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ON THE IRRATIONALITY OF INFINITE SERIES
OF RECIPROCALS OF SQUARE ROOTS

JAROSLAV HANČL AND RADHAKRISHNAN NAIR

ABSTRACT. This paper gives sufficient conditions on the
sequence {an}∞n=1 of positive integers to ensure that the
number

∑∞
n=1 1/

√
an is irrational.

1. Introduction. Following Liouville [12], Mignotte [14] and Erdős
[3], we prove the following theorem.

Theorem 1.1. Let {an}∞n=1 be a non-decreasing sequence of positive
integers such that

lim
n→∞

log2 an
2n2 = lim

n→∞
a2

−n2/2

n = ∞.

Then the number
∑∞

n=1 1/
√
an is irrational.

Here, and throughout the entire paper, log x denotes the natural
logarithm of the number x. This theorem has some history. In 1975,
Erdős [3] proved that, if we suppose {an}∞n=1 is a non-decreasing

sequence of positive integers such that limn→∞ a
1/2n

n = ∞, then the
number

∑∞
n=1 1/an is irrational. Later, the first author [8] proved that

if {an}∞n=1 is a non-decreasing sequence of positive integers such that

1 < lim inf
n→∞

a1/2
n

n < lim sup
n→∞

a1/2
n

n ,

then the number
∑∞

n=1 1/an is irrational. Subsequently, Šustek [18]
found a new irrationality measure for such a number. Next, Rucki [16]
established a criterion for irrationality of the sums of reciprocals of
natural numbers. Then, in 1991, the first author [6] proved that, if
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{an}∞n=1 is a sequence of positive real numbers such that an ≤ 2(1/n
2)2n

holds for any positive integer n, then there exists a sequence {cn}∞n=1

of positive integers such that the number
∑∞

n=1 1/(cnan) is rational.

If {an}∞n=1 is a sequence of positive integers such that a1 ≥ 2 and
an+1 = a2n − an + 1 for all (n = 1, 2 . . .), we note that the number

∞∑
n=1

1

an
=

1

a1
+

∞∑
n=2

(a1 − 1)
∏n−1

j=1 aj

(a1 − 1)
∏n

j=1 aj

=
1

a1
+

∞∑
n=2

(a1 − 1)a1
∏n−1

j=2 aj

(a1 − 1)
∏n

j=1 aj

=
1

a1
+

∞∑
n=2

an − 1

(a1 − 1)
∏n

j=1 aj

=
1

a1
+

∞∑
n=2

(
1

(a1 − 1)
∏n−1

j=1 aj
− 1

(a1 − 1)
∏n

j=1 aj

)
=

1

a1 − 1

is rational. We also note that the sequence {a1/2
n

n }∞n=1 is decreasing

and all its terms are greater than 1. Therefore, limn→∞ a
1/2n

n exists.
The referee stated that Aho and Sloane [1] proved that, if a0 = 2, then
an

.
= 1.2642

n

, also see Finch [4, page 444].

We now observe that the limit limn→∞ a
1/2n

n satisfies some upper
and lower bounds. In order to see this we observe that we have
a2 = a21−a1+1 and a3 = (a21−a1+1)a1(a1−1)+1. By induction, we can

prove that (a21−a1+1)2
n−2−(a21−a1+1)2

n−3

+1 ≥ an ≥ (a21−a1)
2n−2

+1
for every positive integer n ≥ 3. Hence,

4

√
a21 − a1 + 1 ≥ lim

n→∞
a1/2

n

n ≥ 4

√
a21 − a1 > 1.

This implies that the condition limn→∞ a
1/2n

n = ∞ or possibly some-
thing weaker with additional assumptions is necessary for the irrational-
ity of

∑∞
n=1 1/an.

Throughout the entire paper, Z+ and Z denote the set of all positive
integers and integers, respectively. Recall that a number α is a
Liouville number if, for every n ∈ Z+, the inequality |α − p/q| <
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1/qn has infinitely many solutions in (p, q) ∈ Z × Z+. Erdős [3]
proved that if {an}∞n=1 is a sequence of positive integers such that
limn→∞(1/n) log log an = ∞, then the number

∑∞
n=1 1/an is Liouville.

Some other conditions for series to be Liouville numbers may be found
in [5].

Kanoko, Kurosawa and Shiokawa [11] proved the transcendence of
reciprocal sums of elements in some binary recurrence sequences. On
the other hand, Lucas [13] proved that

∞∑
n=1

1

F2n
=

7−
√
5

2
,

where {Fn}∞n=1 is the increasing sequence of all Fibonacci numbers.
The first author [7] proved that, if {an}∞n=1 is a sequence of positive
integers such that limn→∞(1/n) log3 log2 an > 1, then the number∑∞

n=1 1/an is transcendental. Here and henceforth throughout the
paper loga x denotes the logarithm to base a of the number x. The
authors are not able to find a sequence {an}∞n=1 of positive integers
such that

lim
n→∞

1

n
log2 log2 an > 1

with the number
∑∞

n=1(1/an) algebraic.

The main result of this paper is Theorem 2.4, which gives quite gen-
eral conditions on the sequence {an}∞n=1 that ensures series

∑∞
n=11/

√
an

is an irrational number. Its proof is based on an idea of Erdős [3] and
Liouville [12]. Note that it is not required that the elements of {an}∞n=1

be approximable by the elements of a finite union of power sequences
or be associated with any differential equation. This means we cannot
rely on the main theorem from the paper of Corvaja and Zannier [2]
which uses the Subspace method or Theorem 1 from Nishioka’ s book
[15, page 34, Theorem 1] dealing with the Mahler’s method.

2. Notation and preliminary results. Let α be an algebraic
number with minimal polynomial

P (x) =
d∑

j=0

ajx
j
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and conjugates α = α1, . . . , αd. Then, the Mahler measure M(α) of α
is defined to be

M(α) := |ad|
d∏

j=1

max(1, |αj |).

Set H(α) = M(α)1/d. Now, we have the following lemma.

Lemma 2.1. Let n be a positive integer, and let β1, . . . , βn be algebraic
numbers. Then

H

( n∑
j=1

βj

)
≤ 2n

n∏
j=1

H(βj)(2.1)

and

deg

( n∑
j=1

βj

)
≤

n∏
j=1

deg(βj).(2.2)

For the proof of (2.1) see Waldschmidt [19, page 75, Property 3.3,
page 79, Lemma 3.10]. Also see Stewart [17]. The proof of (2.2) may
be found in Isaacs [10].

We also need the next theorem [14] and lemma [9].

Theorem 2.2. Let α and β be different algebraic numbers of degree A
and B, respectively. Then,

(2.3) |α− β| ≥ 1

2ABM(α)BM(β)A
.

Lemma 2.3. Suppose ε > 0, and let {bn}∞n=1 be a non-decreasing
sequence of positive real numbers such that bn ≥ n1+ε for all n ∈ Z+.
Then, for every N ≥ 1, we have

(2.4)
∞∑

n=N

1

bn
<

1 + (2ε/ε)

b
ε/(1+ε)
N

.

Our main result is the next theorem.
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Theorem 2.4. Suppose ε > 0, and let {an}∞n=1 be a non-decreasing
sequence of positive integers such that

(2.5) lim sup
n→∞

a
1/

∏n−1
j=1 (2j+2)

n = ∞,

and such that

(2.6) an ≥ n2+ε

for all sufficiently large n. Then,

∞∑
n=1

1
√
an

is irrational.

3. Proofs. Theorem 1.1 is an immediate consequence of Theo-
rem 2.4. We now prove Theorem 2.4.

Proof. Suppose that there exist p, q ∈ Z+ such that

γ =

∞∑
n=1

1
√
an

=
p

q
.

Set

γN =
N∑

n=1

1
√
an

.

Then, we have M(γ) = max(p, q), deg(γN ) ≤ 2N and

M(γN ) = H(γN )deg(γN ) ≤ H(γN )2
N

≤
(
2N

N∏
n=1

H

(
1

√
an

))2N

≤
(
2N

N∏
n=1

√
an

)2N

.

From this and Theorem 2.2 we obtain that

γ(N) = |γ − γN | ≥ 1

2deg(γ) deg(γN )M(γ)deg(γN )M(γN )deg(γ)

≥ 1

(2max(p, q))2NM(γN )
≥ 1

(max(p, q)2N+1
∏N

n=1

√
an)2

N
.
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Hence, for all sufficiently large N , we have

(3.1) γ(N)

(
max(p, q)2N+1

N∏
n=1

√
an

)2N

≥ 1.

Now the proof falls into three cases.

Case 1. Assume that

(3.2) lim sup
n→∞

a
1/

∏n−1
j=1 (3j+3)

n = ∞.

It then follows, for infinitely many N , that we have

(3.3) a
1/

∏N
j=1(3

j+3)

N+1 ≥
(
1 +

1

(N + 1)2

)
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n ;

otherwise, there would exist N0 such that, for every N ≥ N0, we have

a
1/

∏N
j=1(3

j+3)

N+1 <

(
1 +

1

(N + 1)2

)
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n

<

(
1 +

1

(N + 1)2

)(
1 +

1

N2

)
max

n=1,...N−1
a
1/

∏n−1
j=1 (3j+3)

n

< · · ·

<
N+1∏

n=N0+1

(
1 +

1

n2

)
max

n=1,...N0

a
1/

∏n−1
j=1 (3j+3)

n

<

∞∏
n=1

(
1 +

1

n2

)
max

n=1,...N0

a
1/

∏n−1
j=1 (3j+3)

n

= const.

This contradicts (3.2). From (3.3), we obtain that, for infinitely many
N ,

aN+1 ≥
((

1 +
1

(N + 1)2

)
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n

)∏N
j=1(3

j+3)

=

(
1 +

1

(N + 1)2

)∏N
j=1(3

j+3)(
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n

)∏N
j=1(3

j+3)

> 23
N
(

max
n=1,...N

a
1/

∏n−1
j=1 (3j+3)

n

)∏N
j=1(3

j+3)
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=
(
2
(

max
n=1,...N

a
1/

∏n−1
j=1 (3j+3)

n

)∏N−1
j=1 (3j+3)+3−(N−1) ∏N−1

j=1 (3j+3))3N

≥
(
2aN

(
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n

)3−(N−1) ∏N−1
j=1 (3j+3))3N

≥ · · ·

≥
(
2

N∏
j=1

aj

)3N

.

This and Lemma 2.3 yield that

γ(N)

(
max(p, q)2N+1

N∏
n=1

√
an

)2N

≤ 1 + [(2ε/2+1)/ε]

a
ε/(4+2ε)
N+1

(
max(p, q)2N+1

N∏
n=1

√
an

)2N

≤ 1 + [(2ε/2+1)/ε]

((2
∏N

j=1 aj)
3N )ε/(4+2ε)

(
max(p, q)2N+1

N∏
n=1

√
an

)2N

< 1,

for infinitely many N . This contradicts (3.1).

Case 2. Suppose that

(3.4) lim sup
n→∞

a
1/

∏n−1
j=1 (3j+3)

n < ∞

and, for all large n, that

(3.5) an ≥ 2n.

From (3.4), we obtain, for all large n, that

(3.6) an < 23
n2

.

Inequality (3.5) yields that, for every large N ,

∞∑
n=N+1

1
√
an

=
∑

n≤log2 aN+1

1
√
an

+
∑

n>log2 aN+1

1
√
an

≤ log2 aN+1√
aN+1

+
∑

n>log2 aN+1

1√
2n
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≤ log2 aN+1√
aN+1

+
∞∑

n=0

1
√
aN+1

√
2n

<
2 log2 aN+1√

aN+1
.

This and (3.6) imply, for every large N , that we have

(3.7)
∞∑

n=N+1

1
√
an

<
4N

2

√
aN+1

.

Now, from (2.5), we obtain, for infinitely many N , that we have

(3.8) a
1/

∏N
j=1(2

j+2)

N+1 ≥
(
1 +

1

(N + 1)2

)
max

n=1,...N
a
1/

∏n−1
j=1 (2j+2)

n ,

because, otherwise, as before, there would exist an N0 such that, for
every N ≥ N0, we would have

a
1/

∏N
j=1(2

j+2)

N+1 <

(
1 +

1

(N + 1)2

)
max

n=1,...N
a
1/

∏n−1
j=1 (2j+2)

n

<

(
1 +

1

(N + 1)2

)(
1 +

1

N2

)
max

n=1,...N−1
a
1/

∏n−1
j=1 (2j+2)

n

< · · ·

<
N+1∏

n=N0+1

(
1 +

1

n2

)
max

n=1,...N0

a
1/

∏n−1
j=1 (2j+2)

n

<
∞∏

n=1

(
1 +

1

n2

)
max

n=1,...N0

a
1/

∏n−1
j=1 (2j+2)

n

= const.

This contradicts (2.3). From (3.8), we obtain, for infinitely many N ,
that we have

aN+1 ≥
((

1 +
1

(N + 1)2

)
max

n=1,...N
a
1/

∏n−1
j=1 (2j+2)

n

)∏N
j=1(2

j+2)

=

(
1 +

1

(N + 1)2

)∏N
j=1(2

j+2)(
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n

)∏N
j=1(2

j+2)

> 2N
22N

(
max

n=1,...N
a
1/

∏n−1
j=1 (2j+2)

n

)∏N
j=1(2

j+2)
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=
(
2N

2
(

max
n=1,...N

a
1/

∏n−1
j=1 (3j+3)

n

)∏N−1
j=1 (2j+2)+3−(N−1) ∏N−1

j=1 (3j+3))2N
≥

(
2N

2

aN

(
max

n=1,...N
a
1/

∏n−1
j=1 (3j+3)

n

)3−(N−1) ∏N−1
j=1 (2j+2))2N

≥ · · ·

≥
(
2N

2
N∏
j=1

aj

)2N

.

This and (3.7) imply for infinitely many N that we have

γ(N)(max(p, q)2N+1
N∏

n=1

√
an)

2N

=

( ∞∑
n=N+1

1
√
an

)(
max(p, q)2N+1

N∏
n=1

√
an

)2N

≤
(

4N
2

√
aN+1

)(
max(p, q)2N+1

N∏
n=1

√
an

)2N

≤
(

4N
2√

(2N2
∏N

j=1 aj)
2N

)(
max(p, q)2N+1

N∏
n=1

√
an

)2N

< 1,

which contradicts (3.1).

Case 3. Suppose that (3.4) holds. Suppose, in addition, that for
infinitely many n the inequality

(3.9) an ≤ 2n

also holds. Then (3.6) holds for all large n. Assume that B is a
sufficiently large positive real number. From (2.5), we obtain that there
exists a least integer S such that

(3.10) aS ≥ 2B
∏S−1

j=1 (2j+2).

Let K be the greatest integer less than S such that (3.9) holds. Let R
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be the least integer greater than K such that

(3.11) aR >

((
1 +

1

R2

)
max

n=K,...R−1
a
1/

∏n−1
j=1 (2j+2)

n

)∏R−1
j=1 (2j+2)

and such that

(3.12) as ≤
((

1 +
1

s2

)
max

n=K,...s−1
a
1/

∏n−1
j=1 (2j+2)

n

)∏s−1
j=1(2

j+2)

for all s = K+1, . . . , R−1. Note that R ≤ S because, otherwise, (3.9),
(3.10) and (3.12) together would imply that

2B ≤ a
1/

∏S−1
j=1 (2j+2)

S

≤
(
1 +

1

S2

)
max

n=K,...S−1
a
1/

∏n−1
j=1 (2j+2)

n

≤ · · ·

<

( ∞∏
n=1

(
1 +

1

n2

))
a
1/

∏K−1
j=1 (2j+2)

K

< 2

( ∞∏
n=1

(
1 +

1

n2

))
= const.

This is a contradiction for large B. From (3.9), (3.11) and the fact that
{an}∞n=1 is a non-decreasing sequence, we obtain that

aR >

((
1 +

1

R2

)
max

n=K,...R−1
a
1/

∏n−1
j=1 (2j+2)

n

)∏R−1
j=1 (2j+2)

(3.13)

=

(
1 +

1

R2

)∏R−1
j=1 (2j+2)(

max
n=K,...R−1

a
1/

∏n−1
j=1 (2j+2)

n

)∏R−1
j=1 (2j+2)

≥
(
1 +

1

R2

)∏R−1
j=1 (2j+2)

·
(
aR−1

(
max

n=K,...R−1
a
1/

∏n−1
j=1 (2j+2)

n

)2−(R−2) ∏R−2
j=1 (2j+2))2R−1

≥ · · ·
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≥
(
1 +

1

R2

)∏R−1
j=1 (2j+2)( R−1∏

j=K+1

aj

)2R−1

≥ 22
4R

(R−1∏
j=1

aj

)2R−1

.

Now inequality (3.12) yields, for all s = K +1, . . . , R− 1, that we have

a
1/

∏s−1
j=1(2

j+2)
s ≤

(
1 +

1

s2

)
max

n=K,...s−1
a
1/

∏n−1
j=1 (2j+2)

n

≤
(
1 +

1

s2

)(
1 +

1

(s− 1)2

)
max

n=K,...s−2
a
1/

∏n−1
j=1 (2j+2)

n

≤ · · ·

≤
( ∞∏

j=1

(
1 +

1

j2

))
a
1/

∏K−1
j=1 (2j+2)

K ≤ D,

where D is a constant which does not depend on K. Hence,

(3.14)

R−1∏
s=1

as =

( K∏
s=1

as

)( R−1∏
s=K+1

as

)

≤ 2K
2

R−1∏
s=K+1

D
∏s−1

j=1(2
j+2)

< D2
∏R−2

j=1 (2j+2).

From Lemma 2.3, (3.6), and the fact that an ≥ 2n for every n =
K + 1, . . . , S, we obtain that

∞∑
n=R

1
√
an

=
∑

n≤log2 aR

1
√
an

+
∑

S>n>log2 aR

1
√
an

+
∞∑

n=S

1
√
an

≤ log2 aR√
aR

+
∑

n>log2 aR

1√
2n

+
1 + (2ε/2+1)/ε

a
ε/(4+2ε)
S
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≤ log2 aR√
aR

+
∞∑

n=1

1
√
aR

√
2n

+
1

a
ε/(4+4ε)
S

<
2 log2 aR√

aR
+

1

a
ε/(4+4ε)
S

.

This, (3.6), (3.10) and (3.13) imply

∞∑
n=R

1
√
an

<
2 log2 aR√

aR
+

1

a
ε/(4+4ε)
S

<
3R

3√
224R(

∏R−1
j=1 aj)2

R−1

+
1

2[ε/(4+4ε)]B
∏S−1

j=1 (2j+2)

<
1

223R(
∏R−1

j=1 aj)2
R−2

+
1

2ε/(4+4ε)B
∏S−1

j=1 (2j+2)
.

From this and (3.14), we obtain, for a sufficiently large B, that

γ(R− 1)

(
max(p, q)2R

R−1∏
n=1

√
an

)2R−1

=

( ∞∑
n=R

1
√
an

)(
max(p, q)2R

R−1∏
n=1

√
an

)2R−1

≤
(

1

223R(
∏R−1

j=1 aj)2
R−2

+
1

2[ε/(4+4ε)]B
∏S−1

j=1 (2j+2)

)

·
(
max(p, q)2R

R−1∏
n=1

√
an

)2R−1

=
(max(p, q)2R

∏R−1
n=1

√
an)

2R−1

223R(
∏R−1

j=1 aj)2
R−2

+
(max(p, q)2R

∏R−1
n=1

√
an)

2R−1

2[ε/(4+4ε)]B
∏S−1

j=1 (2j+2)

≤
(max(p, q)2R

∏R−1
n=1

√
an)

2R−1

223R(
∏R−1

j=1 aj)2
R−2

+
(max(p, q)2RD

∏R−2
j=1 (2j+2))2

R−1

2[ε/(4+4ε)]B
∏S−1

j=1 (2j+2)

< 1.

This contradicts (3.1). �
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algébriques, C.R. Acad. Sci. Paris 18 (1844), 910–911.
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