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VARIANCE AND THE INEQUALITY OF
ARITHMETIC AND GEOMETRIC MEANS

BURT RODIN

ABSTRACT. A number of recent papers have been de-
voted to generalizations of the classical AM-GM inequality.
Those generalizations which incorporate variance have been
the most useful in applications to economics and finance. In
this paper, we prove an inequality which yields the best pos-
sible upper and lower bounds for the geometric mean of a
sequence solely in terms of its arithmetic mean and its vari-
ance. A particular consequence is the following: among all
positive sequences having given length, arithmetic mean and
nonzero variance, the geometric mean is maximal when all
terms in the sequence except one are equal to each other and
are less than the arithmetic mean.

Introduction. Roughly speaking, the discrepancy between the arith-
metic and geometric means of a finite sequence tends to increase as the
sequence deviates more and more from being constant. The literature
contains several generalizations of the classical arithmetic-geometric
mean inequality; they differ, in part, by using different measures for the
deviation of the sequences from constancy. Variance, or standard devia-
tion, is a mathematically natural measure of the deviation of a sequence
from constancy. In addition, as noted by Aldaz [1, 2], Becker [4],
Estrada [6] and Markowitz [8], variance is the most useful such mea-
sure from the point of view of economics and finance. (Markowitz [8]
points out that investors are made aware of the arithmetic mean and
variance of a portfolio, but there is a need for them to estimate the
geometric mean since that is the portfolio’s likely long term return;
cf. Remark 2.2 below). In this paper, Theorem 1.2 gives bounds for the
geometric mean depending solely on the arithmetic mean and variance;
these mean-variance bounds are the best possible.
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A discussion of related previous results is given in Section 2. Corol-
lary 2.1 yields an upper bound, depending only on variance, for the nu-
merical difference between the arithmetic and geometric means; cf. [2].

1. Let x1, x2, . . . , xn be a sequence of n real numbers. The (arith-
metic) mean µ and variance σ2 are defined as:

(1.1) µ =
1

n

n∑
i=1

xi, σ2 =
1

n

n∑
i=1

(xi − µ)2.

This notation always implies that σ is the standard deviation, i.e., the
nonnegative square root of the variance. Thus, mean will always refer
to the arithmetic mean; the quantity (x1x2 . . . xn)

1/n will be referred
to by its complete name, geometric mean.

It is clear that, for a fixed mean µ > 0, if σ2 is sufficiently small,
then each xi will necessarily be positive. Also, for a fixed mean µ > 0,
if all xi are positive, then the variance of the sequence cannot be too
large. The precise conditions for the mean and variance with these two
properties are given in the next lemma.

Lemma 1.1. Let x1, x2, . . . , xn be a sequence of n = 2 real numbers
with mean µ > 0 and variance σ2.

(a) If σ/µ < 1/
√
n− 1, then all terms of the sequence are necessarily

positive.
(b) If all terms of the sequence are positive, then σ/µ <

√
n− 1.

Proof. Let µ > 0 be fixed. Let S be the (n− 1)-simplex

(1.2) S = {(x1, x2, . . . , xn)∈Rn: x1 + x2 + · · ·+ xn = nµ

and xi = 0 for i = 1, . . . , n}.

The variance σ2 of the coordinates of a point (x1, x2, . . . , xn) of S
is related to the distance r from that point to the centroid C0 =
(µ, µ, . . . , µ) of S by r2 = nσ2.

Let r1 be the distance from C0 to a nearest boundary point of S,
and let r2 be the distance from C0 to a furthest boundary point of S.
If (x1, x2, . . . , xn) has mean µ and, if the distance from (x1, x2, . . . , xn)
to C0 is 5 r1, then each coordinate xi must be nonnegative. Similarly,



INEQUALITY OF ARITHMETIC AND GEOMETRIC MEANS 639

if x1, x2, . . . , xn has mean µ and if each xi is nonnegative, then the
distance from (x1, x2, . . . , xn) to C0 must be 5 r2.

The boundary points of S nearest to C0 are the centroids of each
(n−2)-face of S, for example, the point (0, nµ/(n−1), . . . , nµ/(n−1)).
The distance r1 from C0 to such a nearest boundary point satisfies
r21 = µ2n/(n− 1). Therefore, if a sequence x1, x2, . . . , xn with mean µ
has variance σ2 < r21/n = µ2/(n − 1), then all terms of that sequence
are necessarily positive. This proves Lemma 1.1 (a).

Similarly, the boundary points of S furthest from C0 are the vertices
of S. The distance r2 from C0 to a vertex of S satisfies r22 = µ2n(n−1).
Therefore, if a sequence x1, x2, . . . , xn with mean µ and variance σ2 has
all positive terms, then σ2 < r22/n = µ2(n − 1). This proves Lemma
1.1 (b). �

Theorem 1.2. Let n = 2. Let x1, x2, . . . , xn be real numbers with mean
µ > 0 and variance σ2.

(a) If 0 ≤ σ/µ < 1/
√
n− 1, then each xi is positive and

(µ− σ
√
n− 1)

(
µ+

σ√
n− 1

)n−1

≤ x1x2 · · ·xn

(1.3)

≤ (µ+σ
√
n− 1)

(
µ− σ√

n− 1

)n−1

.

The upper and lower bounds in (1.3) are sharp.
(b) If every term of the sequence x1, x2, . . . , xn is positive, then 0 ≤

σ/µ <
√
n− 1 and the inequalities (1.3) continue to hold. The

upper bound is again sharp. In the subrange 1/
√
n− 1 ≤ σ/µ ≤√

n− 1, the lower bound expression in (1.3) becomes negative and
should be replaced by 0; with that understanding the lower inequality
will then be best possible for the entire range 0 ≤ σ/µ <

√
n− 1.

Remark 1.3. Up to a change in order of terms, the sequences which
make (1.3) an equality are the following. For 0 ≤ σ/µ <

√
n− 1, the

upper bound is attained when

(1.4) x1 = x2 = · · · = xn−1 = µ− σ√
n− 1

and xn = µ+ σ
√
n− 1.
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For 0 ≤ σ/µ < 1/
√
n− 1, the lower bound is attained when

(1.5) x1 = x2 = · · · = xn−1 = µ+
σ√
n− 1

and xn = µ− σ
√
n− 1.

For 1/
√
n− 1 ≤ σ/µ <

√
n− 1, there is no minimum among positive

sequences with the given µ and σ, but the infimum is 0.

Proof of Theorem 1.2. Let n = 2, µ > 0, and σ2 be fixed. Let
x = (x1, x2, . . . , xn) be a real n-vector, and let

G(x) = x1x2 · · ·xn,

A(x) = x1 + x2 + · · ·+ xn,(1.6)

V(x) = (x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2.

Consider the problem: maximize or minimize G(x) subject to the
constraints

(1.7) A(x) = nµ and V(x) = nσ2.

We shall refer to this as the max-min problem. By a critical point for
this problem we mean a point x which satisfies constraints (1.7) and
where grad G(x) is in the space spanned by grad A(x) and grad V(x).
The method of Lagrange multipliers asserts that the solutions to the
max-min problem, which exist by compactness, will be found among
the values of G at the critical points. First, we will find all critical
points. Then we will consider the restrictions in the theorem regarding
positivity and bounds on σ/µ.

Thus, x will be a critical point if equations (1.7) are satisfied and if
there exist numbers λ1, λ2 such that

(1.8) grad G(x) = λ1 grad A(x) + λ2 grad V(x).

We have

grad G(x) = (x2x3 · · ·xn, . . . , x1x2 · · ·xn−1),

grad A(x) = (1, 1, . . . , 1),

grad V(x) = 2(x1 − µ, x2 − µ, . . . , xn − µ).

(1.9)

If we multiply each side of (1.8) by xi and equate the ith components
on each side, then, via the three equations (1.9), we obtain the n scalar
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equations

(1.10) x1x2 · · ·xn = (λ1 − 2µλ2)xi + 2λ2x
2
i , i = 1, 2, . . . , n.

If grad G(x) = 0, then at least two of the coordinates of x are 0;
the converse is also true. Suppose that grad G(x) ̸= 0. Then λ1 and
λ2 are not both 0. Equations (1.10) show that all of the n ordered pairs
(xi, x

2
i ) lie on a line

(1.11) (λ1 − 2µλ2)x+ 2λ2y = constant;

of course, they also lie on the parabola y = x2. Therefore, there are at
most two distinct values in the set {x1, x2, . . . , xn}.

We have seen that a point x = (x1, x2, . . . , xn) is a critical point for
the max-min problem only if x has at most two distinct coordinates,
or else grad G(x) = 0. The case of one distinct coordinate x1 = x2 =
· · · = xn occurs if and only if σ = 0. In this case, the inequalities (1.3)
become trivial equalities.

Consider a critical point x such that grad G(x) ̸= 0 and such that
the coordinates of x have exactly two distinct values; denote these two
values by a and b, with b < µ < a.

Suppose that the value a occurs i times and b occurs j times, where
0 < i, j < n and i+ j = n. The constraints (1.7) require that

(1.12) ia+ jb = nµ and i(a− µ)2 + j(b− µ)2 = nσ2.

To express a and b in terms of i, j, n, µ and σ, solve the first equation
in (1.12) for b, substitute the solution into the second equation and
obtain

(1.13) i(a− µ)2 = jσ2.

Since a > µ,

(1.14) a = µ+ σ

√
j

i
.

Now, the first equation in (1.12) yields

(1.15) b = µ− σ

√
i

j
.
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Given i, 1 5 i 5 n−1, there are
(
n
i

)
points which have i coordinates a

given by (1.14), and j = n− i coordinates b given by (1.15); these will
be called critical points of type i. If xi is a critical point of type i, then
the corresponding critical value of G is

G(xi) =

(
µ+ σ

√
j

i

)i

·
(
µ− σ

√
i

j

)j

,(1.16)

i = 1, . . . , n− 1; j = n− i.

We now want to order the n − 1 critical values in (1.16) according to
magnitude.

Let t = σ/µ. Define Pi(t) by

(1.17) Pi(t) =
G(xi)

µn
.

Each Pi(t), 1 5 i 5 n − 1, can be considered a polynomial in t of
degree n:

Pi(t) =

(
1 + t

√
j

i

)i

·
(
1− t

√
i

j

)j

,(1.18)

i = 1, . . . , n− 1; j = n− i.

Lemma 1.4. Let i, j and Pi(t) be given by (1.18). If 1 5 i 5 n − 2,
then

(1.19) Pi(t) > Pi+1(t) for 0 < t <

√
j − 1

i+ 1
.

Consequently,

(1.20) Pn−1(t) < · · · < P2(t) < P1(t) for 0 < t <
1√
n− 1

.

Proof of Lemma 1.4. From (1.18), we find that, for 1 5 i 5 n− 1,

(1.21)
d

dt
logPi(t) =

−nt

(1 + t
√
j/i)(1− t

√
i/j)

.
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Thus, Pi(t) decreases from 1 to 0 as t goes from 0 to
√
j/i. We have

(1.22) logPi(t) =

∫ t

0

−nτdτ

(1 + τ
√
j/i)(1− τ

√
i/j)

, 0 < t <
√
j/i.

According to representation (1.22), in order to prove that, for 1 5 i 5
n− 2,

(1.23) logPi(t) > logPi+1(t) for 0 < t <

√
j − 1

i+ 1
,

it suffices to show that, for 0 < τ <
√
(j−1)/(i+1),

(1.24)
−nτ

(1+τ
√
j/i)(1−τ

√
i/j)

>
−nτ

(1+τ
√
(j−1)/(i+1))(1−τ

√
(i+1)/(j−1))

.

For τ in this range, the factors in the denominators of (1.24) are positive
and inequality (1.24) can be algebraically simplified to become

(1.25)

√
j − 1

i+ 1
−

√
i+ 1

j − 1
<

√
j

i
−

√
i

j
.

Replace j by n− i in (1.25); the result may be written as

(1.26)
n− 2i√
i(n− i)

>
n− 2(i+ 1)√

(i+ 1)(n− (i+ 1))
.

It is evident that the left hand side of (1.26) is a strictly decreasing
function of a real variable i in the interval 0 < i < n since its derivative
with respect to i is negative. Therefore, (1.26) is valid for integers i
in the range 1 5 i 5 n − 2, and (1.23) follows. Inequality (1.19)
follows from (1.23). Inequality (1.19) implies (1.20) since, for 1 5
i 5 n − 2,

√
(j − 1)/(i+ 1) takes its minimum when i = n − 2. This

completes the proof. �

We have found all critical points for the max-min problem, namely,
for each i, 1 5 i 5 n − 1, there are

(
n
i

)
critical points of type i; the

corresponding critical value is given by (1.16). (A critical point of
type i can be described geometrically as follows. Consider a ray from
the centroid C0 of the (n− 1)-simplex S given in (1.2) to the centroid
of a k-dimensional face of S, 0 5 k 5 n−2. The intersection of this ray
with the sphere of radius σ

√
n centered at C0 is a critical point of type
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k+1.) In addition, there are the critical points x where gradG(x) = 0,
i.e., points x which have two or more of their coordinates equal to 0,
and there is the critical point (µ, . . . , µ) when σ = 0.

Now, consider Theorem 1.2 (a) where 0 ≤ σ/µ < 1/
√
n− 1. We may

assume that 0 < σ/µ < 1/
√
n− 1 since, as remarked earlier, if σ = 0,

then (1.3) is trivial. Consider the set of points x in n-space whose
coordinates have the given mean µ and variance σ2. By Lemma 1.1 (a),
these x have positive coordinates. By compactness, the function G(x)
restricted to this set attains a maximum and a minimum. Therefore,
the maximum and minimum must occur among the critical valuesG(xi)
given by (1.16). Since 0 < t = σ/µ < 1/

√
n− 1, we see from (1.17)

and (1.20) that, for all x with the given mean and variance,

(1.27) Pn−1(t) =
G(xn−1)

µn
≤ G(x)

µn
≤ G(x1)

µn
= P1(t),

which proves (1.3).

Now consider Theorem 1.2 (b). Here, we are given an n-vector
(x1, x2, . . . , xn) where the xi are positive with mean µ and variance
σ2. By Lemma 1.1 (b), 0 ≤ σ/µ <

√
n− 1. As before, we can dispense

with the trivial case σ = 0. We want to find the maximum of G(y)
among all n-vectors y whose coordinates are positive and have the given
µ and σ2. By compactness, G attains a maximum on the intersection

(1.28) {A(y) = nµ} ∩ {V(y) = nσ2} ∩ {y1 = 0, y2 = 0, . . . , yn = 0}.

This maximum must occur at a point y0 with positive coordinates.
Therefore, this maximum is a local maximum for the max-min prob-
lem (1.7) and hence occurs at a critical point. That is, y0 = xi for
some i, where xi is a critical point of type i. Although it is possible
in case (b) for G(x1) < G(xi) for some i, we can make use of the
observation

(1.29) G(x1) = max
i

{G(xi) :

xi is a critical point having all coordinates positive},

which follows from (1.15), (1.16) and (1.19). Therefore, y0 = x1

for some critical point x1 of type 1. Hence, x1x2 · · ·xn 5 G(x1) =
µnP1(σ/µ), which establishes the upper bound in (1.3) for case (b) of
Theorem 1.2. This completes the proof of Theorem 1.2. �
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2. As explained in [1, 2, 4, 6, 8], generalizations of the arithmetic
and geometric means inequality which involve only the variance of
the sequence are the most useful in applications to economics and
finance. Becker [4] provides a discussion, with historical references,
of the heuristics behind the approximation RA − RG ≈ σ2/2, where
RA and RG denote the arithmetic and geometric mean. Markowitz [8]
considers five different mean-variance approximations for the geometric
mean and compares their accuracy for sequences of historical economic
data. A general inequality involving weighted means and generalized
variances which is optimal within its class is given in [2, Theorem 2.4].
When this general inequality is specialized by setting the weights
α = (1/n, 1/n, . . . , 1/n) and s = 2, the result for nonnegative sequences
becomes:

(2.1) RA −RG ≤ nσ.

Theorem 1.2 can be applied to obtain a similar type of upper bound
for RA − RG. Indeed, the lower bound in (1.3) implies that (µ −
σ
√
n− 1)n ≤ x1x2 · · ·xn, and hence, RA −RG ≤

√
n− 1σ. We record

this result as a corollary to Theorem 1.2.

Corollary 2.1. Fix n = 2. If x1, x2, . . . , xn is a positive sequence with
mean µ and variance σ2, then

(2.2) µ− (x1x2 · · ·xn)
1/n ≤

√
n− 1σ.

Aldaz has shown that there can be no similar lower bound, i.e., there
does not exist a constant k > 0 such that kσ ≤ µ − (x1x2 · · ·xn)

1/n

is valid for all positive sequences x1, x2, . . . , xn with mean µ and
variance σ2, see [1, Example 2.1].

A number of generalizations of the AM-GM inequality in the liter-
ature involve properties other than variance. Cartwright and Field [5]
prove an inequality involving weighted arithmetic means, variance and
upper and lower bounds for the sequence. In the special case of equal
weights their result reduces to

(2.3)
σ2

2b
≤ RA −RG ≤ σ2

2a
,

where a and b denote lower and upper bounds, respectively, for the pos-
itive sequences being considered, see also [12]. For easier comparison
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with (1.3), we can rewrite (2.3) in the equivalent form

(2.4)

(
µ− σ2

2a

)n

≤ x1x2 · · ·xn ≤
(
µ− σ2

2b

)n

.

Alzer [3] proves a refinement of the inequality of [5] which incorporates
variance but also retains bounds a and b defined above. Tung [10]
derives inequalities depending only on bounds a and b; his inequalities
do not involve variance. Meyer [9] extends those results to the harmonic
mean. Aldaz [1] makes use of the variance of the square roots of the
terms of the sequence, and in [2] he extends those results to more
general weights and variances. Loewner and Mann [7] derive an upper
bound which involves the maximum and minimum of xi/µ and does
not incorporate variance.

Remark 2.2. We illustrate the relevance of Theorem 1.2 to finance.
Consider an investment in a certain asset, A. Suppose that, for n con-
secutive time periods, the investment returns are r1, r2, . . . , rn;−1 < ri.
For example, if the time period is years and if asset A returned 6 per-
cent in the ith year, then ri = 0.06; if it lost 6 percent that year, then
ri = −0.06.

An initial investment of $1 dollar in asset A will be worth $Xn at
the end of the nth year, where Xn = (1 + r1) · · · (1 + rn). Suppose
that the sequence r1, r2, . . . , rn has mean µn and variance σ2

n. Then
the sequence 1 + r1, . . . , 1 + r2 will have mean 1 + µn and variance σ2

n.
The terms of this sequence are positive since −1 < ri. By Theorem 1.2,

(2.5) (1 + µn − σn

√
n− 1)

(
1 + µn +

σn√
n− 1

)n−1

≤ Xn

≤ (1 + µn + σn

√
n− 1)

(
1 + µn − σn√

n− 1

)n−1

.

Remark 1.3 shows, perhaps unexpectedly, that, for fixed µn and σn

with σn > 0, the best investment outcome Xn occurs when all returns
but one are identical and below the mean µn; the worst outcome Xn

occurs when all returns but one are identical and above the mean µn.

Before making the initial investment, an investor can estimate the
mean and variance of returns for asset A from its historical performance
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record. Let µ0 and σ0 be the values so obtained. For example, suppose
that asset A is the S&P 500 index, and suppose that the unit of time
is days. Based on the historical record from January 3, 1950 through
July 31, 2012, it has been estimated that the daily returns on this asset
will have a mean µ0 of 1.0003 and a standard deviation σ0 of 0.0098;
cf. [11].

Suppose that one expects that µn and σn will be close to their
estimated values µ0 and σ0; say |µn − µ0| < ϵ and |σn − σ0| < ϵ,
ϵ > 0. Then (2.5) will provide the following estimate for Xn/(1+µn)

n,
the ratio of outcomes for an n-term investment in asset A to that of an
n-term investment in a risk free asset with the same mean:
(2.6)

Xn

(1 + µn)n
≤

(
1 +

(σ0 + ϵ)
√
n− 1

1 + µ0 − ϵ

)(
1− σ0 − ϵ

(1 + µ0 + ϵ)
√
n− 1

)n−1

.

Note that, if σ0 − ϵ > 0 and 1 + µ0 − ϵ > 0, then the right hand side
of (2.6) will tend to 0 as n tends to ∞.
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