that uγ(p⊗ 1⊗ 1) = (p⊗ 1⊗ 1)uγ . Similarly,
uγ(q ⊗ 1⊗ 1) = (q ⊗ 1⊗ 1)uγ . �

Let α = η|Aρ , β = η|Bσ and µ = η|Xλ . Let uρ = uγ(p ⊗ 1 ⊗ 1)
and uσ = uγ(q ⊗ 1⊗ 1). Furthermore, let πA = πC |A, πB = πC |B and
πX = πC |X . Then, (α, uρ) and (β, uσ) are twisted coactions H0 on Aρ

and Bσ, respectively, and µ is a twisted coaction of H0 on Xλ with
respect to (A,B, α, uρ, β, uσ). Also, πA and πB are isomorphisms of
Aρ oα,uρ H0 and Bσ oβ,uσ H0 onto A and B satisfying the results in
Proposition 2.17, respectively. Furthermore, we obtain the following.

Theorem 4.9. Let A and B be C∗-algebras and H a finite dimensional
C∗-Hopf algebra with its dual C∗-Hopf algebra H0. Let ρ and σ be
coactions of H0 on A and B, respectively. Let λ be a coaction of H0

on a Hilbert A−B-bimodule X with respect to (A,B, ρ, σ). We suppose
that ρ̂(1oρe) ∼ (1oρe)⊗1 inM(A)oρH and that σ̂(1oσe) ∼ (1oσe)⊗1

inM(B)oσH. Then, there are a twisted coaction µ of H0 on Xλ and a

bijective linear map πX from XλoµH
0 onto X satisfying the following

conditions:

(1) πX((aoα,uρ ϕ)(xoµ ψ)) = πA(aoα,uρ ϕ)πX(xoµ ψ);
(2) πX((xoµ ϕ)(boβ,uσ ψ)) = πX(xoµ ϕ)πB(boβ,uσ ψ);
(3) πA(Aρoα,uρH0⟨xoµ ϕ, y oµ ψ⟩) = A⟨πX(xoµ ϕ), πX(y oµ ψ)⟩;
(4) πB(⟨xoµ ϕ, y oµ ψ⟩Bσoβ,uσH0) = ⟨πX(xoµ ϕ), πX(y oµ ψ)⟩B;
(5) h ·λ πX(x oµ ϕ) = πX(h ·µ̂ (x oµ ϕ)) for any x, y ∈ Xλ, a ∈ Aρ,

b ∈ Bσ, h ∈ H, ϕ, ψ ∈ H0.
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Proof. Using the above discussion, we can prove the theorem in a
straightforward manner. �

Let A be a unital C∗-algebra and ρ a coaction of H0 on A. Let K
be the C∗-algebra of all compact operators on a countably infinite
dimensional Hilbert space. Let As = A ⊗ K and ρs = ρ ⊗ id. We
identify H0 ⊗K with K⊗H0. Then, ρs is a coaction of H0 on As.

Lemma 4.10. With the above notation, ρ and ρs are strongly Morita
equivalent.

Proof. Immediate by routine computation. �

Let A and B be unital C∗-algebras. Let ρ and σ be coactions of
H0 on A and B, respectively. Suppose that ρ and σ are strongly
Morita equivalent. Also, suppose that there are an A− B-equivalence
bimodule X and a coaction λ of H0 on X with respect to (A,B, ρ, σ).
Let C be the linking C∗-algebra for X and γ the coaction of H0 on C
induced by ρ, σ and λ, which is defined above. Let As = A⊗K, Bs =
B ⊗ K and Cs = C ⊗ K. Let Xs = X ⊗ K be the exterior tensor
product of X and K, which is an As −Bs-equivalence bimodule in the
usual way. Let ρs = ρ⊗ id, σs = σ⊗ id and γs = γ⊗ id. Let λs = λ⊗ id,
which is a coaction of H0 on Xs. Let

p =

[
1A ⊗ 1M(K) 0

0 0

]
, q =

[
0 0
0 1B ⊗ 1M(K)

]
.

Then, p and q are full projections in M(Cs) and As ∼= pCsp, Bs ∼=
qCsq. We identify As and Bs with pCsp and qCsq, respectively. By
[4, Lemma 2.5], there is a partial isometry w ∈ M(Cs) such that
w∗w = p, ww∗ = q. Let θ be a map from As to Cs, defined by

θ(a) = waw∗ = w

[
a 0
0 0

]
w∗

for any a ∈ A. Since w∗w = p and ww∗ = q, by easy computation, we
see that θ is an isomorphism of As onto Bs.
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Proposition 4.11. With the above notation, there is a unitary element
u ∈M(Bs)⊗H0 such that

(θ ⊗ idH0) ◦ ρs ◦ θ−1 = Ad(u) ◦ σs,

(u⊗ 10)(σs ⊗ idH0)(u) = (idM(Bs) ⊗∆0)(u),

where σs is the strictly continuous coaction of H0 on M(Bs) extending
the coaction σs of H0 on Bs.

Proof. We note that θ = Ad(w). Since ρs = γs|As and σs = γs|Bs ,
we obtain that

(θ ⊗ idH0) ◦ ρs ◦ θ−1 = Ad((w ⊗ 10)γs(w∗)) ◦ σs,

where γs is the strictly continuous coaction of H0 on M(Cs) extending

the coaction γs of H0 on Cs. Let u = (w ⊗ 10)γs(w∗). By routine
computation, we can show that u is a desired unitary element in
M(Bs)⊗H0. �

5. Equivariant Picard groups. Following [11], we shall define the
equivariant Picard group of a C∗-algebra.

Let A be a C∗-algebra and H a finite dimensional C∗-Hopf algebra
with its dual C∗-Hopf algebra H0. Let (ρ, u) be a twisted coaction
of H0 on A. We denote by (X,λ) a pair of an A − A-equivalence
bimodule X and a twisted coaction λ of H0 on X with respect to
(A,A, ρ, u, ρ, u). Let Equiρ,uH (A) be the set of all such pairs (X,λ) as
above. We define an equivalence relation ∼ in Equiρ,uH (A) as follows:
for (X,λ), (Y, µ) ∈ Equiρ,uH (A), (X,λ) ∼ (Y, µ) if and only if there
is an A − A-equivalence bimodule isomorphism π of X onto Y such
that µ ◦ π = (π ⊗ idH0) ◦ λ, that is, for any x ∈ X and h ∈ H,
π(h ·λ x) = h ·µ π(x). We denote by [X,λ] the equivalence class of
(X,λ) in Equiρ,uH (A). Let Picρ,uH (A) = Equiρ,uH (A)/∼. We define the
product in Picρ,uH (A) as follows: for (X,λ), (Y, µ) ∈ Equiρ,uH (A),

[X,λ][Y, µ] = [X ⊗A Y, λ⊗ µ],

where λ ⊗ µ is the twisted coaction of H0 on X ⊗A Y induced by the
action “·λ⊗µ” of H on X ⊗A Y defined in [17, Proposition 3.1]. By
simple computation, we see that the above product is well defined. We
regard A as an A−A-equivalence bimodule in the usual way. Sometimes
it is denoted by AAA. Also, we can regard a twisted coaction ρ of H0



1596 KAZUNORI KODAKA

on C∗-algebra A as a twisted coaction of H0 on the A−A-equivalence
bimodule AAA with respect to (A,A, ρ, u, ρ, u). Then, [AAA, ρ] is the

unit element in Picρ,uH (A). Let λ̃ be the coaction of H0 on X̃ defined

by λ̃(x̃) = λ̃(x) for any x ∈ X, which is also defined in Remark 4.2 (2).

Then, we see that [X̃, λ̃] is the inverse element of [X,λ] in Picρ,uH (A).
By the above product, Picρ,uH (A) is a group. We call it the (ρ, u,H)-
equivariant Picard group of A.

Let Autρ,uH (A) be the group of all automorphisms α of A satisfying
that (α⊗ idH0)◦ρ = ρ◦α, (α⊗ id⊗ id)(u) = u and let Intρ,uH (A) be the
set of all generalized inner automorphisms Ad(v) of A satisfying that
ρ(v) = v ⊗ 10, (v ⊗ 10 ⊗ 10)u = u(v ⊗ 10 ⊗ 10), where v is a unitary

element inM(A). By easy computation, Intρ,uH (A) is a normal subgroup
of Autρ,uH (A). Modifying [5], for each α ∈ Autρ,uH (A), we construct the
element (Xα, λα) ∈ Equiρ,uH (A) as follows: let α ∈ Autρ,uH (A). Let Xα

be the vector space A with the obvious left action of A on Xα and the
obvious left A-valued inner product, but define the right action of A
on Xα by x · a = xα(a) for any x ∈ Xα, a ∈ A and the right A-valued
inner product by ⟨x, y⟩A = α−1(x∗y) for any x, y ∈ Xα. Then, by [5],
Xα is an A − A-equivalence bimodule. Also, ρ may be regarded as
a linear map from Xα to an A ⊗ H0 − A ⊗ H0-equivalence bimodule
Xα⊗H0. We denote it by λα. By simple computation, λα is a twisted
coaction of H0 on Xα with respect to (A,A, ρ, u, ρ, u). Thus, we obtain
the map Φ,

Φ : Autρ,uH (A) −→ Picρ,uH (A) : α 7−→ [Xα, λα].

Modifying [5], we see that the map Φ is a homomorphism of Autρ,uH (A)
to Picρ,uH (A). This yields a similar result to [5, Proposition 3.1].

Proposition 5.1. With the above notation, we have the exact sequence

1 −→ Intρ,uH (A)
ı−→ Autρ,uH (A)

Φ−→ Picρ,uH (A),

where ı is the inclusion map of Intρ,uH (A) to Autρ,uH (A).

Proof. Modifying the proof of [5, Proposition 3.1], we shall prove
this proposition. Let v be a unitary element inM(A) with ρ(v) = v⊗10,

(v⊗10⊗10)u = u(v⊗10⊗10). We show that [XAd(v), λAd(v)] = [AAA, ρ]
in Picρ,uH (A). Let π be the map from AAA to XAd(v) defined by
π(a) = av∗ for any a ∈ AAA. Then π is an A−A-equivalence bimodule
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isomorphism. Also, for any a ∈ AAA and h ∈ H,

h ·λAd(v)
π(a) = h ·λAd(v)

(av∗)

= [h(1) ·ρ a][h(2) ·ρ v∗]
= [h ·ρ a]v∗ = π(h ·ρ a).

Thus, [XAd(v), λAd(v)] = [AAA, ρ] in Picρ,uH (A). Conversely, let α ∈
Autρ,uH (A) with [Xα, λα] = [AAA, ρ] in Picρ,uH (A). Then, there is an
A−A-equivalence bimodule isomorphism π of AAA onto Xα such that

λα ◦ π = (π ⊗ id) ◦ ρ.

By the proof of [5, Proposition 3.1], (π ◦α−1, π) is a double centralizer
of A. Hence, (π ◦ α−1, π) ∈ M(A). Let v = (π ◦ α−1, π). Then, v is
a unitary element in M(A) such that α = Ad(v∗). Furthermore, since
λα◦π = (π⊗ id)◦ρ, for any a ∈ A, λα(π(a)) = (π⊗ id)(ρ(a)). It follows
that ρ(av∗) = ρ(a)(v⊗ 10)∗ for any a ∈ A, that is, ρ(v) = v⊗ 10. Also,

since (ρ⊗ id)◦ρ = Ad(u)◦ (id⊗∆0)◦ρ, (v⊗10⊗10)u = u(v⊗10⊗10).
Therefore, we obtain the conclusion. �

Next, we shall show a similar result to [5, Corollary 3.5]. Let A be a
C∗-algebra and X an A−A-equivalence bimodule. Let ρ be a coaction
of H0 on A and λ a coaction of H0 on X with respect to (A,A, ρ, ρ).
Let C be the linking C∗-algebra for X and γ the coaction of H0 on C
induced by ρ and λ which is defined in Section 4. Furthermore, suppose
that A is unital and that ρ̂ (1 oρ e) ∼ (1 oρ e) ⊗ 1 in (A oρ H) ⊗ H.
Then ρ is saturated by [15, Section 4]. Let (ρ̂ )s be the coaction of H
on (A oρ H)s ⊗ H induced by the dual coaction ρ̂ of H on A oρ H.

Also, let (ρs)̂ be the dual coaction of ρs which is a coaction of H on
As oρs H. By their definitions, we can see that (ρ̂ )s = (ρs)̂ , where we

identify (Aoρ H)s with As oρs H. We denote them by ρ̂s.

Lemma 5.2. With the above notation, if ρ̂ (1 oρ e) ∼ (1 oρ e) ⊗ 1 in
(AoρH)⊗H, then ρ̂ s(1oρs e) ∼ (1oρs e)⊗ 1 in (M(As)oρs H)⊗H.

Proof. Immediate by straightforward computation. �

Let C be the linking C∗-algebra for an As−As-equivalence bimodule
Xs and γ the coaction of H on C induced by ρs and λs.



1598 KAZUNORI KODAKA

Lemma 5.3. With the above notation, if ρ̂ (1 oρ e) ∼ (1 oρ e) ⊗ 1 in
(AoρH)⊗H, then γ̂(1M(C)oγe) ∼ (1M(C)oγe)⊗1 in (M(C)oγH)⊗H.

Proof. Immediate by Lemmas 4.7 and 5.2. �

Lemma 5.4. With the above notation, we suppose that ρ̂ (1 oρ e) ∼
(1oρe)⊗1 in (AoρH)⊗H. Let Φ be the homomorphism of Autρ

s

H (As) to

Picρ
s

H (As) defined by Φ(α) = [Xα, λα] for any α ∈ Autρ
s

H (As). Then, Φ
is surjective.

Proof. Let [X,λ] be any element in Picρ
s

H (As). Let

Xλ = {x ∈ X | λ(x) = x⊗ 10}.

Since ρ̂ (1 oρ e) ∼ (1 oρ e) ⊗ 1 in (A oρ H) ⊗ H, by Lemma 5.2,
ρ̂ s(1 oρs e) ∼ (1 oρs e) ⊗ 1 in (M(As) oρs H) ⊗ H. Since X is an

As − As-equivalence bimodule, by Lemma 3.10 and Theorem 4.9, Xλ

is an (As)ρ
s − (As)ρ

s

-equivalence bimodule, where (As)ρ
s

is the fixed
point C∗-subalgebra of As for the coaction ρs. Let C be the linking
C∗-algebra for X and γ the coaction of H0 on C induced by ρs and λ.
Let Cγ be the fixed point C∗-algebra of C for γ. Then, by Lemma 4.6,
Cγ is isomorphic to C0, the linking C

∗-algebra for Xλ. We identify Cγ

with C0. Let

p =

[
1A ⊗ 1M(K) 0

0 0

]
, q =

[
0 0
0 1A ⊗ 1M(K)

]
.

Then p and q are projections in M(C)γ . Since M(C)γ = M(Cγ) by
Lemmas 2.14 and 4.7, p and q are full for Cγ . By the proof of [5,
Theorem 3.4], there is a partial isometry w ∈M(C)γ such that

w∗w = p, q = ww∗.

Hence, w ∈M(C). Let α be the map on As, defined by

α(a) = w∗aw = w∗
[
0 0
0 a

]
w

for any a ∈ As. By routine computation, α is an automorphism of As.
Let π be a linear map from X to Xα, defined by

π(x) =

[
0 x
0 0

]
w = p

[
0 x
0 0

]
wp
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for any x ∈ X. In the same manner as in the proof of [5, Lemma 3.3],
we can see that π is an As−As-equivalence bimodule isomorphism of X
onto Xα. For any a ∈ As,

(ρs ◦ α)(a) = ρs(w∗aw) = γ

(
w∗
[
0 0
0 a

]
w

)
= γ(w∗)

[
0 0
0 ρs(a)

]
γ(w)

= (α⊗ idH0)(ρs(a))

since w ∈M(C)γ . Hence, α ∈ Autρ
s

H (As). Furthermore, for any x ∈ X,

(λα ◦ π)(x) = λα

([
0 x
0 0

]
w

)
= ρs

([
0 x
0 0

]
w

)

= γ

([
0 x
0 0

]
w

)
=

[
0 λ(x)
0 0

]
(w ⊗ 10)

= (π ⊗ idH0)(λ(x)),

where we identifyK⊗H0 withH0⊗K. Thus, Φ(α) = [X,λ]. Therefore,
we obtain the conclusion. �

Theorem 5.5. Let A be a unital C∗-algebra and ρ a coaction of H0

on A. We suppose that ρ̂ (1 oρ e) ∼ (1 oρ e) ⊗ 1 in (A oρ H) ⊗ H.
Then, we have the following exact sequence:

1 −→ Intρ
s

H (As)
ı−→ Autρ

s

H (As)
Φ−→ Picρ

s

H (As) −→ 1,

where ı is the inclusion map of Intρ
s

H (As) to Autρ
s

H (As).

Proof. Immediate by Proposition 5.1 and Lemma 5.4. �

Since the following lemma is obtained in a straightforward manner,
we omit its proof.

Lemma 5.6. Let (ρ, u) and (σ, v) be twisted coactions on C∗-algebras
A and B, respectively. We suppose that (ρ, u) is strongly Morita
equivalent to (σ, v). Then, Picρ,uH (A) ∼= Picσ,vH (B).
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6. Ordinary and equivariant Picard groups. In this section, we
shall investigate the relation between ordinary and equivariant Picard
groups. Let ρ be a coaction of H0 on a C∗-algebra A, and let fρ be the
map from PicρH(A) to Pic(A), defined by

fρ : PicρH(A) −→ Pic(A) : [X,λ] 7−→ [X],

where Pic(A) is the ordinary Picard group of A. Clearly, fρ is a
homomorphism of PicρH(A) to Pic(A). Let Aut(A) be the group of
all automorphisms of A, and let α ∈ Aut(A). Let Xα be the A − A-
equivalence bimodule induced by α defined in Section 5. Let λ be a
coaction of H0 on Xα with respect to (A,A, ρ, ρ). Then, for any a ∈ A
and x, y ∈ Xα,

(1) λ(ax) = λ(a · x) = ρ(a) · λ(x) = ρ(a)λ(x);
(2) λ(xα(a)) = λ(x · a) = λ(x) · ρ(a) = λ(x)(α⊗ id)(ρ(a));
(3) ρ(xy∗) = ρ(A⟨x, y⟩) = A⊗H0⟨λ(x), λ(y)⟩ = λ(x)λ(y)∗;
(4) ρ(α−1(x∗y))=ρ(⟨x, y⟩A)=⟨λ(x), λ(y)⟩A⊗H0=(α−1⊗id)(λ(x)∗λ(y));
(5) (id⊗ ϵ0)(λ(x)) = x;
(6) (λ⊗ id)(λ(x)) = (id⊗∆0)(λ(x)).

Let {uγ} be an approximate unit of A. Then, λ(uγ) ∈ Xα ⊗H0. Since
Xα = A as vector spaces, we regard λ(uγ) as an element in A⊗H0.

Lemma 6.1. With the above notation, we regard λ(uγ) as an element
in A ⊗ H0. Then, {λ(uγ)} strictly converges to a unitary element in
M(A⊗H0), and the unitary element does not depend upon the choice
of an approximate unit of A.

Proof. Let a ∈ A and x ∈ A⊗H0. Then, by equation (2),

∥(λ(uγ)− λ(uγ′))(α⊗ id)(ρ(a)x)∥ = ∥λ((uγ − uγ′)α(a))(α⊗ id)(x)∥
≤ ∥λ((uγ − uγ′)α(a))∥∥x∥
= ∥(uγ − uγ′)α(a)∥∥x∥

since λ is isometric. Since ρ(A)(A⊗H0) is dense in A⊗H0, {λ(uγ)y} is
a Cauchy net for any y ∈ A⊗H0. Similarly, by equation (1), {yλ(uγ)}
is also a Cauchy net for any y ∈ A ⊗H0. Thus, {λ(uγ)} converges to
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some element u ∈M(A⊗H0) strictly. We note

lim
γ→∞

ρ(uγ) = lim
γ→∞

ρ (uγ) = ρ( lim
γ→∞

uγ) = ρ(1) = 1,

lim
γ→∞

α−1(uγ) = lim
γ→∞

α−1(uγ) = α−1( lim
γ→∞

uγ) = α−1(1) = 1,

where the limits are taken under the strict topologies inM(A⊗H0) and
M(A), respectively, and α−1 is an automorphism of M(A) extending
α−1 to M(A), which is strictly continuous on M(A). Hence, by
equations (3) and (4), we can see that u is a unitary element in
M(A ⊗ H0). Let {vβ} be another approximate unit of A, and let v
be the limit of λ(vβ) under the strict topology in M(A ⊗H0). Then,
by the above discussion, we have that

∥(λ(uγ)− λ(vβ))(α⊗ id)(ρ(a)x)∥ ≤ ∥(uγ − vβ)α(a)∥∥x∥

for any a ∈ A and x ∈ A⊗H0. Since ρ(A)(A⊗H0) is dense in A⊗H0,
u = v. �

Lemma 6.2. Let u be as in the proof of Lemma 6.1. Then, u satisfies
λ(x) = ρ(x)u for any x ∈ Xα, ρ(α(a)) = u(α ⊗ id)(ρ(a))u∗ for any
a ∈ A and (ρ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u).

Proof. Let {uγ} be an approximate unit of A. By equation (1), for
any x ∈ Xα, λ(xuγ) = ρ(x)λ(uγ). Thus, λ(x) = ρ(x)u. Also, by
equation (2) for any a ∈ A,

λ(uγα(a)) = λ(uγ)(α⊗ id)(ρ(a)).

Hence, λ(α(a)) = u(α ⊗ id)(ρ(a)). Since λ(α(a)) = ρ(α(a))u for any
a ∈ A by the above discussion, for any a ∈ A,

ρ(α(a))u = u(α⊗ id)(ρ(a))

for any a ∈ A. Since u is a unitary element in M(A⊗H0),

ρ(α(a)) = u(α⊗ id)(ρ(a))u∗

for any a ∈ A. Furthermore, for any a ∈ A,

(λ⊗ id)(λ(uγa)) = (λ⊗ id)(λ(uγ)(α⊗ id)(ρ(α−1(a)))

= (ρ⊗ id)(λ(uγ))((λ⊗ id) ◦ (α⊗ id) ◦ ρ ◦ α−1)(a),
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by equations (1) and (2). Thus, equation (2) yields

(λ⊗ id)(λ(a)) = (ρ⊗ id)(u)((λ⊗ id) ◦ (α⊗ id) ◦ ρ ◦ α−1)(a)

= lim
γ→∞

(ρ⊗ id)(u)

· (λ⊗ id)((uγ ⊗ 10)((α⊗ id) ◦ ρ ◦ α−1)(a))

= lim
γ→∞

(ρ⊗ id)(u)(λ(uγ)⊗ 10)

· ((α⊗ id⊗ id)◦(ρ⊗ id) ◦ ρ ◦ α−1)(a)

= (ρ⊗ id)(u)(u⊗ 10)

· ((α⊗ id⊗ id) ◦ (id⊗∆0) ◦ ρ ◦ α−1)(a)

= (ρ⊗ id)(u)(u⊗ 10)((id⊗∆0◦(α⊗ id)◦ρ◦α−1)(a).

Also, by equation (2),

(id⊗∆0)(λ(uγa)) = (id⊗∆0)(λ(uγ)((α⊗ id) ◦ ρ ◦ α−1)(a))

= (id⊗∆0)(λ(uγ))

· ((id⊗∆0) ◦ (α⊗ id) ◦ ρ ◦ α−1)(a).

Thus,

(id⊗∆0)(λ(a)) = (id⊗∆0)(u)((id⊗∆0) ◦ (α⊗ id) ◦ ρ ◦ α−1)(a).

By equation (6),

[(ρ⊗ id)(u)(u⊗10)− ((id⊗∆0)(u)]((id⊗∆0)◦ (α⊗ id)◦ρ◦α−1)(a) = 0

for any a ∈ A. Therefore,

(ρ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u). �

Remark 6.3. By Lemma 6.2, we can see that the coaction (α⊗ id) ◦
ρ ◦ α−1 of H0 on A is exterior equivalent to ρ.

Conversely, let u be a unitary element in M(A⊗H0) satisfying

ρ = Ad(u) ◦ (α⊗ id) ◦ ρ ◦ α−1,

(ρ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u).
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Let λu be the linear map from Xα to Xα ⊗H0, defined by

λu(x) = ρ(x)u

for any x ∈ Xα. Then, by routine computation, we can see that λu is
a coaction of H0 on Xα with respect to (A,A, ρ, ρ).

Proposition 6.4. With the above notation, the following conditions
are equivalent :

(1) [Xα] ∈ Imfρ;
(2) there is a unitary element u ∈M(A⊗H0) such that

ρ = Ad(u) ◦ (α⊗ id) ◦ ρ ◦ α−1,

(ρ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u).

Proof. Immediate from Lemma 6.2 and the above discussion. �

Let u be a unitary element in M(A ⊗ H0) satisfying Proposition
6.4 (2). Let λu be as above. We call λu the coaction of H0 on Xα with
respect to (A,A, ρ, ρ) induced by u.

Let α, β ∈ Aut(A) satisfy that there are unitary elements u, v ∈
M(A⊗H0) such that

ρ = Ad(u) ◦ (α⊗ id) ◦ ρ ◦ α−1,

(ρ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u),

ρ = Ad(v) ◦ (β ⊗ id) ◦ ρ ◦ β−1,

(ρ⊗ id)(v)(v ⊗ 10) = (id⊗∆0)(v).

Lemma 6.5. With the above notation, we have the following :

(ρ⊗ id)(u(α⊗ id)(v))(u(α⊗ id)(v)⊗ 10) = (id⊗∆0)(u(α⊗ id)(v)).

Proof. By routine computation, we see that

((α ◦ β)⊗ id) ◦ ρ ◦ (α ◦ β)−1 = Ad((α⊗ id)(v∗)) ◦Ad(u∗) ◦ ρ.

Thus, we obtain

ρ = Ad(u(α⊗ id)(v)) ◦ ((α ◦ β)⊗ id) ◦ ρ ◦ (α ◦ β)−1.
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Since ρ ◦ α = Ad(u) ◦ (α⊗ id) ◦ ρ,

(ρ⊗ id)((α⊗ id)(v)) = (u⊗ 10)(α⊗ id⊗ id)((ρ⊗ id)(v))(u⊗ 10)∗.

Hence, by routine computation, we see that

(ρ⊗ id)(u(α⊗ id)(v))(u(α⊗ id)(v)⊗ 10) = (id⊗∆0)(u(α⊗ id)(v)). �

Let α, β and u, v be as above. Let λu and λv be coactions of H0 on
Xα and Xβ with respect to (A,A, ρ, ρ) induced by u and v, respectively.
Let u ♯ v = u(α ⊗ id)(v) ∈ M(A ⊗H0). By Lemma 6.5, we can define
the coaction λu♯v of H0 on Xα◦β with respect to (A,A, ρ, ρ), induced
by u ♯ v. By simple computation, we see that Xα ⊗ Xβ is isomorphic
to Xα◦β by an A−A-equivalence bimodule isomorphism π, as follows:

π : Xα ⊗A Xβ −→ Xα◦β : x⊗ y 7−→ xα(y).

We identify Xα ⊗A Xβ with Xα◦β by the above A − A-equivalence
bimodule isomorphism π.

Lemma 6.6. With the above notation, for [Xα, λu], [Xβ , λv] ∈ PicρH(A),

[Xα, λu][Xβ , λv] = [Xα◦β , λu♯v] ∈ PicρH(A),

where u ♯ v = u(α⊗ id)(v) ∈M(A⊗H0).

Proof. By the definition of the product in PicρH(A),

[Xα, λu][Xβ , λv] = [Xα ⊗A Xβ , λu ⊗ λv].

Hence, it suffices to show that

π(h ·λu⊗λv x⊗ y) = h ·λu♯v
π(x⊗ y)

for any x ∈ Xα, y ∈ Xβ and h ∈ H. For any x ∈ Xα, y ∈ Xβ and
h ∈ H,

π(h ·λu⊗λv x⊗ y) = π([h(1) ·λu x]⊗ [h(2) ·λv y])

= π([h(1) ·ρ x]û(h(2))⊗ [h(3) ·ρ y]v̂(h(4)))
= [h(1) ·ρ x]û(h(2))α([h(3) ·ρ y]v̂(h(4))).



EQUIVARIANT PICARD GROUPS OF C∗-ALGEBRAS 1605

Since ρ ◦ α = Ad(u) ◦ (α⊗ id) ◦ ρ,

π(h ·λu⊗λv x⊗ y) = [h(1) ·ρ x][h(2) ·ρ α(y)]û(h(3))α(v̂(h(4)))
= [h(1) ·ρ xα(y)](u(α⊗ id)(v))̂ (h(2))

= h ·λu♯v
xα(y).

Therefore, we obtain the conclusions. �

Corollary 6.7. With the above notation, for any [Xα, λu] ∈ PicρH(A),

[Xα, λu]
−1 = [Xα−1 , λ(α−1⊗id)(u∗)] ∈ PicρH(A).

Proof. Immediate by Lemma 6.6 and routine computation. �

For any α ∈ Aut(A), let Uρ
α(M(A ⊗ H0)) be the set of all unitary

elements u ∈M(A⊗H0) satisfying

ρ = Ad(u) ◦ (α⊗ id) ◦ ρ ◦ α−1,

(ρ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u).

Lemma 6.8. With the above notation, for any α ∈ Aut(A), we have
the following :

(1) for any u ∈ Uρ
id(M(A ⊗ H0)) and v ∈ Uρ

α(M(A ⊗ H0)), uv ∈
Uρ

α(M(A⊗H0));

(2) for any u, v ∈ Uρ
α(M(A⊗H0)), uv∗ ∈ Uρ

id(M(A⊗H0)).

Proof.

(1) This is immediate by Lemma 6.6;

(2) By Corollary 6.7, (α−1 ⊗ id)(v∗) ∈ Uρ
α−1(M(A ⊗ H0)). Hence,

uv∗ ∈ Uρ
id(M(A⊗H0)). �

Lemma 6.9. Let u ∈ Uρ
id(M(A⊗H0)). Then, the following conditions

are equivalent :

(1) [AAA, λu] = [AAA, ρ] in PicρH(A);

(2) there is a unitary element w ∈ M(A) ∩ A′ such that u =
(w∗ ⊗ 10)ρ (w).
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Proof. Suppose condition (1). Then, there is an A − A-equivalence
bimodule automorphism π of AAA such that

ρ(π(x)) = (π ⊗ id)(λu(x)) = (π ⊗ id)(ρ(x)u)

for any x ∈ AAA. We note that π ∈ ABA(AAA) and

ABA(AAA) ∼= A′ ∩BA(AA) ∼= A′ ∩M(A).

Hence, there is a unitary element w ∈ A′ ∩M(A) such that π(x) = wx
for any x ∈ A. Thus, for any x ∈ A,

ρ(wx) = (w ⊗ 10)ρ(x)u.

Therefore, u = (w∗ ⊗ 10)ρ(w).

Next, we suppose condition (2). Let π be the A − A-equivalence
bimodule automorphism of AAA defined by π(x) = wx for any x ∈
AAA. Then, for any x ∈ AAA,

ρ(π(x)) = ρ(wx) = ρ(xw)

= ρ(x)ρ(w) = ρ(x)(w ⊗ 10)u

= (w ⊗ 10)ρ(x)u = (π ⊗ id)(λu(x)).

Thus, we obtain condition (1). �

Corollary 6.10. Let α ∈ Aut(A) and u, v ∈ Uρ
α(M(A⊗H0)). Then,

the following conditions are equivalent :

(1) [Xα, λu] = [Xα, λv] in PicρH(A);
(2) there is a unitary element w ∈ M(A) ∩ A′ such that u = (w∗

⊗ 10)ρ(w)v.

Proof. Suppose condition (1). By Lemma 6.6 and Corollary 6.7, we
see that [AAA, λuv∗ ] = [AAA, ρ] in PicρH(A). Thus, by Lemma 6.9, there
is a unitary element in w ∈M(A)∩A′ such that uv∗ = (w∗ ⊗ 10)ρ(w).
Hence, we obtain condition (2).

Conversely, suppose condition (2). Then, there is a unitary element
w ∈ M(A) ∩ A′ such that uv∗ = (w∗ ⊗ 10)ρ(w). Hence, [AAA, λuv∗ ] =

[AAA, ρ] in PicρH(A). Since [Xα, λu][Xα, λv]
−1 = [AAA, λuv∗ ] in PicρH

(A) by Lemma 6.6 and Corollary 6.7, [Xα, λu] = [Xα, λv] in PicρH(A).
�
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We shall compute Kerfρ, the kernel of fρ. Let [X,λ] ∈ PicρH(A).
Then, by Proposition 6.4, we see that [X] = [AAA] in Pic(A) if
and only if there is a unitary element u ∈ Uρ

id(M(A ⊗ H0)) such
that [X,λ] = [AAA, λu] in PicρH(A). Furthermore, by Corollary 6.10,
[AAA, λu] = [AAA, λv] in PicρH(A) if and only if there is a unitary
element w ∈ M(A) ∩ A′ such that u = (w∗ ⊗ 10)ρ(w)v, where u, v ∈
Uρ

id(M(A⊗H0)). We define an equivalence relation in Uρ
id(M(A⊗H0))

as follows: let u, v ∈ Uρ
id(M(A⊗H0)), written u ∼ v if there is a unitary

element w ∈M(A) ∩A′ such that

u = (w∗ ⊗ 10)ρ(w)v.

Let Uρ
id(M(A⊗H0))/∼ be the set of all equivalence classes in Uρ

id(M(A
⊗H0)). We denote by [u] the equivalence class of u ∈ Uρ

id(M(A⊗H0)).
By Lemma 6.8, Uρ

id(M(A⊗H0)) is a group. Hence, Uρ
id(M(A⊗H0))/∼

is a group by simple computation.

Proposition 6.11. With the above notation, Kerfρ ∼= Uρ
id(M(A ⊗

H0))/∼ as groups.

Proof. Let π be a map from Uρ
id(M(A ⊗H0))/∼ to Kerfρ, defined

by
π([u]) = [AAA, λu]

for any u ∈ Uρ
id(M(A ⊗H0)). By the above discussion, we see that π

is well defined and bijective. For any u, v ∈ Uρ
id(M(A⊗H0)),

π([u])π([v]) = [AAA, λu][AAA, λv] = [AAA, λuv] = π([uv]),

by Lemma 6.6. Therefore, we obtain the conclusion. �

We recall that there is a homomorphism Φ of Autρ
s

H (As) to Picρ
s

H (As),
defined by

Φ(α) = [Xα, λα]

for any α ∈ Autρ
s

H (As), where λα is a coaction of H0 on Xα induced
by ρs, see Section 5. Then the following results hold:

Lemma 6.12. With the above notation, for any α ∈ Autρ
s

H (As),

(fρs ◦ Φ)(α) = [Xα]
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in Pic(As). Furthermore, if ρ̂ (1oρ e) ∼ (1oρ e)⊗ 1 in (AoρH)⊗H,
then

Imfρs = {[Xα] ∈ Pic(As) | α ∈ Autρ
s

H (As)}.

Proof. Immediate by simple computation. �

Let G be a subgroup of Pic(As), defined by

G = {[Xα] ∈ Pic(As) | α ∈ Autρ
s

H (As)}.

Theorem 6.13. Let H be a finite dimensional C∗-Hopf algebra with
its dual C∗-algebra H0. Let A be a unital C∗-algebra and ρ a coaction
of H0 on A with ρ̂ (1 oρ e) ∼ (1 oρ e) ⊗ 1 in (A oρ H) ⊗ H. Let
As = A⊗K, and let ρs be the coaction of H0 on As induced by ρ. Let
Uρ

id(M(As⊗H0)) be the group of all unitary elements u ∈M(As⊗H0)
satisfying

ρs = Ad(u) ◦ ρs, (ρs ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u).

Then, we have the following exact sequence:

1 −→ Uρs

id (M(As ⊗H0))/∼−→ Picρ
s

H (As) −→ G −→ 1,

where “∼” is the equivalence relation in Uρs

id (M(As ⊗H0)) defined in
this section.

Proof. Immediate by Proposition 6.11 and Lemma 6.12. �

Let A be a UHF-algebra of type N∞, where N = dimH. Let ρ
be the coaction of H0 on A defined in [16, Section 7], which has the
Rohlin property. Note that

ρ̂ (1oρ e) ∼ (1oρ e)⊗ 1 in (Aoρ H)⊗H,

by [16, Definition 5.1].

Corollary 6.14. With the above notation, we have the following exact
sequence:

1 −→ Uρs

id (M(As ⊗H0)) −→ Picρ
s

H (As) −→ G −→ 1.

Proof. Since As is simple, M(As) ∩ (As)′ = C1 by [21, Corollary
4.4.8]. Therefore, by Theorem 6.13, we obtain the conclusion. �



EQUIVARIANT PICARD GROUPS OF C∗-ALGEBRAS 1609

7. Equivariant Picard groups and crossed products. Let (ρ,
u) be a twisted coaction of H0 on a unital C∗-algebra A. Let f be a

map from Picρ,uH (A) to Picρ̂H0(Aoρ,u H), defined by

f([X,λ]) = [X oλ H, λ̂]

for any [X,λ] ∈ Picρ,uH (A). In this section, we shall show that f is an

isomorphism of Picρ,uH (A) onto Picρ̂H0(Aoρ,uH). We see that f is well
defined in a straightforward way. We show that f is a homomorphism

of Picρ,uH (A) to Picρ̂H0(Aoρ,uH). Let A, B and C be unital C∗-algebras

and (ρ, u), (σ, v) and (γ,w) be twisted coactions of H0 on A, B and C,
respectively. Let λ be a twisted coaction of H0 on an A−B-equivalence
bimodule X with respect to (A,B, ρ, u, σ, v). Also, let µ be a twisted
coaction of H0 on a B − C-equivalence bimodule Y with respect to
(B,C, σ, v, γ, w). Let Φ be a linear map from (X ⊗B Y ) oλ⊗µ H to
(X oλ H)⊗Boσ,vH (Y oµ H), defined by

Φ(x⊗ y oλ⊗µ h) = (xoλ 1)⊗ (y oµ h)

for any x ∈ X, y ∈ Y and h ∈ H. By routine computation, Φ is well
defined. We note that (X oλ H) ⊗Boσ,vH (Y oµ H) consists of finite
sums of elements in the form (x oλ 1) ⊗ (y oµ h) by the definition of
(X oλ H)⊗Boσ,vH (Y oµ H), where x ∈ X, y ∈ Y and h ∈ H. Hence,

we can see that Φ is bijective and its inverse map Φ−1 is:

(X oλ H)⊗Boσ,uH (Y oµ H) −→ (X ⊗B Y )oλ⊗µ H :

(xoλ 1)⊗ (y oµ h) 7−→ x⊗ y oλ⊗µ h.

Furthermore, we have the following lemmas.

Lemma 7.1. With the above notation,

Aoρ,uH⟨Φ(x⊗ y oλ⊗µ h), Φ(z ⊗ r oλ⊗µ l)⟩
= Aoρ,uH⟨x⊗ y oλ⊗µ h, z ⊗ r oλ⊗µ l⟩,

⟨Φ(x⊗ y oλ⊗µ h), Φ(z ⊗ r oλ⊗µ l)⟩Coγ,wH

= ⟨x⊗ y oλ⊗µ h, z ⊗ r oλ⊗µ l⟩Coγ,wH

for any x, z ∈ X, y, r ∈ Y and h, l ∈ H.

Proof. We can prove this lemma by routine computation. Indeed,

Aoρ,uH⟨Φ(x⊗ y oλ⊗µ h), Φ(z ⊗ r oλ⊗µ l)⟩
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= Aoρ,uH⟨(xoλ 1)⊗ (y oµ h), (z oλ 1)⊗ (r oµ l)⟩
= Aoρ,uH⟨(xoλ 1)Boσ,yH⟨y oµ h, r oµ l⟩, z oλ 1⟩
= Aoρ,uH⟨(xoλ 1) (B⟨y, [S(h(2)l∗(3))

∗ ·µ r]ŵ(S(h(1)l∗(2))
∗, l(1))⟩

oσ,v h(3)l
∗
(4)), z oλ 1⟩

= Aoρ,uH⟨xB⟨y, [S(h(2)l∗(3))
∗ ·µ r]ŵ(S(h(1)l∗(2))

∗, l(1))⟩
oλ h(3)l

∗
(4), z oλ 1⟩

= A⟨xB⟨y, [S(h(2)l∗(3))
∗ ·µ r]ŵ(S(h(1)l∗(2))

∗, l(1))⟩, [S(h(3)l∗(4))
∗ ·λ z]⟩

oρ,u h(4)l
∗
(5).

On the other hand,

Aoρ,uH⟨x⊗ y oλ⊗µ h, z ⊗ r oλ⊗µ l⟩
= A⟨x⊗ y, [S(h(2)l

∗
(3))

∗ ·λ⊗µ z ⊗ r]ŵ(S(h(1)l
∗
(2))

∗, l(1))⟩
oρ,u h(3)l

∗
(4)

= A⟨x⊗ y, [S(h(3)l
∗
(4))

∗ ·λ z]⊗ [S(h(2)l
∗
(3))

∗ ·µ r]ŵ(S(h(1)l∗(2))
∗, l(1))⟩

oρ,u h(4)l
∗
(5)

= A⟨xB⟨y, [S(h(2)l∗(3))
∗ ·µ r]ŵ(S(h(1)l∗(2))

∗, l(1))⟩, [S(h(3)l∗(4))
∗ ·λ z]⟩

oρ,u h(4)l
∗
(5).

Thus, we obtain

Aoρ,uH⟨Φ(x⊗ y oλ⊗µ h),Φ(z ⊗ r oλ⊗µ l)⟩
= Aoρ,uH⟨x⊗ y oλ⊗µ h, z ⊗ r oλ⊗µ l⟩.

Similarly, we obtain

⟨Φ(x⊗ y oλ⊗µ h), Φ(z ⊗ r oλ⊗µ l)⟩Coγ,wH

= ⟨x⊗ y oλ⊗µ h, z ⊗ r oλ⊗µ l⟩Coγ,wH . �

Lemma 7.2. With the above notation, Φ is an A oρ,u H − C oγ,w

H-equivalence bimodule isomorphism of (X ⊗B Y ) oλ⊗µ H onto (X
oλ H)⊗Boσ,vH (Y oµ H), satisfying

Φ(ϕ ·
λ̂⊗µ

(x⊗ y oλ⊗µ h)) = ϕ ·λ̂⊗µ̂ Φ(x⊗ y oλ⊗µ h)

for any x ∈ X, y ∈ Y , h ∈ H and ϕ ∈ H0.
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Proof. From Lemma 7.1 and the remark after [12, Definition 1.1.18],
we see that Φ is an A oρ,u H − C oγ,w H-equivalence bimodule
isomorphism of (X ⊗B Y )oλ⊗µ H onto (X oλ H)⊗Boσ,vH (Y oµ H).

Furthermore, for any x ∈ X, y ∈ Y , h ∈ H and ϕ ∈ H0,

Φ(ϕ ·
λ̂⊗µ

(x⊗ y oλ⊗µ h)) = Φ(x⊗ y oλ⊗µ h(1)ϕ(h(2)))

= (xoλ 1)⊗ (y oµ h(1))ϕ(h(2))

= [ϕ(1) ·λ̂ (xoλ 1)]⊗ [ϕ(2) ·µ̂ (y oµ h)]

= ϕ ·λ̂⊗µ̂ Φ(x⊗ y oλ⊗µ h).

Therefore, we obtain the conclusion. �

Corollary 7.3. Let f be a map from Picρ,uH (A) to Picρ̂H0(A oρ,u H),

defined by f([X,λ]) = [X oλH, λ̂] for any [X,λ] ∈ Picρ,uH (A). Then, f

is a homomorphism of Picρ,uH (A) to Picρ̂H0(Aoρ,u H).

Proof. Immediate by Lemma 7.2. �

Next, we construct the inverse homomorphism of f of Picρ̂H0(AoρH)
to Picρ,uH (A). First, note the following: let (α, v) and (β, z) be twisted
coactions of H0 on unital C∗-algebras A and B, respectively. Suppose
that there is an isomorphism Φ of B onto A such that (Φ⊗id)◦β = α◦Φ
and v = (Φ⊗id)(z). Let (X,λ) ∈ Equiα,vH (A). We construct an element

(XΦ, λΦ) in Equiβ,zH (B) from (X,λ) ∈ Equiα,vH (A) and Φ as follows: let
XΦ = X as vector spaces. For any x, y ∈ XΦ and b ∈ B,

b · x = Φ(b)x, x · b = xΦ(b)

B⟨x, y⟩ = Φ−1(A⟨x, y⟩), ⟨x, y⟩B = Φ−1(⟨x, y⟩A).

We regard λ as a linear map from XΦ to XΦ⊗H0. We denote it by λΦ.

Then, (XΦ, λΦ) is an element in Equiβ,zH (B). By simple computation,
the map

Picα,vH (A) −→ Picβ,zH (B) : [X,λ] 7−→ [XΦ, λΦ]

is well defined, and it is an isomorphism of Picα,vH (A) onto Picβ,zH (B).

By Corollary 7.3, there is a homomorphism f̂ of Picρ̂H0(A oρ,u H) to
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Pic
ˆ̂ρ
H(Aoρ,u H oρ̂ H

0), defined by

f̂([Y, µ]) = [Y oµ H
0, µ̂]

for any [Y, µ] ∈ Picρ̂H0(A oρ,u H). By Proposition 2.13, there are an

isomorphism ΨA of A ⊗MN (C) onto A oρ,u H oρ̂ H
0 and a unitary

element U ∈ (Aoρ,u H oρ̂ H
0)⊗H0 such that

Ad(U) ◦ ̂̂ρ = (ΨA ⊗ idH0) ◦ (ρ⊗ idMN (C)) ◦Ψ−1
A ,

(ΨA ⊗ idH0 ⊗ idH0)(u⊗ IN ) = (U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗).

Let ρ = (Ψ−1
A ⊗ idH0) ◦ ̂̂ρ ◦ ΨA. By the above discussion, there is

an isomorphism g1 of Pic
ˆ̂ρ
H(Aoρ,u H oρ̂ H

0) onto Picρ̄H(A⊗MN (C)),
defined by

g1([X,λ]) = [XΨA
, λΨA

]

for any [X,λ] ∈ Pic
ˆ̂ρ
H(A oρ,u H oρ̂ H

0). Furthermore, the coaction
ρ of H0 on A ⊗MN (C) is exterior equivalent to the twisted coaction
(ρ⊗ id, u⊗ IN ). Indeed,

ρ⊗ idMN (C) = (Ψ−1
A ⊗ idH0) ◦Ad(U) ◦ ̂̂ρ ◦ΨA = Ad(U1) ◦ ρ,

where U1 = (Ψ−1
A ⊗ idH0)(U). Since (Ψ−1

A ⊗ idH0 ⊗ idH0) ◦ (id⊗∆0) =

(id⊗∆0) ◦ (Ψ−1
A ⊗ idH0),

u⊗ IN = (U1 ⊗ 10)(ρ⊗ id)(U1)(id⊗∆0)(U∗
1 ).

We also note the following: consider twisted coactions (α, v) and
(β, z) of H0 on a unital C∗-algebra A. We suppose that (α, v) and
(β, z) are exterior equivalent. Then, there is a unitary element w in
A⊗H0 such that

β = Ad(w) ◦ α,
z = (w ⊗ 10)(ρ⊗ id)(w)v(id⊗∆0)(w∗).

From Lemmas 3.12, 5.6 and their proofs, there is an isomorphism g2
of Picα,vH (A) onto Picβ,zH (A), defined by g2([X,λ]) = [X, Ad(w) ◦ λ] for
any [X,λ] ∈ Picα,vH (A), where Ad(w) ◦ λ means a linear map from X
to X ⊗ H0, defined by (Ad(w) ◦ λ)(x) = wλ(x)w∗ for any x ∈ X,
which is a coaction of H0 on X ⊗H0 with respect to (A,A, β, z, β, z).
Since ρ and (ρ ⊗ id, u ⊗ IN ) are exterior equivalent, by the above
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discussion, there is an isomorphism g2 of Picρ̄H(A ⊗ MN (C)) onto

Pic
ρ⊗idMN (C), u⊗IN
H (A⊗MN (C)), defined by

g2([X,λ]) = [X, Ad(U1) ◦ λ]

for any [X,λ] ∈ Picρ̄H(A ⊗ MN (C)). By simple computation, (ρ, u)
is strongly Morita equivalent to (ρ ⊗ idMN (C), u ⊗ IN ). Hence, by
Lemma 5.6 and its proof, there is an isomorphism g3 of Picρ,uH (A) onto

Pic
ρ⊗idMN (C), u⊗IN
H (A⊗MN (C)), defined by

g3([X,λ]) = [X ⊗MN (C), λ⊗ idMN (C)]

for any [X,λ] ∈ Picρ,uH (A). Let g = g−1
3 ◦ g2 ◦ g1 ◦ f̂ . Then, g is a

homomorphism of Picρ̂H0(Aoρ,u H) to Picρ,uH (A).

Proposition 7.4. With the above notation, g ◦ f = id on Picρ,uH (A).

Proof. Let [X,λ] ∈ Picρ,uH (A). By the definitions of f, f̂ , g1 and g2,

(g2 ◦ g1 ◦ f̂ ◦ f)([X,λ]) = [(X oλ H oλ̂ H
0)ΨA

, Ad(U1) ◦ (
̂̂
λ)ΨA

].

Let ΨX be the linear map from X ⊗MN (C) to X oλH oλ̂H
0 defined

in Proposition 3.8, and regard ΨX as an A ⊗MN (C) − A ⊗MN (C)-
equivalence bimodule isomorphism of X ⊗MN (C) onto (X oλ H oλ̂

H0)ΨA
. Also, since

Ad(U) ◦ ̂̂λ = (ΨX ⊗ id) ◦ (λ⊗ id) ◦Ψ−1
X

by Proposition 3.8, for any x ∈ A⊗MN (C),

(Ad(U1) ◦ (
̂̂
λ)ΨA)(x) = U1 · (

̂̂
λ)ΨA(x) · U∗

1 = U
̂̂
λ(x)U∗

= ((ΨX ⊗ id) ◦ (λ⊗ id) ◦Ψ−1
X )(x).

Thus,

[(X oλ H oλ̂ H
0)ΨA

, Ad(U1) ◦ (
̂̂
λ)ΨA

] = [X ⊗MN (C), λ⊗ id]

in Pic
ρ⊗idMN (C), u⊗IN
H (A ⊗MN (C)). Since g3([X,λ]) = [X ⊗MN (C),

λ⊗ idMN (C)], we obtain the conclusion. �
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Theorem 7.5. Let (ρ, u) be a twisted coaction of H0 on a unital C∗-

algebra A. Then Picρ,uH (A) ∼= Picρ̂H0(Aoρ,u H).

Proof. Let f, f̂ , gi, i = 1, 2, 3, and g be as in the proof of Propo-
sition 7.4. By Proposition 7.4, g ◦ f = id on Picρ,uH (A). Hence, f is

injective and g is surjective. Furthermore, we can see that f̂ is injective

by Proposition 7.4. Since g = g−1
3 ◦ g2 ◦ g1 ◦ f̂ and gi, i = 1, 2, 3, are

bijective, g is injective. It follows that g is bijective. Therefore, f is an

isomorphism of Picρ,uH (A) onto Picρ̂H0(Aoρ,u H). �
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