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ON THE COEFFICIENTS OF
TRIPLE PRODUCT L-FUNCTIONS

GUANGSHI LÜ AND AYYADURAI SANKARANARAYANAN

ABSTRACT. In this paper, we investigate the average
behavior of coefficients of the triple product L-function
L(f ⊗f ⊗f, s) attached to a primitive holomorphic cusp form
f(z) of weight k for the full modular group SL(2,Z). Here
we call f(z) a primitive cusp form if it is an eigenfunction of
all Hecke operators simultaneously.

1. Introduction. Let k ≥ 2 be an even integer. Denote by H∗
k the

set of all normalized Hecke primitive cusp forms f(z) of weight k for
the full modular group SL(2,Z). Here, and throughout this paper, we
call f(z) a primitive cusp form if it is an eigenfunction of all Hecke
operators simultaneously. It is known that f(z) has the following
Fourier expansion at the cusp ∞,

(1.1) f(z) =
∞∑

n=1

λf (n)n
(k−1)/2e2πinz, ℑmz > 0,

where we use λf (n) to denote the normalized Fourier coefficients,

i.e., coefficients which have been divided by n(k−1)/2. According to
Deligne [4], for any prime number p, there are two (complex) numbers
αf (p) and βf (p) such that

αf (p)βf (p) = |αf (p)| = |βf (p)| = 1(1.2)

and

λf (p) = αf (p) + βf (p).(1.3)
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The coefficient λf (n) is a real multiplicative function of n and satisfies
the Deligne inequality,

(1.4) |λf (n)| ≤ d(n),

for all integers n ≥ 1, where d(n) is the divisor function.

Let L(f, s) be the Hecke L-function attached to f , which is defined
as:

(1.5) L(f, s) =
∞∑

n=1

λf (n)

ns
=

∏
p

(
1− αf (p)p

−s
)−1(

1− βf (p)p
−s

)−1
,

for ℜe s > 1. In the literature, many researchers have investigated the
average behavior of various sums concerning λf (n), for instance, there
is a long history on the investigation of the upper estimate for

(1.6) Sf (x) :=
∑
n≤x

λf (n).

In 1927, Hecke [10] proved that

(1.7) Sf (x) ≪f x1/2.

Subsequent improvement was first given by Wilton [40] in which only
the case of Ramanujan’s τ -function was stated and later generalized by
Walfisz [39] to other forms. Let θ be a constant satisfying

(1.8) |λf (n)| ≤ nθ.

Walfisz proved that

(1.9) Sf (x) ≪f x(1+θ)/3.

Then the works of Kloosterman [19], Davenport [3], Salié [32],
Weil [41] and Deligne [4] on the exponent θ in (1.8) imply better
corresponding results in (1.9). In 1989, Hafner and Ivić [9] were able
to remove the factor xε of Deligne’s result, i.e.,

Sf (x) ≪f x1/3.(1.10)

Rankin [31] further proved that

Sf (x) ≪f x1/3(log x)−0.0652.(1.11)
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In this direction, the best known result is due to Wu [42], which states
that

(1.12) Sf (x) ≪f x1/3(log x)−0.1185.

For the second moment of λf (n), Rankin and Selberg independently
(see [30, 33]) proved that∑

n≤x

λf (n)
2 = Cx+O(x3/5).

For work on the ℓth power sum of λf (n)

Sℓ(f ;x) :=
∑
n≤x

λf (n)
ℓ,

see Moreno and Shahidi [27], Fomenko [5], Lü ([23, 24, 25]), Lau and
Lü [20] and Lau, Lü and Wu [21].

The triple product L-function L(f ⊗ f ⊗ f, s) satisfies analogous
analytic properties such as those of the Hecke L-functions, and its
coefficients also change signs. In this paper, we consider the average
behavior of the coefficients λf⊗f⊗f (n) of the triple product L-function
L(f ⊗ f ⊗ f, s). We prove:

Theorem 1.1. For any ε > 0, we have

(1.13)
∑
n≤x

λf⊗f⊗f (n) ≪f,ε x
7/10+ε.

Theorem 1.2. For any ε > 0, we have

(1.14)
∑
n≤x

λf⊗f⊗f (n)
2 = xP (log x) +Of,ε(x

175/181+ε),

where P (t) is a polynomial of degree 4.

Remark 1.3. The triple product L-function is of degree 8, and the L-
function associated with λf⊗f⊗f (n)

2 has degree 64. Therefore, general
summation formulae (see, e.g., [6, Proposition 1.1 and Theorem 1.2])
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imply ∑
n≤x

λf⊗f⊗f (n) ≪f,ε x
1−2/9+ε,

∑
n≤x

λf⊗f⊗f (n)
2 = xP (log x) +Of,ε(x

1−2/65+ε).

These results largely mean that, for an L-function of degreem, the error
term for the sum of its coefficients can be bounded by x1−2/(m+1)+ε.

One can easily find that our results are better than these kinds of
general results. The reason is that, in our case, the corresponding
L-functions can be decomposed into products of some L-functions of
smaller degrees. In principle, such factorizations are definitely helpful
(see, e.g., [6]).

Theorem 1.4. Let ℓ denote a positive integer. Then there exists a
suitable positive constant cℓ such that

(1.15)
∑
n≤x

λf⊗f⊗f (n)
2ℓ ∼ cℓx(log x)

δℓ ,

where

δℓ =
1

3ℓ+ 1

(
6ℓ
3ℓ

)
− 1.

Recently many researchers have been interested in the study of
GL(3) × GL(2) L-functions (see, e.g., [2, 22]). The GL(3) × GL(2)
L-function L(sym2f ⊗ f, s) (or L(Ad2 f ⊗ f, s)) is closely related to the
triple product L-function L(f ⊗ f ⊗ f, s). Similar to Theorems 1.1–1.4,
we also have

Theorem 1.5. Let λsym2f⊗f (n) denote the nth coefficient of L(sym2f⊗
f, s) in its Dirichlet series expansion in the region of absolute conver-
gence. Then, for any ε > 0, we have

(1.16)
∑
n≤x

λsym2f⊗f (n) ≪f,ε x
2/3+ε

and



COEFFICIENTS OF TRIPLE PRODUCT L-FUNCTION 557

(1.17)
∑
n≤x

λsym2f⊗f (n)
2 = xQ(log x) +Of,ε(x

17/18+ε),

where Q(t) is a polynomial of degree 1.

Let ℓ denote a positive integer. Then a suitable positive constant dℓ
exists such that

(1.18)
∑
n≤x

λsym2f⊗f (n)
2ℓ ∼ dℓx(log x)

γℓ−1,

where

γℓ =
2ℓ∑

k=0

(
2ℓ
k

)
(−1)2ℓ−k 1

ℓ+ k + 1

(
2ℓ+ 2k
ℓ+ k

)
.

Remark 1.6. Since, for any positive integer k, the integer k+1 divides(
2k
k

)
, i.e.,

((k + 1) + k − 1)!

(k + 1)!k!
∈ Z,

the numbers δℓ in Theorem 1.4 and γℓ in Theorem 1.5 are integers.
The numbers δℓ+1 and γℓ should agree with the expected order of the
pole at s = 1 of the L-functions associated with such coefficients. For
example, δ1 + 1 = 5 and γ1 = 2 coincide with the order of the pole
at s = 1 of the corresponding L-functions, respectively, see (2.4) and
(6.3). For any ℓ ≥ 2, due to the absence of the corresponding Langlands
functoriality results, we proved (1.15) and (1.18) by applying the Sato-
Tate conjecture (now a theorem proved by Barnet-Lamb, Geraghty,
Harris and Taylor [1]) instead.

2. Preliminaries and some lemmas. This section is devoted to
recalling and establishing some preliminary results which we shall need
in the proof of Theorems 1.1–1.4.

Let f(z) be a normalized Hecke primitive eigencuspform of weight k
for the full modular group SL(2,Z). Recall that the triple product
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L-function L(f ⊗ f ⊗ f, s) is defined by

L(f⊗f⊗f, s) =
∏
p

(
1−

α3
p

ps

)−1(
1−αp

ps

)−3(
1− βp

ps

)−3(
1−

β3
p

ps

)−1

=
∞∑

n=1

λf⊗f⊗f (n)

ns
,

for ℜe s > 1. The jth symmetric power L-function attached to f is
defined by

(2.1) L(symjf, s) :=
∏
p

j∏
m=0

(1− αj−m
p βm

p p−s)−1

for ℜe s > 1. We may express it as a Dirichlet series: for ℜe s > 1,

(2.2)

L(symjf, s) =
∞∑

n=1

λsymjf (n)

ns

=
∏
p

(
1 +

λsymjf (p)

ps
+ · · ·+

λsymjf (p
k)

pks
+ · · ·

)
.

It is well known that λsymjf (n) is a real multiplicative function. The

Rankin-Selberg L-function L(symif ⊗ symjf, s) attached to symif and
symjf is defined as
(2.3)

L(symif ⊗ symjf, s) =
∏
p

i∏
m=0

j∏
m′=0

(
1−

αi−m
p βm

p αj−m′

p βm′

p

ps

)−1

=

∞∑
n=1

λsymif⊗symjf (n)

ns
.

Lemma 2.1. We have

L(f ⊗ f ⊗ f, s) = L(f, s)2L(sym3f, s).

Proof. The proof of this lemma is immediate. In fact, by comparing
the Euler products of both sides and recalling Deligne’s famous result
(1.2), we easily obtain this lemma. �
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Lemma 2.2. For ℜe s > 1, define

L(s) =

∞∑
n=1

λf⊗f⊗f (n)
2

ns
.

Then we have

(2.4) L(s) = ζ(s)5L(sym2f, s)8L(sym4f, s)4L(sym4f ⊗ sym2f, s)U(s),

where the function U(s) is a Dirichlet series absolutely convergent in
ℜe s > 1/2 and U(s) ̸= 0 for ℜe s = 1.

Proof. Since λf⊗f⊗f (n)
2 is a multiplicative function and satisfies the

trivial upper bound O(nε), we have that, for ℜe s > 1,

L(s) =
∏
p

(
1 +

λf⊗f⊗f (p)
2

ps
+

λf⊗f⊗f (p
2)2

p2s
+ · · ·

)
.

In the half-plane ℜe s > 1/2, the corresponding coefficients of the term
p−s determine the analytic properties of L(s). By Lemma 2.1, we easily
find the identity

λf⊗f⊗f (p)
2 = (λsym3f (p) + 2λf (p))

2

= λsym3f (p)
2 + 4λsym3f (p)λf (p) + 4λf (p)

2.

Then from (2.1)–(2.3), we have

λf⊗f⊗f (p)
2 = λsym3f⊗sym3f (p) + 4λsym3f⊗f (p) + 4λf⊗f (p).

Furthermore, one can easily find that

λf⊗f⊗f (p)
2 =

(
1 + λsym2f⊗sym4f (p)

)
+ 4

(
λsym2f (p) + λsym4f (p)

)
+ 4

(
1 + λsym2f (p)

)
= 5 + 8λsym2f (p) + 4λsym4f (p) + λsym2f⊗sym4f (p).

Now the lemma follows by standard arguments. �

As part of the far-reaching Langlands program, the study of the
analytic properties of symmetric power L-functions L(symjf, s) is im-
portant in contemporary mathematics, and it will have a significant
impact on modern number theory.
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Lemma 2.3. Let f(z) ∈ H∗
k be a primitive cusp form. Let the jth

symmetric power L-function L(symjf, s) be defined as in (2.1). For j =
1, 2, 3, 4, there exists an automorphic cuspidal self-dual representation,
denoted by symjπf =

⊗′
symjπf,v of GLj+1(AQ) whose local L-factors

L(symjπf,p, s) agree with the local L-factors Lp(sym
jf, s) in (2.1). In

particular, for j = 1, 2, 3, 4, L(symjf, s) has an analytic continuation as
an entire function in the whole complex plane C and satisfies a certain
functional equation of Riemann zeta-type of degree j + 1.

Proof. This lemma follows from [7] for k = 2 and from the recent
works [16, 17, 18] when k = 3, 4. �

Lemma 2.4. Let f(z) ∈ H∗
k be a primitive cusp form. Let L(sym4f ⊗

sym2f, s) be defined as in (2.3) with i = 4, j = 2. Then L(sym4f ⊗
sym2f, s) has an analytic continuation as an entire function in the
whole complex plane C and satisfies a certain functional equation of
Riemann zeta-type of degree 15.

Proof. From Lemma 2.3, automorphic cuspidal self-dual representa-
tions exist, denoted by sym4πf of GL5(AQ) and sym2πf of GL3(AQ),
whose local L-factors L(sym4πf,p, s) and L(sym2πf,p, s) agree with the
local L-factors Lp(sym

4f, s) and Lp(sym
2f, s) respectively. From the

works [14, 15, 34, 35, 36, 37] on the Rankin-Selberg theory associated
to two automorphic cuspidal representations, we have this lemma. �

From Lemmas 2.3 and 2.4, we observe that L(symjf, s), 1 ≤ i ≤ 4,
L(sym4f⊗ sym2f, s) are general L-functions in the sense of Perelli [29].
For general L-functions, we have the following averaged or individual
convexity bounds.

Lemma 2.5. Suppose that L(s) is a general L-function of degree m.
Then, for any ε > 0, we have

(2.5)

∫ 2T

T

|L(σ + it)|2dt ≪ Tmax{m(1−σ),1}+ε,

uniformly for 1/2 ≤ σ ≤ 1 and T > 1; and

(2.6) L(σ + it) ≪ (|t|+ 1)(m/2)(1−σ)+ε

uniformly for 1/2 ≤ σ ≤ 1 + ε and |t| ≥ 1.
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For some L-functions with small degrees, we invoke either individual
or average subconvexity bounds.

Lemma 2.6. For any ε > 0, we have

(2.7)

∫ T

0

∣∣ζ( 57 + iτ)
∣∣12dτ ≪ε T

1+ε

uniformly for T ≥ 1, and

(2.8) ζ(σ + iτ) ≪ε (|τ |+ 1)max{(1/3)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 2 and |τ | ≥ 1.

Proof. See, e.g., [11, Theorem 8.4 and (8.87)] and [38, Theorem
II.3.6]. �

Lemma 2.7. Let f ∈ H∗
k and ε > 0. Then we have

(2.9)

∫ T

0

∣∣L(f, 5
8 + iτ)

∣∣4dτ ≪ε T
1+ε

uniformly for T ≥ 1, and

(2.10) L(f, σ + iτ) ≪f,ε (|τ |+ 1)max{(2/3)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 2 and |τ | ≥ 1.

Proof. See, e.g., [8, Corollary] and [12, Theorem 2, (1.8)]. �

Lemma 2.8. Let f ∈ H∗
k and ε > 0. Then we have

(2.11) L(sym2f, σ + iτ) ≪f,ε (|τ |+ 1)max{(11/8)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 2 and |τ | ≥ 1.

Proof. See, e.g., [22, Corollary 1.2]. �

We also need the Sato-Tate conjecture (now a theorem proved by
Barnet-Lamb, Geraghty, Harris and Taylor [1]). For a prime number
p, we write

λf (p) := 2 cos θp, 0 ≤ θp ≤ π,

where λf (p) is the pth normalized Fourier coefficient.
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Lemma 2.9. If f(t), t ∈ [0, π], is a continuous function, then the
Sato-Tate law holds, namely,∑

p≤x

f(θp) ∼
(
2

π

∫ π

0

f(θ) sin2 θ dθ

)
x

log x
,

where p runs through the prime numbers, and x → ∞.

Proof. This famous longstanding conjecture was proved by Barnet-
Lamb, et al. [1]. See Theorem B and Corollary C therein. For similar
facts related to the Sato-Tate law concerning elliptic curves, see, e.g.,
Mazur’s expository article [26]. �

Lemma 2.10. Let g(n) be a non-negative multiplicative function sat-
isfying

0 ≤ g(n) ≤ Ad(n)B

for some constants A and B. If∑
p≤x

g(p) ∼ a
x

log x
, a > 0,

Then there exists a suitable constant b such that∑
n≤x

g(n) ∼ bx(log x)a−1.

Proof. See, e.g., [28, page 204, (1.1)–(1.3)]. �

3. Proof of Theorem 1.1. Firstly, we give the proof of Theorem
1.1. Recall that

(3.1) L(f ⊗ f ⊗ f, s) =

∞∑
n=1

λf⊗f⊗f (n)

ns
,

for ℜe s > 1. From Lemmas 2.1 and 2.2, we learn that

L(f ⊗ f ⊗ f, s) = L(f, s)2L(sym3f, s)

can be analytically continued to be an entire function in the whole
complex plane.
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By the Perron formula (see [13, Proposition 5.54]), we have

(3.2)
∑
n≤x

λf⊗f⊗f (n) =
1

2πi

∫ b+iT

b−iT

L(f ⊗ f ⊗ f, s)
xs

s
ds+O

(
x1+ε

T

)
,

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later.

Now we move the line of integration to ℜe s = 5/8. In the rectangle
formed by the line segments joining the points b+iT , 5/8+iT , 5/8−iT ,
b − iT , and b + iT , we note that L(f ⊗ f ⊗ f, s) is an entire function.
By Cauchy’s theorem, we have

(3.3)

∑
n≤x

λf⊗f⊗f (n) =
1

2πi

{∫ 5/8+iT

5/8−iT

+

∫ b+iT

5/8+iT

+

∫ 5/8−iT

b−iT

}

· L(f ⊗ f ⊗ f, s)
xs

s
ds+O

(
x1+ε

T

)
:= J1 + J2 + J3 +O

(
x1+ε

T

)
.

For J1, from Lemma 2.1, we have

(3.4) J1 ≪ x5/8

∫ T

1

∣∣∣∣L(f, 58 + it

)2

L

(
sym3f,

5

8
+ it

)∣∣∣∣t−1dt+ x5/8+ε.

By the Cauchy-Schwartz inequality,

J1 ≪ x5/8+ε sup
1≤T1≤T

(∫ 2T1

T1

∣∣∣∣L(f, 58 + it

)∣∣∣∣4dt)1/2

·
(∫ 2T1

T1

∣∣∣∣L( sym3f,
5

8
+ it

)∣∣∣∣2dt)1/2

T−1
1 .

By (2.5) in Lemma 2.5 with m = 4 and σ = 5/8, we have∫ 2T1

T1

∣∣∣∣L( sym3f,
5

8
+ it

)∣∣∣∣2dt ≪ T
3/2+ε
1 .

This, together with (2.9) in Lemma 2.7, gives

(3.5) J1 ≪ x5/8+εT 1/2+3/4−1+ε ≪ x5/8+εT 1/4+ε.
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For the integrals over the horizontal segments, we use (2.6) of
Lemma 2.5 with m = 4 and (2.10) of Lemma 2.7 to bound

(3.6)

J2 + J3 ≪ max
5/8≤σ≤b

xσT (2×2/3+2)(1−σ)+εT−1

= max
(5/8)≤σ≤b

(
x

T 10/3

)σ

T 7/3+ε

≪ x1+ε

T
+ x5/8+εT 1/4+ε.

From (3.3), (3.5) and (3.6), we have

(3.7)
∑
n≤x

λf⊗f⊗f (n) ≪
x1+ε

T
+ x5/8+εT 1/4+ε.

On taking T = x3/10 in (3.7), we have

(3.8)
∑
n≤x

λf⊗f⊗f (n) ≪ x7/10+ε.

This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2. The proof of Theorem 1.2 is similar
to that of Theorem 1.1. After applying the Perron formula to the
generating function L(s), and then shifting the line of integration to
ℜe s = 5/7, we have∑

n≤x

λf⊗f⊗f (n)
2 =

1

2πi

{∫ 5/7+iT

5/7−iT

+

∫ b+iT

5/7+iT

+

∫ 5/7−iT

b−iT

}
L(s)

xs

s
ds

+ xP (log x) +O

(
x1+ε

T

)
,(4.1)

:= xP (log x) + J1 + J2 + J3 +O

(
x1+ε

T

)
.

where b = 1+ ε and 1 ≤ T ≤ x is a parameter to be chosen later, P (t)
is a polynomial of degree 4. Here, the main term xP (log x) comes from
the residue of L(s)xs/s at the pole s = 1 of order 5.

For J1, we have

J1 ≪ x5/7+ε sup
1≤T1≤T

I1(T1)
5/12I2(T1)

1/2I3(T1)
1/12T−1

1 ,
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where

I1(T1) =

∫ 2T1

T1

∣∣∣∣ζ(5

7
+ it

)∣∣∣∣12dt,
I2(T1) =

∫ 2T1

T1

∣∣∣∣L(sym2f,
5

7
+ it

)8

L

(
sym4f,

5

7
+ it

)4∣∣∣∣2dt,
and

I3(T1) =

∫ 2T1

T1

∣∣∣∣L(sym4f ⊗ sym2f,
5

7
+ it

)∣∣∣∣12dt.
Then, by Lemmas 2.5, 2.6 and 2.8, we have

I1(T1) ≪ T 1+ε
1 , I3(T1) ≪ T

180/7+ε
1 ,

and

I2(T1) ≪ T
16×11/8×(1−5/7)+ε
1

∫ 2T1

T1

∣∣∣∣L(sym4f,
5

7
+ it

)4∣∣∣∣2dt
≪ T 12+ε

1 .

Hence, we have

(4.2)
J1 ≪ x5/7+ε sup

1≤T1≤T
I1(T1)

5/12I2(T1)
1/2I3(T1)

1/12T−1
1

≪ x5/7+εT 635/84+ε.

For the integrals over the horizontal segments, we use (2.6) in
Lemma 2.5 with m = 35, (2.8) in Lemma 2.6 and Lemma 2.8 to bound

(4.3)

J2 + J3 ≪ max
5/7≤σ≤b

xσT (5×1/3+8×11/8+35/2)(1−σ)+εT−1

= max
5/7≤σ≤b

(
x

T 181/6

)σ

T 175/6+ε

≪ x1+ε

T
+ x5/7+εT 160/21+ε.

From (4.1), (4.2) and (4.3), we have
(4.4)∑

n≤x

λf⊗f⊗f (n)
2 = xP (log x) +O

(
x1+ε

T

)
+O

(
x5/7+εT 160/21+ε

)
.
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On taking T = x6/181 in (4.4), we have

(4.5)
∑
n≤x

λf⊗f⊗f (n)
2 = xP (log x) +O(x175/181+ε).

This completes the proof of Theorem 1.2. �

5. Proof of Theorem 1.4. By Deligne’s bound (1.4), we can
denote

(5.1) λf (p) := 2 cos θp.

Then, by the Hecke relation,

λsymjf (p) = λf (p
ν) = αf (p)

ν + αf (p)
ν−1βf (p) + · · ·+ βf (p)

ν

for all integers ν ≥ 1, we have

(5.2) λf⊗f⊗f (p)
2ℓ = (2 cos θp)

6ℓ.

By Lemma 2.9, it follows that∑
p≤x

λf⊗f⊗f (p)
2ℓ =

∑
p≤x

(2 cos θp)
6ℓ ∼

(
2

π

∫ π

0

(2 cos θ)6ℓ sin2 θ dθ

)
x

log x
,

where p runs over the prime numbers, and x → ∞. Then, we have

(5.3)
∑
p≤x

λf⊗f⊗f (p)
2ℓ =

1

3ℓ+ 1

(
6ℓ
3ℓ

)
(1 + o(1))

x

log x
,

as x tends to infinity. Since λf⊗f⊗f (n)
2ℓ is multiplicative and satisfies

the inequality
λf⊗f⊗f (n)

2ℓ ≤ d8(n)
2ℓ,

then by Lemma 2.10, we have∑
n≤x

λf⊗f⊗f (n)
2ℓ ∼ cℓx(log x)

δℓ ,

for a suitable positive constant cℓ with

δℓ =
1

3ℓ+ 1

(
6ℓ
3ℓ

)
− 1. �
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6. Proof of Theorem 1.5. The proof of Theorem 1.5 is similar
to those of Theorems 1.1–1.4, so that we may be brief. By (2.3), we
observe that

(6.1) L(sym2f ⊗ f, s) = L(sym3f, s)L(f, s).

This implies that, for any prime number p,

(6.2) λsym2f⊗f (p) = λsym2f (p)λf (p) = λsym3f (p) + λf (p).

For ℜe s > 1, define

D(s) =

∞∑
n=1

λsym2f⊗f (n)
2

ns
.

By (6.2), we have
(6.3)

D(s) = L(f ⊗ f, s)L(sym3f ⊗ f, s)2L(sym3f ⊗ sym3f, s)V (s),

= ζ(s)2L(sym2f, s)3L(sym4f, s)2L(sym4f ⊗ sym2f, s)V (s),

where the function V (s) is a Dirichlet series absolutely convergent in
ℜe s > 1/2 and V (s) ̸= 0 for ℜe s = 1.

From (6.1) and (6.3), we obtain that, by following the arguments in
Sections 4 and 5,∑

n≤x

λsym2f⊗f (n) ≪f,ε x
(2/3)+ε.

∑
n≤x

λsym2f⊗f (n)
2 = xQ(log x) +Of,ε(x

(17/18)+ε),

where Q(t) is a polynomial of degree 1 (note that the error terms
mentioned just above need not be the best possible).

By (6.2) and the well-known equality λf (p
2) = λf (p)

2 − 1, we have

(6.4) λsym2f⊗f (p)
2ℓ = λsym2f (p)

2ℓλf (p)
2ℓ = (λf (p)

2 − 1)2ℓλf (p)
2ℓ.

Again, by Lemma 2.9, we have∑
p≤x

λsym2f⊗f (p)
2ℓ =

∑
p≤x

(
(2 cos θp)

3 − (2 cos θp)
)2ℓ

∼
(
2

π

∫ π

0

(
(2 cos θ)3 − (2 cos θ)

)2ℓ
sin2 θdθ

)
x

log x
,
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where p runs over the prime numbers, and x → ∞. Note that

(6.5)

2

π

∫ π

0

(
(2 cos θ)3 − (2 cos θ)

)2ℓ
sin2 θ dθ

=

2ℓ∑
k=0

(
2ℓ
k

)
(−1)2ℓ−k 2

π

∫ π

0

(2 cos θ)2ℓ+2k sin2 θ dθ

=
2ℓ∑

k=0

(
2ℓ
k

)
(−1)2ℓ−k 1

ℓ+ k + 1

(
2ℓ+ 2k
ℓ+ k

)
:= γℓ.

Then, we have

(6.6)
∑
p≤x

λsym2f⊗f (p)
2ℓ = γℓ(1 + o(1))

x

log x
,

as x tends to ∞. Since λsym2f⊗f (n)
2ℓ is multiplicative and satisfies the

inequality
λsym2f⊗f (n)

2ℓ ≤ d6(n)
2ℓ,

then, by Lemma 2.10, we have∑
n≤x

λsym2f⊗f (n)
2ℓ ∼ dℓx(log x)

γℓ−1. �
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570 GUANGSHI LÜ AND AYYADURAI SANKARANARAYANAN
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