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EQUIVARIANT PICARD GROUPS OF
C*-ALGEBRAS WITH FINITE DIMENSIONAL
C*-HOPF ALGEBRA COACTIONS

KAZUNORI KODAKA

ABSTRACT. Let A be a C*-algebra and H a finite
dimensional C*-Hopf algebra with its dual C*-Hopf algebra
HO. Let (p,u) be a twisted coaction of H® on A. We shall
define the (p,u, H)-equivariant Picard group of A, which is
denoted by Pic%’“(A), and discuss the basic properties of
Pic;"(A). Also, we suppose that (p,u) is the coaction of
HO on the unital C*-algebra A, that is, v = 1 ® 19. We
investigate the relation between Pic(A?®), the ordinary Picard

group of A®, and Pic’;{S (As), where AS is the stable C*-
algebra of A and p® is the coaction of HOA on A® induced
by p. Furthermore, we shall show that Pic’;qO (Axpq H) is

isomorphic to Picf;*(A), where p is the dual coaction of H
on the twisted crossed product A x, ., H of A by the twisted
coaction (p,u) of HO on A.

1. Introduction. Let A be a C*-algebra and H a finite dimensional
C*-Hopf algebra with its dual C*-Hopf algebra H°. Let (p,u) be a
twisted coaction of HY on A. We shall define the (p,u, H)-equivariant
Picard group of A, which is denoted Pic%;"“(A). Also, we shall give a
similar result to the ordinary Picard group as follows: let Aut?;"(A) be
the group of all automorphisms « of A satisfying that (a®id)op = poa
and (a ® id ® id)(u) = u, and let Int%;"(A) be the normal subgroup of
Aut?*(A) consisting of all generalized inner automorphisms Ad(v) of A
satisfying that p(v) = v®1° and (v®@1°®1%)u = u(v®@1°®1Y), where v
is a unitary element in the multiplier algebra M(A) of A. Then, we
have the following exact sequence:

1 — Inth"(A) — Auth;"(A) — Pic"(A).
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In particular, let A® be a stable C*-algebra of a unital C*-algebra A
and p a coaction of H? on A. Also, let p° be the coaction of H? on A*
induced by a coaction p of H® on A. Then, under a certain condition,
we can obtain the exact sequence

1 — Intf; (A%) — Autf, (A%) — Pic), (4%) — 1.

In order to do this, we shall extend the definitions and results in
the case of unital C*-algebras to those in the case of non unital C*-
algebras in Section 2. Using this result, we shall investigate the relation
between Pic(A?), the ordinary Picard group of A°, and Picg (A%), the
(p®, H)-equivariant Picard group of A°. Furthermore, we shall show
that Pic’;j,0 (A %, H) is isomorphic to Pic};“(A), where p is the dual
coaction of H on the twisted crossed product A x,, H of A by the
twisted coaction (p,u).

2. Preliminaries. Let H be a finite dimensional C*-Hopf algebra.
We denote its comultiplication, counit and antipode by A, € and 5,
respectively. Sweedler’s notation A(h) = h() ® h(g) is used for any
h € H which suppresses a possible summation when comultiplications
are written. The dimension of H is denoted by N. Let H? be the
dual C*-Hopf algebra of H. We denote its comultiplication, counit
and antipode by A%, €® and S, respectively. There is a distinguished
projection e in H. Note that e is the Haar trace on HY. Also, there
is a distinguished projection 7 in H® which is the Haar trace on H.
Since H is finite dimensional,

hold as C*-algebras. Let

{of |k=1,2,....L, i,j =1,2,..., fx}
be a system of matrix units of H. Let

{wy; | k=1,2,... K, i,j=1,2,... d}

be a basis of H satisfying [25, Theorem 2.2,2], which is called a system
of comatriz units of H, that is, the dual basis of a system of matrix



EQUIVARIANT PICARD GROUPS OF C*-ALGEBRAS 1567

units of H?. Also, let

{of | k=1,2,... K, i,j=1,2,... d}
and

{whilk=1,2,... L, i,j=1,2,..., fc}

be systems of matrix and comatrix units of H, respectively.

Let A be a C*-algebra and M(A) its multiplier algebra. Let p,q
be projections in A. If p and ¢ are Murray-von Neumann equivalent,
then we denote them by p ~ ¢ in A. We denote by id4 and 14 the
identity map on A and the unit element in A, respectively. They are
simply denoted by id and 1, if no confusion arises. Modifying [3,
Definition 2.1], we shall define a weak coaction of H° on A.

Definition 2.1. By a weak coaction of H° on A we mean a *-homo-
morphism p: A — A ® H° satisfying the following conditions:

(1) p(A)(A® HO) = Ae H°,
(2) (id ® €*)(p(x)) = z for any x € A.

By a coaction of H? on A, we mean a weak coaction p such that
(3) (p®id)op=(id® A% o p.

By Definition 2.1 (1), for any approximate unit {us} of A and = €
A® H, p(ug)r — = (o — 00). Hence, p(1) = 1® 1° when A is unital.
Since HY is finite dimensional, M(A® H®) = M(A)® H°. We identify
M(A® H°) with M(A) ® H°. We also identify M (A® H° ® H°) with
M(A) ® H° @ H°. Let p be a weak coaction of H” on A. By [12,
Corollary 1.1.15], there is a unique strictly continuous homomorphism
p: M(A) — M(A) ® H° extending p.

Lemma 2.2. Using the above notation, p is a weak coaction of HO on
M(A).

Proof. Clearly, p is a x-homomorphism of M(A) to M(A)® H°. Let
{uq} be an approximate unit of A. Then, by Definition 2.1 (1), {p(uq)}
is an approximate unit of A ® H°. Hence, p(1) = 1 ® 1°. Since H" is
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finite dimensional, id ® €° is strictly continuous. Therefore, p satisfies
Definition 2.1 (2). O

Let p be a weak coaction of H” on A and u a unitary element in
M(A) ® H° ® H°. Following [19, Section 3], we shall define a twisted
coaction of H? on A.

Definition 2.3. The pair (p,u) is a twisted coaction of H° on A if the
following conditions hold:

(1) (p®id)op= Ad(u) o (id @ A®) o p,
(2) (u®1°)(id® A’ ®id)(u) = (p ®id ® id) () (id ® id ® A%)(u),
(3) [d®id® ) (u) = (i[d® e ®id)(u) =1 ® 1°.

Remark 2.4. Let (p,u) be a twisted coaction of H® on A. Since
HY is finite dimensional, id M(A) @ AV is strictly continuous. Thus, by
Lemma 2.2, (p,u) satisfies Definition 2.3. Therefore, (p,u) is a twisted

coaction of H? on M (A). Hence, if p is a coaction of H® on A, pisa
coaction of H? on M (A).

Let Hom(H, M(A)) be the linear space of all linear maps from H
to M(A). Then, by [24, pages 69-70], it becomes a unital convolution
*_algebra. Similarly, we define Hom(H x H, M(A)). Note that ¢ and
€ ® € are the unit elements in Hom(H, M (A)) and Hom(H x H, M (A)),
respectively.

Modifying [3, Definition 1.1], we shall define a weak action of H
on A.

Definition 2.5. By a weak action of H on A we mean a bilinear map
(hyxz)— h-z of H x A to A satistying the following conditions:

(1) b (zy) = [h) - 2][h2) - y] for any h € H, z,y € A,
(2) [h-ua]z — €(h)x for any approximate unit {uy} of A and x € A,
(3) 1.z =z for any x € A,
(4) [h-x]* = S(h)*-a* forany h € H, x € A.

By an action of H on A, we mean a weak action of H on A such that
(5) h-[l-2] = (hl) - x for any x € A and h,l € H.
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Since H is finite dimensional, as mentioned in [3, page 163], there
is an isomorphism ¢ of M(A) @ H® onto Hom(H, M(A)) defined by
1z @ ¢)(h) = ¢p(h)x for any x € M(A), h € H, ¢ € H°. Also, we can
define an isomorphism j of M (A) ® HY @ H® onto Hom(H x H, M(A))
in a similar manner to the above. We note that

1(A® H°) = Hom(H,A) and 3(A® H°® H°) = Hom(H @ H, A).

For any z € M(A)® H® and y € M(A)® H°® H°, we denote 1(z) and
7(y) by Z and ¥, respectively.

Let a bilinear map (h,x) — h-x from H X A to A be a weak action.
For any z € A, let f, be the linear map from H to A defined by
fz(h) = h-x for any h € H. Let p be the linear map from A to A® H°
defined by p(x) =171(f,) for any = € A.

Lemma 2.6. Using the above notation, p is a weak coaction of H°
on A.

Proof. By definition, p is a *-homomorphism of A to A ® HO°
satisfying Definition 2.1 (2). Thus, we only have to show that p satisfies
Definition 2.1 (1). Let {uo} be an approximate unit of A. We write
that p(ua) = >, Uaj ® ¢;, where uq; € A, and {¢;} is a basis of H°

with
> gy =1°
j

Let {h;} be the dual basis of H corresponding to {¢;}. Then, for any
x € Aand j,
[h]‘ . UQ]I — E(h]‘)’lj,

by Definition 2.5. Since [h; - uqs|z = (1d ® hj)(p(ua))r = Uz,
Uqjz — €(h;)z  for any j.
Also, since Zj ¢; =10,

1= g¢;(h;) = Z¢i(hj) =1%(hy) = e(h;)

for any j. Hence, uqjz — « for any j. Therefore, for any z € A and
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¢ HY,
p(ua)(z ® ¢) = Zuajm®¢]¢—>2x®¢3 =T ® ¢

Thus, p(A)(A® HO) = A® H°. O

For any weak coaction p of H? on A, we define the bilinear map
(h,x) — h -,z from H x A to A by

hepa = (d®h)(p(x)) = p(z)(h).

We shall prove that the above map is a weak action of H on A.

Lemma 2.7. With the above notation, the linear map (h,z) — h -, x
from H x A to A is a weak action of H on A.

Proof. We only have to show that the above linear map satisfies
Definition 2.5 (2). Let {uq} be an approximate unit of A. Then, for
any € A® H, p(us)x — x by the proof of Lemma 2.2. We write

that
(ua) == Zuaj oy ¢j7
J

where u,; € A and {¢,} is a basis of H. Then, for any a € A,

[hpta]a=(1d ® h)(p(ua) afzua](j)j

(14 o) 1) — e(h)a
since id ® h is a bounded operator from A ® H° to A. |

Remark 2.8. By the proofs of Lemmas 2.6 and 2.7, Definition 2.5 (2)
is equivalent to the following:

(2) [h-un]z — €(h)ax for some approximate unit of A and any x € A.
Also, if A is unital, Definition 2.5 (2) means that h -1 = ¢(h) for any
heH.

Let p be a weak coaction of H° on A. Then, by Lemma 2.7, there is
a weak action of H on A. We call it the weak action of H on A induced
by p. Also, by Lemma 2.2, the weak coaction p of H? exists on M(A),
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which is an extension of p to M(A). Hence, we can obtain the action
of H on M(A) induced by p. We see that this action is an extension of
the action induced by p to M(A).

Definition 2.9. Let 0 : H x H — M (A) be a bilinear map. o is a
unitary cocycle for a weak action of H on A if o satisfies the following
conditions:

(1) o is a unitary element in Hom(H x H, M(A));

(2) o is normal, that is, for any h € H, o(h,1) = o(1,h) = ¢(h)1;

(3) (Cocycle condition). For any h,l,m € H, [h1)-0(lqy, may)]o(h),
lgymyz)) = o(ha), lay)o(hele), m);

(4) (Twisted modular condition). For any h,l € H, x € A, [hq) -

Ly - zllo(h), l2)) = o(hay, l(1))[(R2)l2)) - 2] where, if necessary, we
consider the extension of the weak action to M(A).

We call a pair which consists of a weak action of H on A and its
unitary cocycle a twisted action of H on A.

Let (p,u) be a twisted coaction of HY on A. Then, we consider the
twisted action of H on A and its unitary cocycle @, defined by

hp @ = p(a)(h) = (id ® h)(p(x))

for any z € A and h € H. We call it the twisted action induced by
(P, w).

Further, we consider the twisted coaction (p,u) of HY on M (A) and
the twisted action of H on M (A) induced by 7(E, u). Let M(A) %, H
be the twisted crossed product by the twisted action of H on M (A)
induced by (p,u). Let %, , h be the element in M(A) x, , H induced
by elements * € M(A), h € H. Let A x,, H be the set of all
finite sums of elements in the form x x,, h, where v € A, h € H.
Simple computation shows that A x, H is a closed two-sided ideal of
M(A) %, H. We call it the twisted crossed product by (p,u), and its
element is denoted by a x, , h, where x € A and h € H. Let E?" be
the canonical conditional expectation from M(A) %, ., H onto M(A),
defined by N

EY (%, h) = 7(h)z
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for any x € M(A) and h € H. Let A be the set of all triplets (i, 7, k),
where 4,5 =1,2,...,dx and k =1,2,..., K with

K
Z d? = N.
k=1

Let W; = /d;, X p,u wfj for any I = (4,4,k) € A. By [15, Proposition
3.18], {(W;, Wi)}ien is a quasi-basis for E?u. We assume that A
faithfully and nondegenerately acts on a Hilbert space.

Lemma 2.10. With the above notation, M(A) ., H = M (A, H).

Proof. By the definition of multiplier algebras M(A) and M(A
Xpu H), it is clear that

M(A) Xpu H C M(Ax,, H)

since M(A) %, H and M(A x,, H) act on the same Hilbert space.
We now show another inclusion. Let © € M (A x,,, H). Then, there is
a bounded net {z4}aer C A X, H such that {z,}.cr converges to x
strictly. Since z, € A %, H,

To =Y EY (2o W)W,
I

By the definition of EY™, EY"(2,W;) € A. Also, for any a € A,
. pyu o Py *
ah_>ngo EY (zoWi)a = all)ngo E7 (z Wia)
= BV (aWia) = BV (aW5)a.
Similarly, limy o0 aEY " (2, W5) = aEY " (xW;). Hence, EY" (aW}) €

M(A). In addition, by the above discussion, we can see that Elg’u
(- W) is strictly continuous for any I € A. For any a € A and h € H,

po

(@ Xpu W) EY (2 W7) = alh1) pu BY (@aWi)] % ha)
= a((id®h(1)) o (p@id)) (BT (2aW})) X p.u h2).-

Since id ® A1), p ® id and E?u( - W) are strictly continuous for any
I € A, we see that

lim (a %, B)EY (2o W5) = (a %, B)EY " (xW5).

a—r0o0
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Similarly, we see that, for any a € A, h € H,
lim EY (xaWi)(a X pu h) = BT (W) (a X0 h).

Thus, EY" (2o W;) strictly converges to EY " (zW7) in M(A Xpu H).
Therefore,

r=Y B (W)W
I

since

To =Y B (za W)W,
1
It follows that x € M(A) %, H. O

Remark 2.11. Let (p) be the dual coaction of p of H on M(A) X p,uH
and (p) the coaction of H on M(A x,, H) induced by the dual

coaction p of H on Ax, , H. By Lemma 2.10, we can see that (p) = (p).
Indeed, by Lemma 2.10, it suffices to show that (p)(z . h) =

(p)(x Xy h) for any 2 € M(A) and h € H. Since x € M(A), there is a
bounded net {z,} C A such that x, strictly converges to z in M(A).
Then, since xo X, h strictly converges to @ x,, h in M(A) x,., H
and (p) is strictly continuous, - -

(ﬁ)(l‘ Hpu h) = lim b\(xoz Apu h)

L a—r 00
= a]Ln;o(xa Xpuh(1y) @ hz)

= (@ X pu h1)) @ hizy = (p) (7 Xpu h),

where the limits are taken under the strict topology. We denote this
by p.

Next, we extend [16, Theorem 3.3] to a twisted coaction of H° on
a (non-unital) C*-algebra A. Before doing so, we define the exter-
ior equivalence for twisted coactions of a finite dimensional C*-Hopf
algebra H° on a C*-algebra A.

Definition 2.12. Let (p,u) and (o, v) be twisted coactions of H% on A.
We say that (p,u) is exterior equivalent to (o,v) if there is a unitary
element w € M(A) ® HO satisfying the following conditions:
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(1) o = Ad(w) o p,
(2) v=(w®1%(p®id)(w)u(id ® A%)(w*).

Conditions (1) and (2) are equivalent to the following, respectively:
(1) heouwa= @(h(l
(2)" v(h,1) = w(h

h,l € HO.

D) pu aJ@* (hs)) for any a € A and h € H,
)@ pu W(ay)ulha), l2)) @ (hayls)) for any

If p and o are coactions of H? on A, (1), (2) and (1)’, (2)’ are as follows:

(i) o = Ad(w) o p,
(i) (w®1%)(p@id)(w) = (id ® A%)(w),

(i) h-ya=w(hay)lhe) -p al@*(hes)) for any a € A, h € HY,
(it)" @(h)lhey -p (1 )] ﬂ)(hl) for any h,l € H°.

Furthermore, let (p,u) be a twisted coaction of H on A, and let w be
any unitary element in M(A) @ H with (id ® €)(w) = 1°. Let

o =Ad(w) o p, v=(w®1%)(p®id)(w)u(id ® A% (w*).
Then (o,v) is a twisted coaction of H? on A by simple computation.

In the case of twisted coactions on von Neumann algebras, Vaes and
Vanierman [26] and, in the case of ordinary coactions on C*-algebras,
Baaj and Skandalis [1] have already obtained much more generalized
results than the following. We give a proof related to Watatani index—
finite-type inclusions of unital C*-algebras.

Proposition 2.13. Let A be a C*-algebra and H a finite dimensional
C*-Hopf algebra with its dual C*-Hopf algebra H°. Let (p,u) be a
twisted coaction of H° on A. Then there is an isomorphism U of
M(A) ® My(C) onto M(A) x,, H x5 H® and a unitary element
Ue (M(A) x,, Hx;H®) @ H° such that

Ad(U) o p = (¥ @idgo) o (p®idpry(c)) 0 U
(W @idgo @idgo)(u® In) = (U®1%)(p®idgo)(U)(id @ A%)(U*),
U(A® Myn(C)) = Ax,, Hx,H,

that is, the coaction ﬁ of H* on A %, x;H" is exterior equivalent to
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the twisted coaction
(W @idgo) o (p®@idary(cy) o U, (¥ @idpo @ idpo)(u @ In)),
where we identify A® H°®@ H° ® My (C) with A® Myx(C)® H°® H.
Proof. By [16, Theorem 3.3], there is an isomorphism ¥ of M (A4) ®
My (C) onto M(A)x,.H NEHO and a unitary element U € (M (A)X 4
Hx;H 9) ® HY satisfying the required conditions, except for the equa-

tion

V(A® My(C)) = Ax,, Hx;H.

Therefore, we show the equation. By [16, Section 3],
U(lars) =Y Vit(ars xpu 1%, 19V,
1,J
for any [ar;] € A® Mn(C), where
Vi=(1x;7) (W %,;1°)
for any I € A. Since Vi € M(A) x,., H XEHO for any I € A,
V(A® Mn(C)) C Axp, xH.

For any z € A x,,, H x; H, we write that

n

2=y (2 x5 19)(1 3, 7)(yi %, 1),

i=1
where x;,y; € M(A) X H for any i. Let {uq} be an approximate unit

of A. Then (uq Xy 1 x5 1%)(z; x5 19) and (y; x5 1°)(uq xpu 1 %, 1)
are in A, , H %, HY for any 7 and «. Hence,

(A Xy H x5 1% (1 x5 7)(A ¥, H x,1°)
is dense in A >, H ><1ﬁH0. On the other hand, for any z,y € A, , H,
V(BT (W) BT (yWi)l1,) = (w205 1)(1 2, 7)(y 5 1°)

by the proof of [16, Theorem 3.3]. Since EY"“(Ax,, H) = A and EY™
is continuous by definition,

A,y HxpH CU(A® My(C)). O
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We extend [15, Theorem 6.4] to coactions of H° on a (non-unital)
C*-algebra. First, we recall a saturated coaction. We say that a
coaction p of HY on a unital C*-algebra A is saturated if the induced
action from p of H on A is saturated in the sense of [25, Definition 4.2].

Let B be a C*-algebra and o a coaction of H° on B. Let
B°={beB|ob)=bx1%}

be the fixed point C*-subalgebra of B for the coaction o. We suppose
that B acts non-degenerately and faithfully on a Hilbert space H. Also,
we suppose that o is saturated. Then, the canonical conditional
expectation EZ from M (B) onto M (B)< defined by E%(z) = e -, x for
any x € M(B) is of Watatani index-finite type by [25, Theorem 4.3].
Thus, there is a quasi-basis {(u;,ul)}"; of EZ. Let {v,} be an
approximate unit of B?. For any = € B,

n n
Vo = Vg, z:El(avuz)u;k — X:EQ(xul)u;k =z, «o— 00,
i=1 i=1

since E7(zu;) € BY. Similarly, zv, — z, a — oo, since

T = Z u, B (u ).
i=1

Thus, {v,} is an approximate unit of B. Hence, B acts non-degener-
ately and faithfully on H.

Lemma 2.14. With the above notation, we suppose that g is saturated.
Then, M(B?) = M(B)Z.

Proof. By the above discussion, we may suppose that B and B act
non-degenerately and faithfully on a Hilbert space. Let z € M(B?).
Then, there is a bounded net {an} C B such that aq, — &, o — 00,
strictly in M (B7). Since any approximate unit of B? is an approximate
unit of B by the above discussion, for any y € B?,

o(x)(y ®1°) = o(zy) = o( lim aay) = lim o(aay)

= lim any®1° = 2y ® 1°.
a—r 00
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Thus, x € M(B)Z. Next, let + € M(B)Z. Then, for any b € B?, xb
and bz are in B. Thus,

o(xb) = a(z)o(d) = (2@ 1°) (b ®1°) = zb® 1°,

o(br) = o(b)o(z) = (b® 1) (z®1%) = ba ® 1°.

Hence, z € M(B?). O

We suppose that g(1 Xy €) ~ (1 ¥, e) ® 1 in (M(B) x, H) @ H.
As mentioned in [16, Section 2], without the assumption of saturation
for an action, all the statements in [15, Sections 4, 5, 6] hold. Hence,
by [15, Sections 4, 5], ¢ is saturated, and there is a unitary element
w? € M(B) ® H satisfying

w7 (1 1y ) @ w? =3 (1 X, €).
Let U7 = w?(27* @ 1), where 27 = (idy(p) ® €)(w”) € M(B)Z. Then,
U° € M(B) ® H satisfies

071" =1 U°(d)al” (é) € M(B)*
for any a € M(B)2, ¢ € H°. Let u° be a bilinear map from H® x H°
to M(B), defined by
u’ (¢,9) = U’ (¢1))U° (Y1) )UT (92 ¥ (2))
for any ¢, € H°. Then, by [15, Lemma 5.4], u°(¢,) € M(B)< for
any ¢, € H° and, by [15, Corollary 5.3], the map
H x M(B)* — M(B)* : (¢,a) — U°(d(2)al " (d(2))
is a weak action of H® on M(B)Z. Furthermore, by [15, Proposi-
tion 5.6], u“ is a unitary cocycle for the above weak action. Let u° be
the unitary element in M(B)2® H ® H induced by @” and p’ the weak
coaction of H on M(B)Z induced by the above weak action. Thus, we
obtain a twisted coaction (p’,u”) of H on M(B)Z. Let ©’ be the map
from M (B)Z %, 4o H® to M(B), defined by
7 (01,07 §) = aU° (9)

for any a € M(B)2, ¢ € H°. Then, by [15, Proposition 6.1,
Theorem 6.4], 7’ is an isomorphism of M (B)Z X, .- H® onto M(B)
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satisfying

~ / (o2
gon = (7' @idyo)op, EYY =FE%on,

where EY " is the canonical conditional expectation from M(B)ZX 4o
H° onto M(B)Z and EZ is the canonical conditional expectation from
M(B) onto M(B)Z. Let p = p/|go.

Lemma 2.15. With the above notation, (p,u?) is a twisted coaction
of H on B and p = p'.

Proof. By the definition of p, for any a € B,
pla) =U%(a@ 1)U™.
Since a € B C M(B?) = M(B)Z, by Lemma 2.14, p(a) € M(B)2®H.
On the other hand, since U° € M(B)® H, p(a) € BQ H. Thus, p(a) €
(M(B)2@H)N(B®H) = B°®H. Hence, p is a homomorphism of B?
to B°®H. Since (p'®id)op’ = Ad(u?)o(id®A)op’ and p(a) € B°@H
for any a € B?, we see that (p ® id) o p = Ad(u”) o (id ® A) o p. By
the definition of p’, p’ is strictly continuous on M (B)Z. Hence, for any
approximate unit {uq} of B,
1®@1=p(1)=p(lim u,) = lim p'(uy) = lim p(ua),
a—r 00

a—00 a—0o0

where the limits are taken under strict topologies in M(B?) and
M(B°) ® H, respectively. This means that

p(B°)(B°® H)=B° ® H.
It follows that (p,u”) is a twisted coaction of H on B?. Furthermore,
since p’ is strictly continuous, p’ = p on M (B7). O
Let m = 7T,|Bo X o HO -
Lemma 2.16. With the above notation, m is an isomorphism of B®
X, 4o HO onto B, satisfying
com=(m®idgo) o p, Ef’“U:E"Oﬂ',

where EP is the canonical conditional expectation from BT X1, o HO
onto B?, and E° is the canonical conditional expectation from B onto
B°. Furthermore, @’ = .
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Proof. Let EZ be the canonical conditional expectation from M (B)
onto M (B)Z. By [15, Proposition 4.3, Remark 4.9],

{(VFU7 W) U7 (W) Yijuk
is a quasi-basis for FZ. Hence, for any b € B,
b= fuBE(bU (W)U ().
ik
Since ﬁ”(wfj) € M(B) for any i, j, k,
EZ(bU° (wh)*) € B°
for any ¢, j,k and b € B. Let
a=>" fiBZbU (Wh)*) %y 0 wh.
i,k

Then a € B? X,,- H° and 7(a) = b. Thus, 7 is surjective. Since 7’
is an isomorphism of M (B)Z %, .- H" onto M(B), we see that 7 is an
isomorphism of B? 1, ,« H® onto B. Also, since gon’ = (7/®id)op and

E?" = EZo7’, we see that
com=(r®id)op, EC = E% o,

Furthermore, by the definition of 7/, 7’ is strictly continuous. Thus,
' =T. O

Combining Lemmas 2.14, 2.15 and 2.16, we obtain the next propo-
sition.

Proposition 2.17. Let B be a C*-algebra and o a coaction of H°
on B. We suppose that (1 x,e) ~ (1x,e)®1 in (M(B) x, H)® H.
Then, there are a twisted coaction (p,u’) of H on B° and an isomor-
phism 7 of B X, HY onto B satisfying

com=(r®idy)op, EM = E%om,

where B is the fized point C*-subalgebra of B for o, and Ef’ua and
E° are the canonical conditional expectations from B and B° X, 4o H°
onto B?, respectively.
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3. Twisted coactions on a Hilbert C*-bimodule and strong
Morita equivalence for twisted coactions. First, we shall define
crossed products of Hilbert C*-bimodules in the sense of Brown, Mingo
and Shen [6] and show their duality theorem, which is similar to [17,
Theorem 5.7]. The definition of a Hilbert C*-bimodule is as follows:
Let A and B be C*-algebras. Let X be a left pre-Hilbert A-bimodule
and a right pre-Hilbert B-module. Its left A-valued inner and right B-
valued inner products are denoted by 4(-, -) and (-, ), respectively.

Definition 3.1. We call X a pre-Hilbert A — B-bimodule if X satisfies
the condition

alw, y)z =2y, 2)B

for any x,y,z € X. We call X a Hilbert A— B-bimodule if X is complete
with the norms.

Remark 3.2. We suppose that X is a pre-Hilbert A — B-bimodule.
Then, by [6, Remark 1.9], we have the following:

(1) for any = € z, [[a(z, z)| = [z, z)];
(2) forany a € A, b€ B and z,y € X,

Alx, yb) = afzb™, y), (az, y)p = (x, a"y)B;

(3) if X is complete with the norm and full with both-sided inner
products, then X is an A — B-equivalence bimodule.

In this paper, by “pre-Hilbert C*-bimodules” and “Hilbert C*-
bimodules,” we mean pre-Hilbert C*-bimodules and Hilbert C*-bimod-
ules in the sense of [6], respectively.

Let A and B be C*-algebras. Let X be a Hilbert A — B-bimodule,
and let Bp(X) be the C*-algebra of all right B-linear operators on X
for which there is a right adjoint B-linear operator on X. We note
that a right B-linear operator on X is bounded. For each z,y € X, let
05, be a rank 1 operator on X defined by 0, ,(z) = z(y, z)p for any
z € X. Then, 0, , is a right B-linear operator on X. Let Kg(X) be
the closure of all linear spans of such 6, ,. Then, Kp(X) is a closed
two-sided ideal of Bp(X).

Similarly, we define 4B(X) and 4K(X). If X is an A — B-
equivalence bimodule, we identify A and M(A) with Kp(X) and
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Bp(X), respectively, and B and M(B) with 4B(X) and 4K(X),
respectively. For any a € M(A), we regard a € M(A) as an element in
Bp(X) as follows: for any b€ A, x € X,

a(bx) = (ab)x.

Since X = AX, by [6, Proposition 1.7], we obtain an element in B (X)
induced by a € M(A). Similarly, we can obtain an element in 4B(X)
induced by any b € M(B).

Lemma 3.3. With the above notation, we suppose that X 1is a
Hilbert A — B-bimodule. For any a € M(A), there is a bounded net
{@atacr C A such that ax =lim,—, o0 agx for any x € X.

Proof. Since a € M(A), there is a bounded net {ag}taer C A4
such that {as}aer converges to a strictly. We can prove that az =
lim, 00 @ for any 2 € X in a routine manner since X = AX by [6,
Proposition 1.7]. O

Let (p,u) and (o,v) be twisted coactions of HY on A and B,
respectively.

Definition 3.4. Let A be a linear map from a Hilbert A — B-bimodule
X to X @ H°. Then we say that A is a twisted coaction of H? on X
with respect to (A, B, p,u,o,v) if the following conditions hold:

(1) Aax) = p(a)A(z) for any a € A, z € X;

(2) A(zb) = A(z)o(b) for any b € B, x € X;

(3) p(a(,9)) = awmo(A(@), Aly) for any 2, € X;

(4) o((z,y)B) = (M), \(y)) oo for any z,y € X;

(5) (1dx®e Yo A =idx;

(6) A®@id)(A\(z)) = u(id ® A%)(\(x))v* for any = € X; where u and v

are regarded as elements in Bp(X) and 4B(X), respectively.

Note that the twisted coaction A of H° on the Hilbert A — B-
bimodule X with respect to (A, B, p,u,o,v) is isometric. Indeed, for
any x € X,

IM@)I1* = lagzo A@), X@)| = lo(alz, y))ll = lalz, )]l = .
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Let A be a twisted coaction of H® on a Hilbert A — B-bimodule X with
respect to (A, B, p,u,o,v). We define the twisted action of H on X
induced by A as follows: for any x € X, h € H,

B = (id ® B (@) = M) (),

where A(z) is the element in Hom(H, X) induced by A(z) in X @ H°.
Then, we obtain the following conditions which are equivalent to
Definition 3.4 (1)—(6), respectively:

(1)" h-xax = [h() pu allh) A o] for any a € A, x € X;

(2)

(3)

(4)" ho (2, y)B = ([S(h{})) x 2], [h(2) "x y]) g for any z,y € X;
(5)

(

6), h ‘A [Z ‘A :E] = ’a(h(l), l(l))[h(g)l(g) A z]ﬁ*(h@),l(g)) for any r € X,
h,l € H; where & and v are elements in Hom(H x H,M(A)) and
Hom(H x H, M(B)) induced by u € M(A) ® H° ® H® and v € M(B)
® H® ® HO, respectively.

Remark 3.5. In Definition 3.4, if p and o are coactions of H° on A
and B, respectively, then Definition 3.4 (6) and its equivalent (6)" are
the following, respectively:

(6) A®@id) oA = (id® A%) o \;
(6) hx[l-xx]=hl-yz for any x € X.

In this case, we call A\ a coaction of HY on X with respect to
(A,B,p,0).

Next, we shall define crossed products of Hilbert C*-bimodules by
twisted coactions in the same way as in [17, Section 4] and give a
duality theorem for them.

Let (p,u) and (o,v) be twisted coactions of H® on C*-algebras A
and B, respectively. Let A be a twisted coaction of H° on a Hilbert
A — B-bimodule X with respect to (A, B, p,u,0,v). We define X x H,
a Hilbert A x,, H — B X, H-bimodule as follows: let (X xx H)g
merely be X ® H (the algebraic tensor product) as vector spaces. Its
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left and right actions are given by

(a Xpu h)(x XA l) = a[h(l) ‘A x]ﬁ(h(g), l(l)) XA h(g)l(g),
(SL‘ AN l)(b Ao m) = ac[l(l) ‘o b]i}\(l(g), m(1)> DY l(3)m(2)

foranya € A, b€ B, x € X and h,l,m € H. Also, its left A x,, H-
valued and right B X, , H-valued inner products are given by

Ay H(T X0 hy y 3 1) = a(w, [S(higylis))™ 2 y[o(S(hayliz)™, L))
Xp,u h(3)l(ay

(@ xx hy y Xx D) Bx, 0 =0 (hiz), S(h))")[M(z) ‘o (2, 9) BIO(R{y), (1))
X hz}))l(g)

for any z,y € X and h,l € H. In the same manner as in [17,
Section 4], we see that (X x H) is a pre-Hilbert Ax, , H—B x4, H-
bimodule. Let X x5 H be the completion of (X x H)g. It is a Hilbert
Axp H—B g, H-bimodule. Let X be a linear map from (X xyH)g
to (X xx H)o ® H, defined by

~

Az xx h) = (2 x5 h(1)) @ h)

for any € X, h € H. By simple computation, we can see that Nis a
linear map from H to (X x\ H)o® H satisfying in Definition 3.4 (1)—(6).
Thus, for any = € (X % H)o,

IX@)1? =l ean, . myorAN@), M) = [1A(alz, )|

= llafz,2)]| = =|*.

Hence, Nis an isometry. We extend Nto X x ) H. We see that the ext-
ension of A is a coaction of H on X xy H with respect to (A x, .,

H,B X, ., H,p,0). We also denote it by the same symbol X and call it
the dual coaction of .

Similarly, we define the second dual coaction of A, which is a coaction
of H® on X xy H X5 HO Let A be as in Section 2. For any
I =(i,j,k) € A, let W/ and V/ be elements in M(A) x,, H x; H°,
defined by - -

WP =/dj mgyuwfj, Vi = (15012, ) (WY ><1E10).
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Similarly, for any I = (4, j,k) € A, we define the elements
W7 =+Vdk Xg0 wfj, Vi =1 Xgp1xsT)(WF Xg 10)

in M(B) Xy, HxsH°. We regard My (C) as an equivalence My (C) —
Mp (C)-bimodule in the usual way. Let X ® My(C) be the exterior
tensor product of X and My (C), which is a Hilbert A ® My(C) — B
® Mpy(C)-bimodule. Let {fr;}r7eca be a system of matrix units of
Mpy(C). Let ¥y be a linear map from X ® My (C) to X x, H x5 HO,
defined by

Ux <Z-TIJ ® fIJ) =Y VP (@ xa1 x5 1°)V7.
1, 1,J

Let U4 and ¥p be the isomorphisms of A ® My (C) and B® My(C)
onto A X, H X H° and B Moo H g HP° defined in Proposition 2.13,
respectively. Then, we have the same lemmas as [17, Lemmas 5.1, 5.5].
Hence, U is an isometry from X @ My (C) to X x5 H x5 HY whose
image is (X xx H)o x5 HY, the linear span of the set

{rx\hx5¢|zeX,heH¢e HY.

Since X ® My (C) is complete, so is (X x1x H)g x5 HY. Furthermore, we
claim that (X x H)g is also complete. In order to show this, we need
the following lemma: let E7 be a linear map from (X xy H)o onto X
defined by

EMz xyh) =7(h)z

forany z € X, h € H.
Lemma 3.6. With the above notation, E; is continuous.

Proof. In the same manner as in the proof of [17, Lemma 5.6], we
see that

BMa xx h) =7 -5 (x 303 h) = VP (7)) (@ x5 h x5 19V (7)),
where we identify X x\ H x5 19 with X %, H and
V(@) =1 xpulxpd, VO(d)=1%g,1%50

for any ¢ € H°. Hence, E{ is continuous. O
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Let E2 be a linear map from (X x, H X5 H%g to X xy H, defined
by
E(z x5 ¢) = d(e)x

for any x € X x\ H, ¢ € HC.
Lemma 3.7. With the above notation, (X xx H)g is complete.

Proof. Let {z,} be a Cauchy sequence in (X x) H)o. Using
Lemma 3.6 and the linear map F3, we can see that {x,} is conver-
gent in (X xy H)o. a

By Lemma 3.7, X x\ H = (X x) H)p. In the same way as in the
proof of [17, Theorem 5.7], we obtain the following proposition using
Lemma 3.7.

Proposition 3.8. Let A and B be C*-algebras and H a finite dimen-
sional C*-Hopf algebra with its dual C*-Hopf algebra H®. Let (p,u) and
(0,v) be twisted coactions of H® on A and B, respectively. Let \ be a
twisted coaction of H° on a Hilbert A — B-bimodule X with respect to
(A, B,p,u,0,v). Then, there is an isomorphism ¥ x from X ® My(C)
onto X X\ H x5 HOY satisfying that

1) WX((ZGIJ(@JCIJ)(Z”JIJ@JCIJ))
rJ 7
= ‘I’A(ZCLU ®fIJ)\IfX(Z$1J ®fIJ>;
0J 0J
(2) qu((leJ@)flJ)(Zle@fIJ))
1,J 1,J
=Ux < S w® fIJ) Up < > b @ fIJ)a
1,J 1,J
(3) Amp,uHx,;H0<‘I’X(ZI1J®f1J>,‘1’X<Zy1J®f1J>>
07 J
=Ws (A@MN(C) < Z 1y @ f17, Z Yrg ® fIJ>>7
rJ rJ
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(4) <\I/x<;$u®fIJ>v‘I/X(Zy”®f”>>BxU,UHmH°

0J
=Up << S ® fr, Yy ® f1J>
rJ 1,J

for any ar; € A, byy € B, x1y, yrg € X, I and J € A, where
X ><1>\H>45\H0 is a Hilbert Axp’uHxﬁHofB >407UH>45,H0— bimodule,
XQMp(C) is an exterior tensor product of X and the Hilbert My (C)—
Mp(C)-bimodule My (C). Furthermore, there are unitary elements
Uée (M(A) x,,Hx; H) @ H® and V € (M(B) Xy, H x5 H®) @ H°
such that - -

B®MN(C)>

UA@)V = (Tx ®id) o (A® idary (o) 0 U3 (@)
for any x € X ® My (C).

Proposition 3.8 has already been obtained in the case of Kac systems
by Guo and Zhang [10], which is a generalization of the above result.
Also, we have the following lemmas:

Lemma 3.9. With the above notation, if X is full with both-sided inner
products, then so is X x H.

Proof. Modifying the proof of [17, Lemma 4.5], yields the proof of
Lemma 3.9. (]

Lemma 3.10. With the above notation, if X xy H is full with both-
sided inner products, then so is X.

Proof. Since X x) H is full with both-sided inner products, so is
X x\ H x5 H° by Lemma 3.9. Thus, X ® My (C) is full with both-
sided inner products by Proposition 3.8. Let f be a minimal projection
in My(C). Then,

A® f=nma) @ ) A Mn(C))(1aa) ® f)
=(1® f) agmy(c)(X @ Mn(C), X @ Mn(C))(1® f)
=a(X, X) @ fMy(C)f = a(X, X) @ f.
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Hence, X is full with the left-sided inner product. Similarly, we can see
that X is full with the right-sided inner product. Therefore, we obtain
the conclusion. O

Definition 3.11. Let (p,u) and (o,v) be twisted coactions of H® on
C*-algebras A and B, respectively. Then, (p,u) is strongly Morita
equivalent to (o,v) if there are an A — B-equivalence bimodule X and
a twisted coaction A of H? on X with respect to (A, B, p,u,0,v).

In the same manner as in [17, Section 3], we see that the strong
Morita equivalence for twisted coactions of H? on C*-algebras is an
equivalence relation. Also, we obtain the following lemma in a similar
manner to [17, Lemma 3.12] using approximate units in a C*-algebra.
It is given without its proof.

Lemma 3.12. Let (p,u) and (o,v) be twisted coactions of H® on A.
Then, the following conditions are equivalent:

(1) the twisted coactions (p,u) and (o,v) are exterior equivalent;

(2) the twisted coactions (p,u) and (o,v) are strongly Morita equivalent
by a twisted coaction \ of H® on 4 A4, which is a linear map from
AAA 10 agHIA® H2®Ho where 4A4 and agpoA ® H2®H0 are
regarded as an A— A-equivalence bimodule and an AQ H® — A H°-
equivalence bimodule in the usual way.

Remark 3.13. Let A and B be C*-algebras and o a coaction of H°
on B. Let X be an A — B-equivalence bimodule and A a linear map
from X to X ® H satisfying

(1) A(xzb) = A(x)o(b) for any b € B, z € X

(2) o((z,y)B) = (A\(z), AMy)) Bgno for any z,y € X;
(3) (ldx®6 )O>\ idy;

(4) A®id)oX = (Id® A% o \.

We call (B, X,0,\, H°) a right covariant system, see [17, Defini-
tion 3.4]. Then, we construct an action “-” of H on Kpg(X) as follows.
For any a € Bp(X), h € H and z € X,

[h-alz = hqy -y alS(h) -z
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If a € Kp(X), we see that h-a € Kp(X). Thus, identifying A with
Kp(X), we obtain an action of H on A.

4. Linking C*-algebras and coactions on C*-algebras. Let
(p,u) and (o,v) be twisted coactions of H? on C*-algebras A and B,
respectively. Suppose that there are a Hilbert A — B- bimodule X and
a twisted coaction A of H on X with respect to (4, B, p,u, 0,v). Let C
be the linking C*-algebra for X defined in [6]. By [6, Proposition 2.3],
C is the C*-algebra consisting of all 2 x 2-matrices

a x
{ﬂ b}’ a€A beB, x,ye X,

where 3 denotes y as an element in X, the dual Hilbert C*-bimodule
of X. Before defining the coaction of H on C induced by the twisted
coaction A of H? on X, with respect to (A, B, p,u,0,v), we give the
next remark.

Remark 4.1. We identify the H — H%-equivalence bimodule HO with
HOY as the H° — H-equivalence bimodule by the map

1:-IVO—>HO:$»—>¢*.

Also, we identify the Hilbert B® H® — A® H-bimodule X ® HO with
X ® H° by the map

XOH — XQH" : 20 ¢— T ® "

Furthermore, we identify the linking C*-algebra for X ® H°, the Hilbert
A® H° — B ® H bimodule with C ® H° by the isomorphism defined

(e )

2{8 8}®¢11+[8 (ﬂ®¢12+[0 8]®¢§1+[8 2]®¢227

a%l T ® P12
YR P21 DX o

y

where a € A, b€ B, z,y € X and ¢;; € H’, i,j =1,2.
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Let v be the homomorphism of C to C' ® H? defined by, for any
ac€ A, beB,x,y€e X,

(5 3]) =16~
7o) T ew)
Let w be the unitary element in M (C) defined by w = [¥ Y]. By routine
computation, (v, w) is a twisted coaction of H on C.

Remark 4.2.

(1) We note the twisted action of H on C induced by (v,w) as
follows: for any a € A,b€ B,z,y € X and h € H,

h F ﬂ hopua heaw
TWob] SR Ay hewub|

(2) Let A be a linear map from X to X @ H® defined by, for any
re X,

M@ = Az).

Then, X is the twisted coaction of H Y on X induced by A. Also,
the twisted action of H on X induced by A is as follows: for any
reX,he H,

—~

h-j\fz S(h*) ‘A L.

Let Cy be the linking C*-algebra for the Hilbert A x, H — B x, H-
bimodule X x) H. Then, we obtain the next lemma by Remarks 4.1
and 4.2.

Lemma 4.3. With the above notation, there is an isomorphism m of
C %y H onto Cy.

Proof. Let m be the map from C x,,, H to C1, defined by

a x| o aXpuh T X\h
™ ~ w = -~ * [ % * 1
! Y b i {U(S(h’@))v h(l)) [h(g) ‘A y] kDY h(4)} b Ao h
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foranya € A,be B, z,y € X and h € H. Let 6; be the map from Cy
to C X, H, defined by

aXpuh  xT Xyl a0 0 =z
9([;@ bxmm])—[o of ot [g 5] v

+[ 0 ~O}N k*+[0 O}N .
{[S(k@) » W]O(S(ke)), kay)t 0] "7 @ 0 b "7

forany a € A, b € B, z,y € X and h,k,l,m € H. Then, by routine
computation, 7; is a homomorphism of C' %, H to (4, and 6, is a
homomorphism of C to C' % ., H, Moreover, we see that 6, is the
inverse map of m;. Therefore, we obtain the conclusion. O

By the proof of Lemma 4.3, we obtain the following corollary.

Corollary 4.4. With the above notation, there is a Hilbert B x, H —
A %, H-bimodule isomorphism m of X xx H onto X x5 H.

Remark 4.5. Let v, be a coaction of H on C7, defined by
N = (m @idy) o omi .

Then, by routine computation, for any a € A, b € B, z,y € X and
h,l,k,me H,

aXpuh xxyl axpuh(l) 0 0 a:>4>\l(1)
—_—— = ’ h
71<[yxkk bxo,q)"”]) |: 0 0 “ (2)+ 0 0
0 0 " 0 0
®l2) + [(y s k(l))N 0} ® k(g + {0 b s m(1)] ® ma)-

We give a result similar to [15, Theorem 6.4] for coactions of H°
on a Hilbert C*-bimodule, applying Proposition 2.17 to a linking C*-
algebra. Let p and o be coactions of HY on A and B, respectively,
and let X be a Hilbert A — B-bimodule. Let A be a coaction of H° on
X with respect to (A4, B, p,0). Let C be the linking C*-algebra for X
and v the coaction of H® on C induced by p,o and . As defined in
Section 3, let

X*={reX|\Nz)=221%.
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Then, by Lemma 3.10, X* is a Hilbert A? — B?- bimodule. Let Cj be
the linking C*-algebra for X*.

We prove the next lemma in a straightforward way. Therefore, we
give it with no proof.

Lemma 4.6. With the above notation and assumptions, C7 = Cp,
where C7 is the fixed point C*-subalgebra of C' for ~y.

Lemma 4.7. With the above notation, if p(1 x,¢e) ~ (1 x,e) ® 1 in
(M(A)x, H)® H and a(1 xpe) ~ (1 x5 e)®1 (M (B)x H)®H
then j(lM(C) Nle) ~ (1M(C) Nle) ®1n ( ( ) X H)

Proof. By Remark 4.3, we identify C' x, H with C4, the linking C*-
algebra for the Hilbert A x, H — A x, H-bimodule X x, H. Also,
we identify 4 with 1, the coaction of H on C; defined in Remark 4.5.
Hence,

~ o 1><1p€(1) 0 0 0
e ””6){ 0 0/P@T 0 1x,eq| PC@

By the assumptions,

].><1£6(1) 0 1)436 0 . M(A)XIBH 0
[ 0 o]®e<2> [ o o®t ™ 0 o @1

0 0 0 0 o 0
{0 1><1(Te(1):|®e(2)w|:0 lxﬁe}@)l " [0 M(A) ><I(,H:|®H.

Since [M(A())X'KH 8} and [0 M(A)>q H} are C*-subalgebras of M(C7) b,

the proof of Echterhoff and Raeburn [9, Proposition A.1],

lxﬁe(l) 0 0 0 1>4£€ 0
[ 0 0T 0 1xyeq @ 0 1xge !

in M(C1) ® H. Therefore, we obtain the conclusion since M (Cy) ® H
is identified with (M (C) x, H) ® H. O
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By [15, Section 4], there is a unitary element w?” € M(A) ® H
satisfying
w” ((1 %, e) @ Nw” =p(1 x, ),
U =wl(zP*®1),
2P = (idpra) ® €)(w”) € M(A)L.

Also, there is a unitary element w? € M(B) ® H satisfying

w7 (1 x5 ) @ Nw? =3(1 %, e),
UU — wo‘(zcr* ® 1)’
27 = (idpra) ® €)(w?) € M(A)%.
Let w? = [% %] € M(C)® H. Then, w” is a unitary element
satisfying w*((1 x4 e)®@)w” =7(1 x5 e). Let U7 = w? (27" ®1), where
27 = (idprcy ® €)(wY) € M(C)L. Then, by Section 2, U” satisfies

U'(1% =1,  U(¢a))cU"(¢(2)) € M(C)2

for any c € M(C)2, ¢ € H. Let (n,u”) be a twisted coaction of H on
C7 induced by U”, which is defined in Section 2. Then, by the proof of
Proposition 2.17, there is an isomorphism 7¢ of C? x,, .+ H° onto C,
defined by

7TC’(C Ny ¢) = CU’Y((ZS)
for any c € C7, ¢ € H°, which satisfies
VOWC:(WC'Q@idH)Oﬁ’ E”'"W:E'Yoﬂ-c’

Y . o . .
where E" and E” are the canonical conditional expectations from

C7 Xy v H° and C onto C7, respectively. Let p = [10A 8], q= [8 103 ]

Then p and g are projections in M (C”). We note that M (C7) = M(C)X
by Lemma 2.14.
Lemma 4.8. With the above notation and assumptions,

7o (p Xy 1°) = p, Wpelel)=(pele ),
o (g Xpun 1Y) =gq, W(@elel)=(e1e1)u?,
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Proof. Note that C7 is identified with the C*-subalgebra C7x,, ,,+1°
of C7 %, ,» H°. Then, by [25, Proposition 2.12],

p=E"" (p X, 19 = E7(nc(p Xy, u 1%)
=e-yme(p Mo, 10) =mcle-5 (p Xy, un 10))
= 7TC(p) = 7TC(p M,uy 10)

since yomo = (m¢ ®idy) o 7). Similarly, we obtain that mc(q Xy uv 19)
= ¢. Furthermore, by the definition of U7, U7 = [U" %] € M(C)®H.
Hence, U'(p® 1) = (p® 1)U". Since

(¢, %) = U (o)) U (1)) U (d2)¥(2))

for any ¢, € HY, we see that uY(p®1®1) = (p®@1® 1)u?. Similarly,
u(gelel)=(@ele)u. O

Let o = n|ae, B = n|pe and p = n|xr. Let v» = u'(p®@1®1)
and u” = u7(¢ ® 1 ® 1). Furthermore, let 74 = 7¢|a, 75 = 7c|p and
mx = nc|x. Then, (a,u”) and (3,u’) are twisted coactions H° on A?
and B, respectively, and yu is a twisted coaction of H? on X* with
respect to (A, B,a,u”, B,u?). Also, w4 and 7p are isomorphisms of
AP X e HOY and B° XB,ue HY onto A and B satisfying the results in
Proposition 2.17, respectively. Furthermore, we obtain the following.

Theorem 4.9. Let A and B be C*-algebras and H a finite dimensional
C*-Hopf algebra with its dual C*-Hopf algebra H®. Let p and o be
coactions of H® on A and B, respectively. Let \ be a coaction of H°
on a Hilbert A— B-bimodule X with respect to (A, B, p,0). We suppose
that p(1x,e) ~ (1x,e)®1 in M(A)x,H and that d(1x,e) ~ (I1x,e)®1
in M(B)x, H. Then, there are a twisted coaction u of HY on X* and a
bijective linear map wx from X* x,, HY onto X satisfying the following
conditions:

) Tx((a Xawe @) (@ X ))) = mala Xaur O)Tx (2 X, P);

) X (@2 @)(bXpue ¥)) = 7x (@ X Q)7B (b Xpur V);

) Ta(a0 510 0 10T Xy &y Y X)) = almx (@ 2, 0), mx (y 2, P));

) TB({(x X, ¢,y "/)>B<’><15 wo o) = (Tx (2 X, 0), Tx (y X, ¥)) B3

5) h - TrX(x X, ) = mx(hp(xx, @) for any x,y € X*, a € AP,
be B, heH, ¢pe HO.
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Proof. Using the above discussion, we can prove the theorem in a
straightforward manner. |

Let A be a unital C*-algebra and p a coaction of H? on A. Let K
be the C*-algebra of all compact operators on a countably infinite
dimensional Hilbert space. Let A°* = A ® K and p* = p ®id. We
identify HY ® K with K ® H?. Then, p* is a coaction of HY on A®.

Lemma 4.10. With the above notation, p and p° are strongly Morita
equivalent.

Proof. Immediate by routine computation. O

Let A and B be unital C*-algebras. Let p and o be coactions of
HY on A and B, respectively. Suppose that p and o are strongly
Morita equivalent. Also, suppose that there are an A — B-equivalence
bimodule X and a coaction A of H® on X with respect to (4, B, p, o).
Let C be the linking C*-algebra for X and ~ the coaction of H on C
induced by p,o and A, which is defined above. Let A* = AR K, B* =
B® K and C° = C® K. Let X* = X ® K be the exterior tensor
product of X and K, which is an A® — B*-equivalence bimodule in the
usual way. Let p® = p®id, 0° = o ®id and v°* = y®id. Let \* = A®id,
which is a coaction of H? on X*. Let

_[la®luyxk) O _ o 0
p 0 0|’ q 0 1B®1M(K) ’

Then, p and ¢ are full projections in M(C®) and A® = pC®p, B®
qC*q. We identify A® and B*® with pC®p and qC*®q, respectively. By
[4, Lemma 2.5], there is a partial isometry w € M(C?®) such that
w*w = p, ww* = q. Let 6 be a map from A° to C*, defined by

0(a) = waw™ = w [8 8] w*
for any a € A. Since w*w = p and ww* = ¢, by easy computation, we
see that @ is an isomorphism of A® onto B*.
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Proposition 4.11. With the above notation, there is a unitary element
u € M(B*) ® HY such that

(0 @idgo) o p®of~! = Ad(u) o o®,
(u®1°)(c® @idgo)(u) = (idpr(p) @ A%)(u),
where o is the strictly continuous coaction of HY on M(B?®) extending
the coaction o° of HY on B°.
Proof. We note that § = Ad(w). Since p® = ~*
we obtain that

(0 @idgo) o p® o0~ = Ad((w @ 1°)y* (w*)) 0 o,

As and 0° = ¥°¥|gs,

where 7* is the strictly continuous coaction of HY on M (C*) extending
the coaction v of HY on C®. Let u = (w ® 1°)y*(w*). By routine
computation, we can show that u is a desired unitary element in
M(B*) ® H. O

5. Equivariant Picard groups. Following [11], we shall define the
equivariant Picard group of a C*-algebra.

Let A be a C*-algebra and H a finite dimensional C*-Hopf algebra
with its dual C*-Hopf algebra HY. Let (p,u) be a twisted coaction
of H® on A. We denote by (X,)\) a pair of an A — A-equivalence
bimodule X and a twisted coaction A of H° on X with respect to
(A, A, p,u,p,u). Let Equif;“(A) be the set of all such pairs (X, \) as
above. We define an equivalence relation ~ in Equif;“(A) as follows:
for (X,\),(Y,p) € Equi%“(A), (X,\) ~ (Y,u) if and only if there
is an A — A-equivalence bimodule isomorphism 7 of X onto Y such
that pom = (7 ® idgo) o A, that is, for any z € X and h € H,
w(h-x2) = h-, w(z). We denote by [X, )] the equivalence class of
(X,A) in Equif“(A). Let Picf;"(A) = Equif;“(A)/ ~. We define the
product in Pic"(A) as follows: for (X, \), (Y, u) € Equi%"(A),

[

XANY,pu] =[X®@4Y, A® pl,

where A ® 1 is the twisted coaction of H® on X ®4 Y induced by the
action “ yg,” of H on X ®4Y defined in [17, Proposition 3.1]. By
simple computation, we see that the above product is well defined. We
regard A as an A— A-equivalence bimodule in the usual way. Sometimes
it is denoted by 4A4. Also, we can regard a twisted coaction p of H
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on C*-algebra A as a twisted coaction of H° on the A — A-equivalence
bimodule 4 A4 with respect to (4, A, p,u, p,u). Then, [4A4, p] is the
unit element in Pic%"(A). Let A be the coaction of H? on X defined
by A(Z) = )\f(\a_n/) for any = € X, which is also defined in Remark 4.2 (2).
Then, we see that [X, A] is the inverse element of [X, ] in Pic%"(A).
By the above product, Picf"“(A) is a group. We call it the (p,u, H)-
equivariant Picard group of A.

Let Aut?;“(A) be the group of all automorphisms « of A satisfying
that (a®idgo)op = poa, (a®id®id)(u) = u and let Int7;"(A) be the
set of all generalized inner automorphisms Ad(v) of A satisfying that
p(v) =v®1°% (v®1°®1%u = u(v ® 1° ® 19), where v is a unitary
element in M (A). By easy computation, Int%;*(A) is a normal subgroup
of Autf“(A). Modifying [5], for each a € Aut?;“(A), we construct the
element (X, \o) € Equif;“(A) as follows: let o € Autf“(A). Let X,
be the vector space A with the obvious left action of A on X, and the
obvious left A-valued inner product, but define the right action of A
on X, by z-a = za(a) for any x € X,, a € A and the right A-valued
inner product by (z, y)4 = a~!(z*y) for any x,y € X,. Then, by [5],
X, is an A — A-equivalence bimodule. Also, p may be regarded as
a linear map from X, to an A ® H° — A @ H -equivalence bimodule
X, ® H°. We denote it by A\,. By simple computation, )\, is a twisted
coaction of H? on X,, with respect to (4, A, p,u, p,u). Thus, we obtain
the map P,

P : Auth;"(A) — Pichi"(A) : o — [Xa, Aol
Modifying [5], we see that the map ® is a homomorphism of Aut?;*(A)
to Picf;“(A). This yields a similar result to [5, Proposition 3.1].

Proposition 5.1. With the above notation, we have the exact sequence
1 — Int?"(A) = Aut?"(A) -2 Pic%"(A),

where 1 is the inclusion map of Int;"(A) to Autl;"(A).

Proof. Modifying the proof of [5, Proposition 3.1], we shall prove
this proposition. Let v be a unitary element in M (A) with p(v) = v®1°,
(v®1°01%)u = u(ve1°®1°). We show that [X aq(v), Aadw)] = (444, 0]
in Picf;“(A). Let m be the map from 4A4 to Xaqq defined by
m(a) = av* for any a € 4A4. Then 7 is an A — A-equivalence bimodule
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isomorphism. Also, for any a € 4A4 and h € H,

h "AAd(v) W(a) =h “AAd(v) (av*)
= [hq1) p a][h2) p V"]
=[h-palv* =n(h-,a).

Thus, [Xad(w), Aad@w)] = [ada, p] in Pic}“(A). Conversely, let a €
Aut?*(A) with [Xa, Aa] = [44a4,p] in Pic;"(A). Then, there is an
A — A-equivalence bimodule isomorphism 7 of 4 A4 onto X, such that

Aeom=(r®id)o

By the proof of [5, Proposition 3.1], (roa™!, 7) is a double centralizer
of A. Hence, (toa™!, ) € M(A). Let v = (mroa~!, 7). Then, v is
a unitary element in M (A) such that & = Ad(v*). Furthermore, since
Aoom = (m®id)op, for any a € A, Ay (7(a)) = (m®id)(p(a)). It follows
that p(av*) = p(a)(v®1°)* for any a € A, that is, p(v) = v®1°. Also,
since (p®id)op = Ad(u) o (id®@ A% op, (v 1°®1%)u = u(v®1°®1°).
Therefore, we obtain the conclusion. O

Next, we shall show a similar result to [5, Corollary 3.5]. Let A be a
C*-algebra and X an A — A-equivalence bimodule. Let p be a coaction
of HY on A and ) a coaction of H? on X with respect to (A, A, p, p).
Let C be the linking C*-algebra for X and ~ the coaction of H on C
induced by p and A which is defined in Section 4. Furthermore, suppose
that A is unital and that p(1 x,€e) ~ (1 x,e)®1in (Ax, H) ® H.
Then p is saturated by [15, Sectlon 4]. Let ( )® be the coactlon of H

n (A x, H)* ® H induced by the dual coaction p of H on A x, H.
Also, let (pS)A be the dual coaction of p* which is a coaction of H on
A® %, H. By their definitions, we can see that (p)° = (p°) , where we
identify (A x, H)® with A® x,: H. We denote them by p*.

Lemma 5.2. With the above notation, if p(1 x,e) ~ (1 x,e) ® 1 in
(Ax, H)@ H, then p*(1 xps ) ~ (1 x5 €)@ 1 in (M(A®%) x,s H) @ H.

Proof. Immediate by straightforward computation. ]

Let C be the linking C*-algebra for an A% — A®-equivalence bimodule
X? and v the coaction of H on C induced by p® and A°.
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Lemma 5.3. With the above notation, if p(1 x,e) ~ (1 x,€e) @1 in
(Ax,H)®H, then :Y\(lM(C)Nle) ~ (lM(C)xle)Q@l in(M(C ><11H)®H.

Proof. Immediate by Lemmas 4.7 and 5.2. O

Lemma 5.4. With the above notation, we suppose that p(1 x,e) ~
(Ix,e)®1 in (Ax,H)®H. Let ® be the homomorphism ofAutﬁ; (A®) to
Picg (A®) defined by (o) = [Xa, Aa] for any o € Aut’;;(As). Then,
18 surjective.

Proof. Let [X, A] be any element in Picg (A%). Let
X'={zecX|\Nz)=221°
Since p(1 x,e) ~ (1 x,e)®1in (A x, H) ® H, by Lemma 5.2,
PP xps €) ~ (1 xps ) @1 in (M(A®) x,s H) ® H. Since X is an
A*® — A®-equivalence bimodule, by Lemma 3.10 and Theorem 4.9, X A
is an (A%)?" — (A®)? -equivalence bimodule, where (A4%)?" is the fixed
point C*-subalgebra of A® for the coaction p®. Let C be the linking
C*-algebra for X and «y the coaction of H° on C induced by p* and \.
Let C7 be the fixed point C*-algebra of C' for 4. Then, by Lemma 4.6,
C" is isomorphic to Cy, the linking C*-algebra for X*. We identify C”
with Cy. Let
_1a® 1M(K) 0 |0 0
p= 0 o 170 1a®luw]

Then p and ¢ are projections in M (C)X. Since M(C)X = M(C7) by
Lemmas 2.14 and 4.7, p and ¢ are full for C7. By the proof of [5,
Theorem 3.4], there is a partial isometry w € M(C)Z such that

w*w = p, q=ww".
Hence, w € M(C). Let a be the map on A®, defined by
ala) = wraw = w* 00 w
N N 0 a

for any a € A®. By routine computation, « is an automorphism of A°.
Let 7 be a linear map from X to X, defined by

1= o= o
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for any € X. In the same manner as in the proof of [5, Lemma 3.3],
we can see that 7 is an A® — A®-equivalence bimodule isomorphism of X
onto X,. For any a € A®,

(0* 0 a)(a) = p* (w*aw) = v(w* [8 2] w>

= (e ®@idpo)(p(a))

—2w) |y ety 200

since w € M(C)X. Hence, a € Auté’; (A®). Furthermore, for any z € X,

()\aow)(m):/\a<[8 g]w>:p<[g ﬂw>
(5 )= [ ]

= (7 ®idpyo)(A(x)),

where we identify K@ HY with H'QK. Thus, ®(a) = [X, A]. Therefore,
we obtain the conclusion. O

Theorem 5.5. Let A be a unital C*-algebra and p a coaction of H°
on A. We suppose that p(1 xp,e) ~ (1 x,e)®1 in (Ax, H) @ H.
Then, we have the following exact sequence:

1 — Int?; (A%) = Aut?; (A%) -2 Picf, (A%) — 1,

where 1 is the inclusion map of Int%s (A%) to Aut’l’;(As).
Proof. Immediate by Proposition 5.1 and Lemma 5.4. ]

Since the following lemma is obtained in a straightforward manner,
we omit its proof.

Lemma 5.6. Let (p,u) and (o,v) be twisted coactions on C*-algebras
A and B, respectively. We suppose that (p,u) is strongly Morita
equivalent to (o,v). Then, Pich"(A) = Picy;" (B).
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6. Ordinary and equivariant Picard groups. In this section, we
shall investigate the relation between ordinary and equivariant Picard
groups. Let p be a coaction of H? on a C*-algebra A, and let f, be the
map from Pic#, (A) to Pic(A), defined by

£, Pick (A) — Pic(A) : [X, A] — [X],

where Pic(A) is the ordinary Picard group of A. Clearly, f, is a
homomorphism of Pic%(A) to Pic(A). Let Aut(A) be the group of
all automorphisms of A, and let o € Aut(A). Let X, be the A — A-
equivalence bimodule induced by « defined in Section 5. Let A be a
coaction of HY on X, with respect to (4, A, p, p). Then, for any a € A
and x,y € Xg,

A 2) = pla) - Ax) = pl@)A(2);

A(za(a) = A(z - a) = A(@) - pla) = Ma)(a ® id)(p(a)
ol ( a0 (\@) M) = M)A)'s
ol ) 1®id)

A®HU*(

);
(A(2)"Ay));

Let {u,} be an approximate unit of A. Then, A(u,) € X, ® H°. Since
Xo = A as vector spaces, we regard A(u,) as an element in A ® HO.

Lemma 6.1. With the above notation, we regard A(u,) as an element
in A® H°. Then, {\(u,)} strictly converges to a unitary element in
M(A® H°), and the unitary element does not depend upon the choice
of an approximate unit of A.

Proof. Let a € A and v € A® H°. Then, by equation (2),

[(A(ty) = Auy)) (@ @id)(p(a)z)[| = [[A((uy — uy)a(a))(a @ id)()]]
< [IA((uy = uyr)a(a))l]|]
= [I(uy = uy)ala)] ||zl
since ) is isometric. Since p(A)(A® H?) is dense in A® H®, {\(u,)y} is

a Cauchy net for any y € A® H°. Similarly, by equation (1), {yA(u,)}
is also a Cauchy net for any y € A ® HY. Thus, {\(u,)} converges to
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some element u € M (A ® H°) strictly. We note

Jim p(uy) = lHm p(uy) = p(lim uy) = p(1) =1,

: —1 1 —1 _ -1 : _ -1 _
Jim a7 (uy) = lim 0™ (uy) = a7 (lim uy) =a™ (1) =1,

where the limits are taken under the strict topologies in M (A® H®) and
M (A), respectively, and o' is an automorphism of M(A) extending
a~! to M(A), which is strictly continuous on M(A). Hence, by
equations (3) and (4), we can see that u is a unitary element in
M(A ® H). Let {vg} be another approximate unit of 4, and let v
be the limit of A(vg) under the strict topology in M (A @ H?). Then,
by the above discussion, we have that
[(A(uy) = AMvp)) (e @id)(pla)) || < [[(uy = vs)a(a)ll]|«]

for any a € Aand x € A® HY. Since p(A)(A® HY) is dense in A® HY,
U= . ]

Lemma 6.2. Let u be as in the proof of Lemma 6.1. Then, u satisfies
Az) = p(x)u for any x € X,, pla(a)) = ula ® id)(p(a))u* for any
a€Aand (p®id)(u)(u®1°) = (id ® A%)(u).

Proof. Let {u} be an approximate unit of A. By equation (1), for
any ¢ € Xo, AMzuy) = p(z)A(uy). Thus, A(z) = p(z)u. Also, by
equation (2) for any a € A,

Aya()) = A, ) (o © id) (p(a).
Hence, Aa(a)) = u(a ®id)(p(a)). Since M a(a)) = p(a(a))u for any
a € A by the above discussion, for any a € A,
pla(e))u = u(a ®id)(p(e))

for any a € A. Since u is a unitary element in M (A @ H?),
pla(a)) = u(a ®@id)(p(a))u”
for any a € A. Furthermore, for any a € A,
(A® i) (Au,0)) = (A@id)(Aus) @ ® id)(p(a~ (@)
— (p2idAw)(A@id)o (a@id)o poa)(a),
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by equations (1) and (2). Thus, equation (2) yields
A®id)(A(a) = (p®id)(u)(A®id) o (a®id) o poa™")(a)
= vli_{r;o(g ®id)(u)
(A ®id)((uy @ 1°)((a @id) 0 poa™")(a))
= —YILH;O(B@) id)(u)(A(u,) @ 1°)
((e@id@id)o(p@id) o poa)(a)
= (p®id)(u)(u® 1°)
((a®id®id) o (id® A% o poa~t)(a)
= (p®id)(u)(u® 1°)((id® A% (a®id)opoa")(a).
Also, by equation (2),
(1d @ A% (A(u30)) = (id @ A%) (A(u) (@ @ id) 0 po a~1)(a))
— (i@ AY)(A(w))
(([d® A% o (a®id) o poat)(a).
Thus,
(id® A% (A(a)) = (id ® A% (u)((id ® A®) o (e ®id) o poa™t)(a).
By equation (6),
[(p®id)(u)(u®1%) — ((i[d® A%) (u)]((i[d® A®) o (a®id) o poa~t)(a) =0
for any a € A. Therefore,
(p@id)(u)(u®1°) = (id ® A%)(u). O

Remark 6.3. By Lemma 6.2, we can see that the coaction (a ® id) o
poa~! of H® on A is exterior equivalent to p.

Conversely, let u be a unitary element in M (A @ H°) satisfying
p=Ad(u)o(a®id)opoa?,
(p®id)(u)(u®1°) = (id @ A%)(u).
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Let A\, be the linear map from X, to X, ® H°, defined by
Na(@) = p(a)u

for any « € X,. Then, by routine computation, we can see that A, is
a coaction of HY on X, with respect to (A, 4, p, p).

Proposition 6.4. With the above notation, the following conditions
are equivalent:

(1) [Xo] € Imf;
(2) there is a unitary element u € M(A ® H°) such that

p=Ad(u)o(a®id)opoa?,
(p®id)(u)(u®1°) = (id ® A%)(u).

Proof. Immediate from Lemma 6.2 and the above discussion. O

Let u be a unitary element in M(A ® HY) satisfying Proposition
6.4 (2). Let A, be as above. We call \, the coaction of H? on X, with
respect to (A, A, p, p) induced by u.

Let o, 8 € Aut(A) satisfy that there are unitary elements u,v €

M (A ® H°) such that
p=Ad(u)o(a®id)opoa?,
(P®1d)(U)(U®1 ) = (id® A®%)(u),
Ad(v)e (B®@id)opop,
(P®1d)(v)(v®1 ) = (1d®AO)( )-

Lemma 6.5. With the above notation, we have the following:

(p®id)(u(a ®id)(v))(u(e ® id)(v) ® 1°) = (id @ A%)(u(a ® id)(v)).

Proof. By routine computation, we see that
((aoB)®id)opo(aoB)™! = Ad((a®id)(v*)) o Ad(u*) o p.

Thus, we obtain

p=Ad(ula ®id)(v)) o (a0 ) ®id) o po (a0 B)~!
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Since poa = Ad(u) o (a®id) o p,

(p®id)((e@®id)(v)) = (u® 1°)(a®id ®@id)((p @ id)(v))(u ® 1°)*.
Hence, by routine computation, we see that
(p®id)(u(a®id)(v))(u(a®id)(v) ©1°) = (id® A% (u(a®id)(v). O

Let o, 8 and u,v be as above. Let A, and ), be coactions of H% on
X, and Xg with respect to (A4, A, p, p) induced by u and v, respectively.
Let uffv = u(a ®id)(v) € M(A ® H°). By Lemma 6.5, we can define
the coaction Ay, of HY on Xaop with respect to (4, A, p, p), induced

by ufv. By simple computation, we see that X, ® Xz is isomorphic
to Xqog by an A — A-equivalence bimodule isomorphism 7, as follows:

T:Xo®4Xg — Xaop: QY —> za(y).
We identify X, ®4 Xg with X3 by the above A — A-equivalence
bimodule isomorphism 7.
Lemma 6.6. With the above notation, for [Xa, Au], [Xa, Ay] € Pich; (A),
[XOH )‘u] [X57 Av] = [Xaoﬁ, )\uﬁv} € PICPH(A)7

where ufv = u(a ®id)(v) € M(A ® HY).

Proof. By the definition of the product in Picf;(4),
[(Xos M) [ Xy o] = [Xo @4 X5, Ay @ Ayl
Hence, it suffices to show that
T(hxuor, €O Y) = hox,, m(z®yY)

for any x € X, y € Xg and h € H. For any z € X,, y € Xg and
heH,

T(hauor, T@Y) = m([hay a, 2] @ [h) 2, Y])
= 7m([hq) -p zlu(he)) @ [ha) - Yl (hay))
[hay -p zu(hiz))a([hes) -p ylo(hay))-



EQUIVARIANT PICARD GROUPS OF C*-ALGEBRAS 1605

Since poa = Ad(u) o (a®id) o p,
m(hx,ox, £ @ Y) = [hay p 2llhe) - a@)]ulhs)o(0(h))
= [hq) -p za(y)l(u(a @ id)(v))" (h2)
=h x za(y).

Therefore, we obtain the conclusions. O

Corollary 6.7. With the above notation, for any [Xa, \,] € Pich;(A),

[(Xa, M) 7' = [Xa-1, Ma1id)ws)] € Pich(A).
Proof. Immediate by Lemma 6.6 and routine computation. (|

For any a € Aut(A), let U5 (M(A ® H?)) be the set of all unitary
elements u € M (A ® H°) satisfying
p=Adw)o(a@id)opoa,
(p®id)(u)(u®1°) = (id ® A%)(u).

Lemma 6.8. With the above notation, for any o € Aut(A), we have
the following:

(1) for any u € U (M(A® H®)) and v € US(M(A® HY)), uwv €
UZ(M(A® H)):;

(2) for any u,v € UL(M(A® H?)), w* € UL, (M(A® HY)).

Proof.

(1) This is immediate by Lemma 6.6;

(2) By Corollary 6.7, (o~ ®id)(v*) € U? _,(M(A ® H)). Hence,
w* € UL (M(A® HY)). O

Lemma 6.9. Let u € U (M(A®HP)). Then, the following conditions
are equivalent:
(1) [ada, M) = [aAa, p] in Pich (A);

(2) there is a unitary element w € M(A) N A" such that v =
(w* ®1%)p (w).
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Proof. Suppose condition (1). Then, there is an A — A-equivalence
bimodule automorphism 7 of 4 A4 such that

p(r(x)) = (7 ®id)(Au(z)) = (7 @ id)(p(z)u)
for any x € 4A4. We note that 7 € 4Ba(4A4) and
ABA(4AA) = AN Ba(Ax) & AN M(A).

Hence, there is a unitary element w € A’ N M(A) such that m(z) = wz
for any x € A. Thus, for any x € A,

p(wz) = (w®1°)p(z)u.
Therefore, u = (w* ® 1°)p(w).
Next, we suppose condition (2). Let 7 be the A — A-equivalence

bimodule automorphism of 4A4 defined by m(x) = wa for any = €
AAA. Then, for any x € 4 A4,

pr(x)) = plwe) = plaw)
= p(a)p(w) = p(x)(w & 1%)u

= (w® 1%p(z)u = (7 @id)( A (x)).

Thus, we obtain condition (1). O

Corollary 6.10. Let o € Aut(A) and u,v € UL(M(A® H®)). Then,
the following conditions are equivalent:

(1) [Xa, ] = [Xa, Ao in Pich; (A);
(2) there is a unitary element w € M(A) N A" such that u = (w*
@ 1%)p(w)v.

Proof. Suppose condition (1). By Lemma 6.6 and Corollary 6.7, we
see that [4A 4, Auv+] = [aAu4, p] in Pic%, (A). Thus, by Lemma 6.9, there
is a unitary element in w € M(A) N A’ such that uv* = (w* ® 1°)p(w).
Hence, we obtain condition (2).

Conversely, suppose condition (2). Then, there is a unitary element

w € M(A) N A’ such that wv* = (w* ® 1°)p(w). Hence, [aA4, Ayp+] =
[aAa, p] in Pic%(A). Since [Xo, A)[Xa:Ao] ™t = [444, Ay in Pich,
(A) by Lemma 6.6 and Corollary 6.7, [Xo, A\y] = [Xa, Ay] in Pich (4).
|
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We shall compute Kerf,, the kernel of f,. Let [X,\] € Pic},(A).
Then, by Proposition 6.4, we see that [X] = [4A44] in Pic(4) if
and only if there is a unitary element u € UL (M (A ® H?)) such
that [X,A] = [a44,\y] in Picf;(A). Furthermore, by Corollary 6.10,
[aAa, ] = [aAa,N] in Picf,(A) if and only if there is a unitary
element w € M(A) N A’ such that u = (w* ® 19)p(w)v, where u,v €
UL (M(A®H")). We define an equivalence relation in Uf, (M (A® H"))
as follows: let u,v € Uf (M (A®H?)), written u ~ v if there is a unitary
element w € M(A) N A" such that

u=(w* @1%)p(w)v.

Let U? (M(A®H?"))/~ be the set of all equivalence classes in UL, (M (A
®@H")). We denote by [u] the equivalence class of u € Uf, (M (A® HY)).
By Lemma 6.8, U, (M (A®H")) is a group. Hence, Uf, (M (A®H"))/~
is a group by simple computation.

Proposition 6.11. With the above notation, Kerf, = UL (M(A ®
H®))/~ as groups.

Proof. Let m be a map from Uf;(M(A ® H°))/~ to Kerf,, defined
by
W([U]) = [AAAa )\u]

for any u € U (M (A ® H")). By the above discussion, we see that 7
is well defined and bijective. For any u,v € U;(M (A ® HY)),

m([ul)m([v]) = [ada, Au][aAa, Ao] = [ada, Auw] = 7([uv]),

by Lemma 6.6. Therefore, we obtain the conclusion. O

We recall that there is a homomorphism & of Aut’;; (A%) to Pic’;; (A%),
defined by
®(a) = [Xa, Ao

for any a € Aut%s (A%), where )\, is a coaction of HY on X, induced
by p?®, see Section 5. Then the following results hold:

Lemma 6.12. With the above notation, for any « € Aut’;; (A%),
(fps 0 @) () = [Xa]
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in Pic(A®). Furthermore, if p(1x,e) ~(1x,e)®1 in (Ax, H)® H,
then
Imf,. = {[Xa] € Pic(A*) | @ € Aut’; (A*)}.

Proof. Immediate by simple computation. O

Let G be a subgroup of Pic(A*%), defined by
G = {[X,] € Pic(A°) | a € Aut?; (4°)}.

Theorem 6.13. Let H be a finite dimensional C*-Hopf algebra with
its dual C*-algebra H®. Let A be a unital C*-algebra and p a coaction
of H° on A with p(1 x,€e) ~ (1 x,e)®@1 in (Ax, H) ® H. Let
A = A K, and let p° be the coaction of HY on A® induced by p. Let
UL (M (A% @ HY)) be the group of all unitary elements u € M(A*® H°)
satisfying
= Adw) o', (pf @id)(w)(u®1%) = (id @ A%)(u).

Then, we have the following exact sequence:

1 — UP (M(A® @ H))/~—> Pic?; (A*) — G — 1,

where “~7 is the equivalence relation in Uip; (M(A* @ H?)) defined in
this section.

Proof. Immediate by Proposition 6.11 and Lemma 6.12. |

Let A be a UHF-algebra of type N°°, where N = dim H. Let p
be the coaction of H on A defined in [16, Section 7], which has the
Rohlin property. Note that

p(lxpe)~(1x,e)®1 in(Ax,H)®H,
by [16, Definition 5.1].
Corollary 6.14. With the above notation, we have the following exact
sequence:
1 — U2 (M(A® @ H°)) — Pic; (A°) — G — 1.

Proof. Since A?® is simple, M(A®) N (A®) = C1 by [21, Corollary
4.4.8]. Therefore, by Theorem 6.13, we obtain the conclusion. |
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7. Equivariant Picard groups and crossed products. Let (p,
u) be a twisted coaction of H? on a unital C*-algebra A. Let f be a

map from Pic%;"(A) to Pic%o (A %, H), defined by
X)) = [X 00 H, N

for any [X, \] € Pic%;"“(A). In this section, we shall show that f is an
isomorphism of Pic%"(A) onto Picf;i0 (A, H). We see that f is well
defined in a straightforward way. We show that f is a homomorphism
of Picf;*(A) to Pich,(AX, H). Let A, B and C be unital C*-algebras
and (p,u), (o,v) and (v, w) be twisted coactions of H® on A, B and C,
respectively. Let A be a twisted coaction of H° on an A— B-equivalence
bimodule X with respect to (A, B, p,u,0,v). Also, let u be a twisted
coaction of H® on a B — C-equivalence bimodule Y with respect to
(B,C,0,v,7,w). Let ® be a linear map from (X ®pY) Xrg, H to
(X X\ H) ®px, ,u (Y x, H), defined by
D(z @y xagu h) = (32 1) @ (y 2, h)

for any x € X, y € Y and h € H. By routine computation, ® is well
defined. We note that (X xx H) ®px, ,u (Y %, H) consists of finite
sums of elements in the form (z x 1) ® (y x, h) by the definition of
(X %\ H)®pxu, u (Y x, H), where x € X, y € Y and h € H. Hence,
we can see that ® is bijective and its inverse map ®~! is:

(X 3 H) ®Bx, u (Y ¥y H) — (X ®@BY) xrgu H :
(x)31)® (y ¥y h) — QY Xagy h
Furthermore, we have the following lemmas.
Lemma 7.1. With the above notation,
Ax, H(P(@ @Y Mgy h), P(2 @1 Xagpul))
= A, H(T QY Xagu hy, 2@ 7 Xxgul),
(@(r @y xagu h), (2@ 71 Xagul))ox, o H
=(x®@y Xrguh, 2@7 Xagul)ox, H

foranyzx,z€ X, y,r €Y and h,l € H.

Proof. We can prove this lemma by routine computation. Indeed,

Axp,uH<<I)(x QY Naxu h), ®(z®r XA@u )
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= ax, 1@ XA 1) @ (y X, h), (2x31) @ (rx, 1))
= a0, B {(® XA 1) oy 1 (Y Xy by 7 ) 1), 2 200 1)
= ax, 1@ X\ 1) (B(y, [S(h)l(3)" urw(S(hayli)" la)))
Moo M@ l(a)) 2 Xx 1)
= a8 (TB(Y, [S(h2)l(5)" - r]0(S(hayliy)*s L))
X\ h(g)la), z Xy 1)
= al@ 5y, [S(h@)liz)" - rlO(S(hayliz)" la)))s [S(hs)liy)® x 2])
X p,u B(ayl(s)-
On the other hand,

Aty H{T @Y Xagu by 2 @7 Mgy )
= alz @y, [S(h)l(3)" reu 2 @ T]O(S(h1)li)", l(1))
X p.u h3)(ay
=4l @y, [S(h@)liy)" 22l @ [S(h)l(5)" u rW(S(hayl)", L))
X pu by l(s)
= alz By, [S(helis)" - rlw(S(hayliz)" lwy))s [S(hs)le)™ 2 2])
Xpou h(4)lf5)

Thus, we obtain

Ax,  H(P(T @y Xagu h), ®(2 @7 Xagpu 1))
= Ax, H(T @Y Mg hy, 2@ 7T Xagu ).

Similarly, we obtain

(P(x @y xagu h), P(z@71 Xagul))ox, wH
= @@y xeuh @1 Xgul)ox, a0

Lemma 7.2. With the above notation, ® is an A X, H — C X4
H-equivalence bimodule isomorphism of (X ®pY) Xag, H onto (X
X\ H) ®px, 0 (Y %, H), satisfying

(¢ 555 (@ @Y Mg h)) = ¢ 575 (@Y Xrgu h)

foranyxe X, yeY,he H and ¢ € H°.
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Proof. From Lemma 7.1 and the remark after [12, Definition 1.1.18],
we see that ® is an A x,, H — C %, H-equivalence bimodule
isomorphism of (X ®pY) xxgu H onto (X x\ H) ®px, ,u (Y x, H).
Furthermore, for any x € X, y €Y, h € H and ¢ € H?,

(¢ 555 (2 @y xagu h)) = 2(z @y Mg h1yd(hz))
= (x 2\ 1) @ (y ¥y h(1))d(h(2))
= [bq) 'z (@A D] @ [d2) a (y ¥y h)]
=0 X Pz @y XA pu h).

Therefore, we obtain the conclusion. O

Corollary 7.3. Let f be a ma;ifmm Picl;“(A) to Pic’;IO(A X0 H),
defined by f([X,A]) = [X »xx H, A] for any [X, \] € Pich;“(A). Then, f
is a homomorphism of Pich"(A) to Picho (A X, H).

Proof. Immediate by Lemma 7.2. O

Next, we construct the inverse homomorphism of f of Pic?_l0 (Ax,H)
to Pic};"(A). First, note the following: let (o, v) and (53, z) be twisted
coactions of H® on unital C*-algebras A and B, respectively. Suppose
that there is an isomorphism ® of B onto A such that (P®id)o = ao®
and v = (P®id)(z). Let (X, \) € Equif;”(A). We construct an element
(Xo, o) in Equiy;®(B) from (X, A) € Equi};”(A) and @ as follows: let
Xg = X as vector spaces. For any x,y € X¢ and b € B,

b-x=o(b)z, x-b==x
B<l’,y> :(1)71(14<x7y>)7 <$7y>B =0

We regard A as a linear map from Xg to Xe ® H. We denote it by \g.
Then, (X¢,Ae) is an element in Equi%z (B). By simple computation,
the map

Pic%"(A) — Pic%*(B) : [X, A — [Xa, Ao

is well defined, and it is an isomorphism of Pic%;"(A) onto Pic};”(B).
By Corollary 7.3, there is a homomorphism f of Pic%,,(A 1, H) to
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Pic? (A x,., H %, H), defined by

F(You)) = [Y %, H°, fi]

for any [Y,u] € Pic;;0 (A %, H). By Proposition 2.13, there are an
isomorphism ¥4 of A ® My(C) onto A x,, H x; H° and a unitary
element U € (A x,, H x; H) ® HY such that

Ad(U) 0 p= (U4 @idgo) o (p @ idary(cy) © Ui
(U4 ®idgo ®idgo)(u® Iy) = (U ® 1°) (5 @ idgo)(U)(id @ A°)(U*).

Let p = (\11;11 ® idgpo) o ﬁo V4. By the above discussion, there is
an isomorphism ¢g; of PicZ(A X0 H x5 H°) onto Pich, (A ® My (C)),
defined by

gl([Xv )‘]) = [X‘I/Av A‘PA]

for any [X, )] € Pic’;(A Xpu H x5 HY). Furthermore, the coaction
pof H on A ® My(C) is exterior equivalent to the twisted coaction
(p®id,u® Iy). Indeed,

p@idyy(c) = (U5 ®@idgo) 0 Ad(U) 0p o Wy = Ad(Uy) o 7,

where U; = (V' @ido)(U). Since (' @ idgo @idgo) o (id @ A%) =
(id® A%) o (U, @ idgo),

u® Iy = (U ®1°)(p @ id)(U1) (id @ A% (U7).

We also note the following: consider twisted coactions (o, v) and
(B,z) of HY on a unital C*-algebra A. We suppose that (a,v) and
(8, z) are exterior equivalent. Then, there is a unitary element w in
A ® H° such that

g =Ad(w) o «,

z=(w® 1) (p®id)(w)v(id @ A%)(w*).
From Lemmas 3.12, 5.6 and their proofs, there is an isomorphism g
of Pic};"(A) onto Pic};”(A), defined by go([X, A]) = [X, Ad(w) o A] for
any [X,\] € Pic};"(A), where Ad(w) o A means a linear map from X
to X ® HY, defined by (Ad(w) o \)(z) = wA(z)w* for any z € X,
which is a coaction of H? on X @ HY with respect to (4, A, 3, 2, 3, 2).
Since p and (p ® id, u ® Iy) are exterior equivalent, by the above
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discussion, there is an isomorphism gy of Pic% (A ® My(C)) onto
PicFI;@ldMN(c)’u@IN (A® Mpn(C)), defined by

92([X7 /\D = [Xv Ad(Ul) o >‘]

for any [X,)\] € Pic’;I(A ® My(C)). By simple computation, (p,u)
is strongly Morita equivalent to (p ® iday(c), v @ In). Hence, by
Lemma 5.6 and its proof, there is an isomorphism g3 of Pic%;"(A) onto

Pich N @ BN (4 @ My (C)), defined by
g3([X,A]) = [X ® Mn(C), A ® idMN(C)}

for any [X,\] € Pich"(A). Let g = g3  0gaogio f. Then, g is a
homomorphism of Pic%,(A %, H) to Picf;*(A).

Proposition 7.4. With the above notation, go f =id on Pick"(A).

~

Proof. Let [X,\] € Pic};“(A). By the definitions of f, f, g1 and ga,

(920910 fo FYIX,N) = [(X »x H x5 HO)g ., Ad(U1) 0 (V)w,].

Let Wx be the linear map from X @ My (C) to X x\ H x5 HO defined
in Proposition 3.8, and regard ¥y as an A ® My(C) — A® My (C)-
equivalence bimodule isomorphism of X @ My(C) onto (X x\ H x5
HO)y . Also, since

Ad(U)oX = (¥x ®id) o (A®@id) o U}
by Proposition 3.8, for any x € A ® My (C),

~ ~
N

(Ad(T1) 0 V) () = Uy - (N aa () - Uf = UA@)U”
= (Tx ®id) o (A®id) o Ui')(2).
Thus,

(X xx H x5 H)u,, Ad(U1) 0 (Vw,] = [X ® My(C), A®id]
. . pPRidary (o), u®IN . _
in Picy, (A® My(C)). Since g3([X,A]) = [X ® My(C),
A ®idasy ()], we obtain the conclusion. O
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Theorem 7.5. Let (p,u) be a twisted coaction of H° on a unital C*-
algebra A. Then Pich"(A) = Pich (A %, H).

Proof. Let f,f,gi, i = 1,2,3, and g be as in the proof of Propo-
sition 7.4. By Proposition 7.4, go f = id on Pic};"(A). Hence, f is
injective and g is surjective. Furthermore, we can see that fis injective
by Proposition 7.4. Since g = ggl 0ge0g] 0 ]?and gi, © =1,2,3, are
bijective, g is injective. It follows that g is bijective. Therefore, f is an
isomorphism of Pic;"(A) onto Piclﬁq0 (Axpu H). O
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