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INVARIANTLY COMPLEMENTED AND
AMENABILITY IN BANACH ALGEBRAS

RELATED TO LOCALLY COMPACT GROUPS

ALI GHAFFARI AND SOMAYEH AMIRJAN

ABSTRACT. In this paper, among other things, we show
that there is a close connection between the existence of a
bounded projection on some Banach algebras associated to a
locally compact group G and the existence of a left invariant
mean on L∞(G). A necessary and sufficient condition is
found for a locally compact group to possess a left invariant
mean.

1. Introduction. For a locally compact group G, L1(G) is its group
algebra and L∞(G) is the dual of L1(G). The theory of projections
on group algebras has been extensively studied in such papers as
[7, 9, 12, 21, 23]. Several authors have also studied the weak∗

closed left translation invariant complemented subspace of L∞(G),
see [4, 5, 7]. Recall that a subspace X of L∞(G) is said to be
complemented if there exists a bounded projection P from L∞(G) onto
X. A subspace X of L∞(G) is called invariantly complemented if there
exists a projection P from L∞(G) onto X which commutes with the
left translation, i.e., P : L∞(G) → X such that P (Lxf) = LxP (f) for
all x ∈ G and f ∈ L∞(G) [7]. Rosenthal proved [17] that, if G is an
abelian locally compact group and X is a weak∗ closed translation
invariant complemented subspace of L∞(G), then X is invariantly
complemented in L∞(G).

We say that X is topologically invariantly complemented in L∞(G)
if X is the range of a bounded projection P on L∞(G) such that
P (φ ∗ f) = φ ∗ P (f) for all f ∈ L∞(G) and φ ∈ L1(G). Note that this
is a generalization of the notion of a topologically invariant mean on
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L∞(G), since {c1G; c ∈ C} is topologically invariantly complemented
in L∞(G) if and only if there exists a topologically invariant mean
on L∞(G) [15]. Bekka proved [1] that, if X is a weak∗ closed
left translation invariant subspace of L∞(G), then X is topologically
invariantly complemented in L∞(G) if and only if X is invariantly
complemented in L∞(G).

The closed ideals I of L1(G) for which I⊥ is complemented in
L∞(G) have been classified by Rosenthal [17] and Liu, van Rooij and
Wong [14]. It turns out that these ideals are exactly those of L1(G),
which possess bounded approximate identity [14]. Rudin [19] used an
averaging argument to show that an ideal I of L1(G) is complemented
if and only if there exists a projection P : L1(G) → I which commutes
with convolution, i.e., P (φ ∗ψ) = φ ∗P (ψ) for all φ,ψ ∈ L1(G). Wood
proved this fact for compact non-abelian groups (see [22, Theorem
4.6]).

The aim of this paper is to go further and generalize the above result
to the collection of bounded linear maps on some Banach algebras
associated to a locally compact group. We relate the amenability
of a locally compact group G with the existence of projections in
B(LUC(G)). We also completely determined the weak∗ closed left
translation invariant subspace X of LUC(G) which is the range of a
weak∗–weak∗ continuous projection P on LUC(G) commuting with
left translations. Finally, we study the concept of approximately
complemented subspaces of Banach algebras associated to a locally
compact group.

2. Notation and preliminary results. Throughout this paper,
G denotes a locally compact group with a fixed left Haar measure dx.
For any subset A of G, 1A denotes the characteristic function of A.
Let L∞(G) be the algebra of essentially bounded measurable complex-
valued functions on G. The second dual L1(G)∗∗ of L1(G) is a Banach
algebra with the first Arens product [3]. G is amenable if there exists
m ∈ L∞(G)∗ such that m ≥ 0, m(1G) = 1 and m(Lxf) = m(f) for
every x ∈ G, f ∈ L∞(G), where Lxf(y) = f(xy), y ∈ G. All abelian
groups and all compact groups are amenable. The free group on two
generators is not amenable [15].

A bounded linear operator T from L∞(G) into L∞(G) is said to
commute with convolution if T (φ∗f) = φ∗T (f) for all φ ∈ L1(G) and
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f ∈ L∞(G). In this case, T also commutes with left translations, i.e.,
T (Lxf) = LxT (f) for all x ∈ G and f ∈ L∞(G), see [8, Lemma 2].
Let Cb(G) denote the Banach algebra of bounded continuous complex-
valued functions on G, and let C0(G) be the closed subspace of Cb(G)
consisting of all functions in Cb(G) which vanishes at infinity. Then its
dual C0(G)

∗ identifies with all the complex regular Borel measures on
G, denoted by M(G). For µ ∈M(G) and f ∈ C0(G), the formula

⟨µ̃, f⟩ =
∫
f(x−1) dµ(x)

defines an element ofM(G) with ∥µ̃∥ = ∥µ∥. Let LUC(G) be the space
of all f ∈ Cb(G) such that the mapping x 7→ Lxf from G into Cb(G)
is continuous. Then LUC(G) is a C∗-subalgebra of Cb(G) invariant
under translations. It is known that L∞(G)L1(G) = LUC(G) and that
fφ = φ̃∗f for all f ∈ L∞(G) and φ ∈ L1(G) [6]. Given G ∈ LUC(G)∗,
f ∈ LUC(G), let Gf ∈ LUC(G) be given by Gf(x) = ⟨G,Lxf⟩.
Given F ∈ LUC(G)∗, let FG (the Arens product of F,G) be defined
by ⟨FG, f⟩. Then LUC(G)∗ with respect to this product becomes a
Banach algebra.

Information about the Arens product and about LUC(G) may be
found in [6] (although the reader should be warned that LUC(G) is
defined as the space of right uniformly continuous functions). If x ∈ G,
δx will denote either the point-measure at x in M(G), or the point-
evaluation linear functional in X∗ when X is a subspace of Cb(G).

Among the elements of LUC(G)∗ are the measures δx for x ∈ G.
These do not appear in L1(G)∗∗. Moreover, δe is an identity in
LUC(G)∗, and L1(G)∗∗ has a right identity [3].

A subspace X ⊆ L∞(G) is called left translation invariant if Lxf ∈
X for all f ∈ X and x ∈ G. Let X be a left translation invariant
subspace of LUC(G). The collection of all bounded linear maps
T : LUC(G) → X which commutes with left translations will be
denoted by Hom(LUC(G), X). If A is a Banach algebra, B(A) will
denote the Banach algebra of all bounded linear operators from A to A.

3. Main results. Lau proved [7] that G is amenable if and only if
every left translation invariant W ∗-subalgebra of L∞(G) is invariantly
complemented. It was also shown by Lau and Losert [9] that G is
amenable if and only if, whenever X is a non-degenerate left Banach
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G-module and L is a weak∗ closed G-invariant subspace of X which
is complemented in X, then there exists a projection P of X∗ onto L
such that P (f ·x) = P (f) ·x for all x ∈ G and f ∈ X∗ (see [10] for this
terminology). In the next theorem, a necessary and sufficient condition
is given for a locally compact group G to have a left invariant mean.

Theorem 3.1. Let G be a locally compact group. The following condi-
tions are equivalent :

(i) G is amenable;
(ii) Hom(LUC(G)) is the range of a bounded projection P on

B(LUC(G)) such that P (I) = I, ∥P∥ = 1 and P (TLy) = P (LyT )
for all T ∈ B(LUC(G)) and y ∈ G.

Proof.

(i) ⇒ (ii). Let m be an invariant mean on L∞(G) [16]. Let ⟨ ⟩
denote the pairing between L∞(G) and L1(G). For T ∈ B(LUC(G)),
f ∈ LUC(G) and ψ ∈ L1(G) the mapping x 7→ ⟨Lx−1TLx(f), ψ⟩
is a bounded continuous function on G. Define an operator P :
B(LUC(G)) → B(LUC(G)) by

⟨P (T )(f), ψ⟩ = m(x 7−→ ⟨Lx−1TLx(f), ψ⟩)

for f ∈ LUC(G) and ψ ∈ L1(G). We claim that P is a bounded
projection of B(LUC(G)) onto Hom(LUC(G)) and that P (LyT ) =
P (TLy) for all y ∈ G. It is easy to see that ∥P∥ ≤ 1, P (I) = I,
and so ∥P∥ = 1. To see that P (B(LUC(G)) ⊆ Hom(LUC(G)), let
T ∈ B(LUC(G)) and y ∈ G. For every f ∈ LUC(G) and ψ ∈ L1(G),
we have

⟨P (T )Ly(f), ψ⟩ = ⟨P (T )(Lyf), ψ⟩
= m(x 7−→ ⟨Lx−1TLx(Lyf), ψ⟩)
= m(x 7−→ ⟨LyL(yx)−1TLyx(f), ψ⟩)
= m(x 7−→ ⟨L(yx)−1TLyx(f), Ly−1ψ⟩)
= m(x 7−→ ⟨Lx−1TLx(f), Ly−1ψ⟩)
= ⟨P (T )(f), Ly−1ψ⟩
= ⟨LyP (T )(f), ψ⟩.
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Since this holds for all f ∈ LUC(G) and ψ ∈ L1(G), we con-
clude that P (T )Ly = LyP (T ). This shows that P (B(LUC(G)) ⊆
Hom(LUC(G)). To see that P is a bounded projection of B(LUC(G))
onto Hom(LUC(G)), it suffices to show that T ∈ Hom(LUC(G)) im-
plies P (T ) = T . To see this, let T ∈ Hom(LUC(G)), f ∈ LUC(G) and
ψ ∈ L1(G). Then

⟨P (T )(f), ψ⟩ = m(x 7−→ ⟨Lx−1TLx(f), ψ⟩)
= m(x 7−→ ⟨T (f), ψ⟩)
= ⟨T (f), ψ⟩.

Consequently, P (T ) = T for all T ∈ Hom(LUC(G)). Finally, to see
P (TLy) = P (LyT ) for all y ∈ G and T ∈ B(LUC(G)), let y ∈ G,
T ∈ B(LUC(G)), f ∈ LUC(G) and ψ ∈ L1(G). We have

⟨P (LyT )(f), ψ⟩ = m(x 7−→ ⟨Lx−1LyTLx(f), ψ⟩)
= m(x 7−→ ⟨L(xy−1)−1TLyLxy−1(f), ψ⟩)
= m(x 7−→ ⟨Lx−1TLyLx(f), ψ⟩)
= ⟨P (TLy)(f), ψ⟩.

This shows that P (LyT ) = P (TLy) for all T ∈ B(LUC(G)) and y ∈ G.

(ii) ⇒ (i). For f ∈ LUC(G), we consider the mapping λf :
LUC(G) → LUC(G) defined by λf (g) = f · g, g ∈ LUC(G). If
f ∈ LUC(G) and x ∈ G,

λLxf (g) = Lxf · g = Lx(f · Lx−1g)

= Lx(λf (Lx−1g)) = LxλfLx−1(g)

for all g ∈ LUC(G). We conclude that λLxf = LxλfLx−1 .

Let {eα} be an approximate identity for L1(G) in {ψ ∈ L1(G); ∥ψ∥1 =
1, ψ ≥ 0} [6]. For f ∈ LUC(G), define m(f) = limα⟨P (λf )(1G), eα⟩.
Since P (I) = I, we have

m(1G) = lim
α
⟨P (λ1G)(1G), eα⟩ = lim

α
⟨I(1G), eα⟩ = 1.

On the other hand, ∥P∥ = 1 and ∥λf∥ ≤ ∥f∥ for all f ∈ LUC(G). It
follows that ∥m∥ = 1. This shows that m is a mean on LUC(G) [16].
To show that m is a left invariant mean on LUC(G), let f ∈ LUC(G)
and x ∈ G. Since P (TLx) = LxP (T ) for all T ∈ B(LUC(G)) and
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x ∈ G, we have

m(Lxf) = lim
α
⟨P (λLxf )(1G), eα⟩

= lim
α
⟨P (LxλfLx−1)(1G), eα⟩

= lim
α
⟨P (Lx−1Lxλf )(1G), eα⟩

= lim
α
⟨P (λf )(1G), eα⟩ = m(f).

Therefore, m is a left invariant mean on LUC(G), and so G is
amenable [16]. This completes the proof. �

Recall that the Banach space LUC(G)∗ is a Banach algebra. Among
the elements of LUC(G)∗ are the unit point masses δx for x ∈ G. Let
X be a subspace of LUC(G)∗ such that δxF ∈ X for all F ∈ X and
x ∈ G. The collection of all bounded linear maps T : LUC(G)∗ → X
such that T (δxF ) = δxT (F ) for all F ∈ LUC(G)∗ and x ∈ G, will be
denoted by Hom(LUC(G)∗, X).

Theorem 3.2. Let G be a locally compact group. Assume that G is
amenable as discrete. Let X be a weak∗ closed subspace of LUC(G)∗

such that δxF ∈ X for all F ∈ X and x ∈ G. Let P be a bounded
projection of LUC(G)∗ onto X. Then there exists a bounded projection
P of B(LUC(G)∗) onto Hom(LUC(G)∗, X).

Proof. We first show that there exists a bounded projection P ′ of
LUC(G)∗ onto X such that P ′(δyF ) = δyP

′(F ) for all F ∈ LUC(G)∗

and y ∈ G. We can prove this part by using an argument similar to
that of the proof of Theorem 1.1 in [17]. Let m be an invariant mean
on l∞(G). Now, consider a bounded linear operator P ′ of LUC(G)∗

into LUC(G)∗ defined by

⟨P ′(F ), f⟩ = m(x 7−→ ⟨P (δxF ), δx ∗ f⟩),
F ∈ LUC(G)∗, f ∈ LUC(G).

Then, for any y ∈ G, f ∈ LUC(G) and F ∈ LUC(G)∗, we have

⟨P ′(δyF ), f⟩ = m(x 7−→ ⟨P (δxyF ), δx ∗ f⟩)
= m(x 7−→ ⟨P (δxyF ), δxy ∗ δy−1 ∗ f⟩)
= m(x 7−→ ⟨P (δxF ), δx ∗ δy−1 ∗ f⟩)
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= ⟨P ′(F ), δy−1 ∗ f⟩
= ⟨δyP ′(F ), f⟩.

We conclude that P ′(δyF ) = δyP
′(F ) for all y ∈ G and F ∈ LUC(G)∗.

We next show that P ′ is a bounded projection of LUC(G)∗ onto
X. Clearly, ∥P ′∥ ≤ ∥P∥. Now fix F ∈ LUC(G)∗. If every weak∗

continuous linear functional f̂ on LUC(G)∗ for which f̂(X) = 0, also
satisfies

⟨P (δxF ), δx ∗ f⟩ = ⟨f̂ , δx−1P (δxF )⟩ = 0, x ∈ G.

Then, by the Hahn-Banach theorem, P ′(F ) also belongs to X [18].
This shows that P ′(LUC(G)∗) ⊆ X. It is easy to see that P ′(F ) = F
for all F ∈ X. We conclude that P ′ is a bounded projection of
LUC(G)∗ ontoX. Thus, without loss of generality, we may assume that
P is a bounded projection of LUC(G)∗ onto X and P (δyF ) = δyP (F )
for all y ∈ G and F ∈ LUC(G)∗.

Define P : B(LUC(G)∗) → B(LUC(G)∗) by

⟨P(T )(F ), f⟩ = m(x 7−→ ⟨P (T (δxF )), δx ∗ f⟩),

where T ∈ B(LUC(G)∗), F ∈ LUC(G)∗ and f ∈ LUC(G). Obviously
P is a bounded linear operator of B(LUC(G)∗) into B(LUC(G)∗).

To see that P is a projection of B(LUC(G)∗) onto Hom(LUC(G)∗, X),
it suffices to show that P(B(LUC(G)∗)) ⊆ Hom(LUC(G)∗, X) and
that T ∈ Hom(LUC(G)∗, X) implies that P(T ) = T . For the first
assertion, let T ∈ B(LUC(G)∗) and y ∈ G. We have

⟨P(T )(δyF ), f⟩ = m(x 7−→ ⟨P (T (δxyF )), δx ∗ f⟩)
= m(x 7−→ ⟨P (T (δxyF )), δxy ∗ δy−1 ∗ f⟩)
= m(x 7−→ ⟨P (T (δxF )), δx ∗ δy−1 ∗ f⟩)
= ⟨δyP(T )(F ), f⟩,

where F ∈ LUC(G)∗ and f ∈ LUC(G). Since this holds for all
F ∈ LUC(G)∗ and f ∈ LUC(G), we conclude that P(B(LUC(G)∗)) ⊆
Hom(LUC(G)∗). Note that, if T ∈ B(LUC(G)∗), F ∈ LUC(G)∗ and
P(T )(F ) /∈ X, there is an f ∈ LUC(G) for which ⟨P(T )(F ), f⟩ ̸= 0
and

⟨P (T (δxF )), δx ∗ f⟩ = ⟨δx−1P (T (δxF )), f⟩ = 0
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for all x ∈ G [18]. It follows that ⟨P(T )(F ), f⟩ = 0, which is a con-
tradiction. This shows that P(B(LUC(G)∗)) ⊆ Hom(LUC(G)∗, X).
For the second assertion, suppose T ∈ Hom(LUC(G)∗, X) and F ∈
LUC(G)∗. Then T (F ) ∈ X, and so P (T (F )) = T (F ). We have

⟨P(T )(F ), f⟩ = m(x 7−→ ⟨P (T (δxF )), δx ∗ f⟩)
= m(x 7−→ ⟨P (δxT (F )), δx ∗ f⟩)
= m(x 7−→ ⟨δxP (T (F )), δx ∗ f⟩)
= m(x 7−→ ⟨P (T (F )), f⟩)
= ⟨P (T (F )), f⟩
= ⟨T (F ), f⟩,

for all f ∈ LUC(G). Therefore, P(T ) = T . Consequently, P is a
bounded projection of B(LUC(G)∗) onto Hom(LUC(G)∗, X). �

Theorem 3.3. Let G be a locally compact group. Assume that G is
amenable as discrete. Let X be a closed subspace of B(LUC(G)∗) (in
the weak∗ operator topology) such that λxTλx−1 ∈ X for all x ∈ G and
T ∈ X; here, λx is the left translation operator in B(LUC(G)∗) defined
by λx(F ) = δxF . Let P be a bounded projection of B(LUC(G)∗) onto
X. Then there exists a bounded projection from Hom(LUC(G)∗) onto
Hom(LUC(G)∗) ∩X.

Proof. Let m be an invariant mean on l∞(G) [15], and let P
be a bounded projection of B(LUC(G)∗) onto X. Define P ′ :
Hom(LUC(G)∗) → Hom(LUC(G)∗) ∩X by

⟨P ′(T )(F ), f⟩ = m(x 7−→ ⟨P (T )(δxF ), δx ∗ f⟩),

where T ∈ Hom(LUC(G)∗), F ∈ LUC(G)∗ and f ∈ LUC(G). It is not
hard to see that P ′ is a bounded projection of Hom(LUC(G)∗) onto
Hom(LUC(G)∗) ∩X. �

In [7], Lau studied conditions where a weak∗ closed left translation
invariant subspace in L∞(G) of a compact group G is the range of
a weak∗–weak∗ continuous projection on L∞(G) commutes with left
translation. In the next theorem, we characterize the weak∗ closed left
translation invariant subspace X of LUC(G) which is the range of a
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weak∗–weak∗ continuous projection P on LUC(G) commuting with left
translations.

Theorem 3.4. Let G be a locally compact group. A σ(LUC(G), L1(G))
closed left translation invariant subspace X of LUC(G) is the range
of a σ(LUC(G), L1(G)) − σ(LUC(G), L1(G)) continuous projection
P on LUC(G) commuting with left translations if and only if X =
ρ∗µ(LUC(G)) for an idempotent µ ∈ M(G); here, ρµ is the right

translation operator in B(L1(G)) defined by ρµ(φ) = φ ∗ µ.

Proof. Let X be a σ(LUC(G), L1(G)) closed left translation invari-
ant subspace of LUC(G). Let P : LUC(G) → X be a σ(LUC(G), L1(G))-
σ(LUC(G), L1(G)) continuous projection onto X such that P (Lxf) =
LxP (f) for all x ∈ G and f ∈ LUC(G). Let P : L∞(G) → L∞(G) be
defined as

⟨P(f), φ⟩ = ⟨δe, P (φ̃ ∗ f)⟩,

where φ̃(x) = ∆(x−1)φ(x−1); here, ∆ is the modular function on G.
Since P commutes with left translation, we have P (φ∗f) = φ∗P (f) for
all φ ∈ L1(G) and f ∈ LUC(G) [16]. If φ,ψ ∈ L1(G) and f ∈ L∞(G),
then

⟨P(φ ∗ f), ψ⟩ = ⟨δe, P (ψ̃ ∗ (φ ∗ f))⟩
= ⟨P(f), φ̃ ∗ ψ⟩
= ⟨φ ∗ P(f), ψ⟩.

Since this relation holds for all ψ ∈ L1(G), we conclude that P(φ∗f) =
φ ∗ P(f) for each φ ∈ L1(G) and each f ∈ L∞(G).

Let {fα}α∈I be a net in L∞(G) converging to f ∈ L∞(G) in the

weak∗ topology of L∞(G). For ψ ∈ L1(G), ψ̃ ∗ fα → ψ̃ ∗ f in the

σ(LUC(G), L1(G)) topology of LUC(G). By assumption, P (ψ̃ ∗fα) →
P (ψ̃ ∗ f) in the σ(LUC(G), L1(G)) topology. Since L1(G) has a
bounded approximate identity, Cohen’ s factorization theorem implies
that each ψ ∈ L1(G) has the form ψ1 ∗ ψ2 for ψ1, ψ2 ∈ L1(G). Hence,
P(fα) → P(f) in the weak∗ topology of L∞(G).

Let P∗ : L∞(G)∗ → L∞(G)∗ be the adjoint operator of P, i.e.,
P∗ is the bounded linear operator of L∞(G)∗ into L∞(G)∗ which
satisfies ⟨P∗(F ), f⟩ = ⟨F,P(f)⟩ for all F ∈ L∞(G)∗ and f ∈ L∞(G).
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We conclude that P∗(φ) ∈ L∞(G)∗ is weak∗ continuous, and so
P∗(φ) ∈ L1(G) for all φ ∈ L1(G) [18].

It is easy to see that P∗(φ∗ψ) = φ∗P∗(ψ) for all φ,ψ ∈ L1(G). By
[3, Theorem 3.3.40], there exists a µ ∈M(G) such that P∗(φ) = φ ∗ µ
for all φ ∈ L1(G). If f ∈ L∞(G) and φ ∈ L1(G), we have

⟨P(f), φ⟩ = ⟨f,P∗(φ)⟩ = ⟨f, φ ∗ µ⟩ = ⟨ρ∗µ(f), φ⟩.

This shows that P(f) = ρ∗µ(f) for all f ∈ L∞(G). It is easily verified
that P (f) = µf for all f ∈ LUC(G), that µ is idempotent and
X = ρ∗µ(LUC(G)).

To prove the converse, let X = ρ∗µ(LUC(G)) for an idempotent µ ∈
M(G). Let {fα}α∈I be a net in LUC(G), and let {µfα}α∈I converge
to f ∈ LUC(G) in the σ(LUC(G), L1(G)) topology. It is not hard to
see that µ ∗ µfα = µfα → µf in the σ(LUC(G), L1(G)) topology. We
conclude that X is σ(LUC(G), L1(G)) closed. Let P be the bounded
projection from LUC(G) onto X defined by P (f) = µf . We easily see
that P is σ(LUC(G), L1(G))-σ(LUC(G), L1(G)) continuous and that
P (Lxf) = LxP (f) for all x ∈ G and f ∈ LUC(G). �

Corollary 3.5. Let G be a locally compact group. Let X be a weak∗

closed, left translation invariant, complemented subspace of L∞(G).
Then X = ρ∗µ(L

∞(G)) for an idempotent µ ∈ M(G) if any one of the
following conditions hold :

(i) there exists a weak∗–weak∗ continuous projection P from L∞(G)
onto X which commutes with convolution;

(ii) G is compact.

Note that φ ∗ f ∈ X for all φ ∈ L1(G) and f ∈ X, see [10, Lemma 2].

Proof.

(i) See Theorem 3.4 and its proof.

(ii) Let P be a bounded projection from L∞(G) onto X commuting
with left translation (see [19, Theorem 1]). By [1, Theorem 1],
X is topologically invariantly complemented in L∞(G). Since any
bounded linear operator from L∞(G) into L∞(G) which commutes
with convolution is weak∗–weak∗ continuous (see [10, Lemma 4]), by
(i), X = ρ∗µ(L

∞(G)) for an idempotent µ ∈M(G). �
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Remark 3.6. Let G be a locally compact group. We denote by L∞
0 (G)

the subspace of L∞(G) consisting of all functions f ∈ L∞(G) vanishing
at infinity. For an extensive study of L∞

0 (G), see Lau and Pym [11].
As shown in [11], for any F ∈ L∞

0 (G)∗ and f ∈ L∞
0 (G), Ff ∈ L∞

0 (G).
We shall regard L∞

0 (G)∗ as a Banach algebra with the first Arens
multiplication. It is known that L1(G) is a closed ideal in L∞

0 (G)∗, see
[11, Theorem 2.11]. Let X be a subspace of L∞

0 (G) such that Ff ∈ X
for all F ∈ L∞

0 (G)∗ and f ∈ X. Let P be a bounded projection from
L∞
0 (G) onto X commuting with convolutions. Let F ∈ L∞

0 (G)∗ and
{eα}α∈I be a bounded approximate identity for L1(G) [6]. Then,

⟨P (Ff), φ⟩ = lim
α
⟨P (Ff), eα ∗ φ⟩ = lim

α
⟨ẽα ∗ P (Ff), φ⟩

= lim
α
⟨P (ẽα ∗ Ff), φ⟩ = lim

α
⟨ẽαFP (f), φ⟩

= lim
α
⟨FP (f), eα ∗ φ⟩ = ⟨FP (f), φ⟩,

for all φ ∈ L1(G). This shows that P (Ff) = FP (f) for all F ∈ L∞
0 (G)∗

and f ∈ L∞
0 (G). Now, let G be a compact group, and let X be a weak∗

closed left translation invariantly complemented subspace of L∞(G).
Then there exists a bounded projection P from L∞(G) onto X such
that P (Ff) = FP (f) for all F ∈ L∞(G)∗ and f ∈ L∞(G).

Theorem 3.7. Let G be a locally compact group. Assume that G is
amenable as discrete. Then the following conditions are equivalent :

(i) G is discrete;
(ii) any bounded projection P from L∞(G) onto a weak∗ closed left

translation invariant subspace X of L∞(G) which commutes with
left translation also commutes with convolution.

Proof. Clearly (i) implies (ii).

(ii) ⇒ (i). We assume to the contrary that G is non-discrete. Let
m be a left invariant mean on L∞(G) which is not a topologically left
invariant mean, see [16, Proposition 22.3]. We consider the weak∗

closed subspace X of L∞(G) consisting of constant functions. Define
P : L∞(G) → X by P (f) = ⟨m, f⟩1G, f ∈ L∞(G). Then, as readily
checked, ∥P∥ ≤ 1, and P is a projection of L∞(G) onto X commuting
with left translations. Finally, let f ∈ L∞(G) and φ ∈ P 1(G) be
such that ⟨m,φ ∗ f⟩ ̸= ⟨m, f⟩; here, P 1(G) is the set of all probability
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measures in L1(G). Then

P (φ ∗ f) = ⟨m,φ ∗ f⟩1G ̸= ⟨m, f⟩1G = P (f).

We conclude that P does not commute with convolution. This is a
contradiction. �

In [10], Lau and Losert proved that a locally compact group G is
amenable if and only if, whenever X is a weak∗ closed left translation
invariant complemented subspace of L∞(G), X is invariantly comple-
mented. Also, as shown by Lau [7], if G is an amenable locally compact
group, then any weak∗ closed self-adjoint left translation invariant sub-
algebra of L∞(G) is the range of a bounded projection commuting with
left translations.

In the following, we define approximately complemented subspaces,
and we obtain the other version of above facts.

Definition 3.8. Let E be a normed space. Then a subspace F of E
is called approximately complemented in E if there is a net {Pα}α∈I of
bounded operators from E into F such that limα Pα(f) = f uniformly
on bounded subsets of F .

Theorem 3.9. Let G be an amenable locally compact group, and let X
be a closed subspace of LUC(G) such that Lxf ∈ X for all f ∈ X and
x ∈ G. If X is approximately complemented in LUC(G), then there is a
net of bounded operators P ′

β : LUC(G) → X such that limβ P
′
β(f) = f

uniformly on bounded subsets of X and, for every compact s

lim
β

∥LaP
′
β(f)− P ′

β(Laf)∥ = 0

uniformly for a ∈ K and f ∈ F .

Proof. Let {Pα}α∈I be a net of bounded operators from LUC(G)
into X such that limα Pα(f) = f uniformly on bounded subsets of X.
For φ ∈ P 1(G) and α ∈ I, we define an operator Pφ

α on LUC(G) by

Pφ
α (f)(y) =

∫
φ(x)Pα(Lxf)(x

−1y) dx.
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Since x 7→ Lx−1Pα(Lxf) is a continuous map from G into LUC(G),
Pφ
α (f) is well defined by [2] and that this integral defines a bounded

linear operator from LUC(G) into X.

Let K be a compact subset of G, α ∈ I, and let ϵ > 0. By [16,
Lemma 6.13], there exists a φ ∈ P 1(G) such that

∥δa ∗ φ− φ∥1 <
ϵ

∥Pα∥+ 1

whenever a ∈ K. For every a ∈ K, we have

|Pφ
α (Laf)(y)− LaP

φ
α (f)(y)|

=

∣∣∣∣ ∫ φ(x)(Pα(Laxf)(x
−1y)− Pα(Lxf)(x

−1ay)) dx

∣∣∣∣
=

∣∣∣∣ ∫ (φ(a−1x)− φ(x))Pα(Lxf)(x
−1ay) dx

∣∣∣∣
≤ ∥Pα∥∥f∥∥δa ∗ φ− φ∥1
< ∥f∥ϵ,

whenever f ∈ LUC(G). We consider the directed set J = K×I× (0, 1)
where, for β = (K,α, ϵ) ∈ J ,

β′ = (K ′, α′, ϵ′) ∈ J, β′ ≽ β

in the cases K ⊆ K ′ and α′ ≽ α and ϵ′ ≤ ϵ (here K is the family of
compact subsets of G). For each β = (K,α, ϵ), there exists φβ ∈ P 1(G)
such that

∥δa ∗ φβ − φβ∥1 <
ϵ

∥Pα∥+ 1
for all a ∈ K.

We define P ′
β : LUC(G) → X by P ′

β(f) = P
φβ
α (f).

Let K0 be a compact subset of G, ϵ0 > 0, and let α0 ∈ I. For every
β = (K,α, ϵ) ≽ (K0, α0, ϵ0) = β0, we have

∥P ′
β(Laf)− LaP

′
β(f)∥ < ∥f∥ϵ ≤ ∥f∥ϵ0

for every a ∈ K and f ∈ LUC(G). This shows that limβ ∥P ′
β(Laf) −

LaP
′
β(f)∥ = 0 uniformly on every compact subset K of G and every

bounded subset F of X.

Now, let F be a bounded subset of X and ϵ > 0. Obviously,
{Lxf ; f ∈ F, x ∈ G} is a bounded subset of X. By assumption, there
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exists α0 ∈ I such that ∥Pα(Lxf)−Lxf∥ < ϵ for all α ≽ α0, x ∈ G and
f ∈ F . Put β0 = ({e}, α0, ϵ), and let β ≽ β0. For ψ ∈ L1(G), we have

|⟨P ′
β(f)− f, ψ⟩| =

∣∣∣∣ ∫ ∫
φβ(x)(Pα(Lxf)(x

−1y)− f(y))ψ(y) dx dy

∣∣∣∣
=

∣∣∣∣ ∫ ∫
φβ(x)(Pα(Lxf)(y)− f(xy))ψ(xy) dy dx

∣∣∣∣
≤

∫
φβ(x)∥Pα(Lxf)− Lxf∥∥ψ∥1dx

≤ ϵ∥ψ∥1.

Let G be an amenable locally compact group, and let X be a
σ(LUC(G), L1(G)) closed approximately complemented subspace of
LUC(G) such that Lxf ∈ X for all f ∈ X and x ∈ G. Then there is
a net of bounded operators Pβ : B(LUC(G)) → B(LUC(G), X) such
that Pβ(T ) = T uniformly on bounded subsets of B(LUC(G)) and, for
every compact set K of G and every bounded set F of B(LUC(G), X),

lim
β

∥LaPβ(T )− Pβ(LaT )∥ = 0

uniformly for a ∈ K and T ∈ F . We conclude that limβ P
′
β(f) = f

uniformly on bounded subsets of X. �

Remark 3.10. Recall that a closed subspace F of a Banach space X
is called weakly complemented in X if

F⊥ = {f ∈ X∗; ⟨f, x⟩ = 0 for all x ∈ F}

is complemented in X∗. It is easy to see that every complemented
subspace is weakly complemented. It is known that c0 is weakly com-
plemented in l∞, but not complemented, see [20, Exercise 2.3.3]. De-
note by L1([0, 1]) the Banach space of all integrable functions defined
on [0, 1]. This has a subspace isomorphic to l2 [13]. This subspace is
approximately complemented in L1([0, 1]), but it is not weakly comple-
mented in L1([0, 1]) [24]. Therefore, this subspace is not complemented
in L1([0, 1]).

Theorem 3.11. Let G be an amenable locally compact group, and let
X be a weak∗ closed approximately complemented subspace of LUC(G)
such that Lxf ∈ X for all f ∈ X and x ∈ G. Then there is a net of
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bounded operators

Pβ : B(LUC(G)) −→ B(LUC(G), X), β ∈ J,

such that limβ Pβ(T ) = T uniformly on bounded subsets of B(LUC(G))
and, for every compact set K of G and every bounded set F of
B(LUC(G), X),

lim
β

∥LaPβ(T )− Pβ(LaT )∥ = 0

uniformly for a ∈ K and T ∈ F .

Proof. First, observe that LxT ∈ B(LUC(G), X) for x ∈ G and
T ∈ B(LUC(G), X), since Lxf ∈ X for all x ∈ G and f ∈ X. If X
is approximately complemented, there is a net of bounded operators
Pβ : LUC(G) → X, β ∈ J , such that limβ ∥Pβ(f) − f∥ = 0 uniformly
on bounded subsets of X and, for every compact set K of G and every
bounded set F of X,

lim
β

∥LaPβ(f)− Pβ(Laf)∥ = 0

uniformly for a ∈ K and f ∈ F , see Theorem 3.9. For β ∈ J
and T ∈ B(LUC(G)), we now set ⟨Pβ(T )(f), φ⟩ = ⟨Pβ(T (f)), φ⟩
whenever f ∈ LUC(G) and φ ∈ L1(G). It is easy to see that
Pβ(T ) ∈ B(LUC(G), X) for all T ∈ B(LUC(G)). Therefore, given
a bounded set F ⊆ B(LUC(G), X) and an ϵ > 0, there is a β0 ∈ J
such that

∥Pβ(T (f))− T (f)∥ < ϵ

for all β ≽ β0, T ∈ F and f ∈ b(LUC(G));

here, b(LUC(G)) denotes the closed unit ball in LUC(G). For every
β ≽ β0, T ∈ F and f ∈ b(LUC(G)) we have

|Pφ
α (Laf)(y)− LaP

φ
α (f)(y)|

=

∣∣∣∣ ∫ φ(x)(Pα(Laxf)(x
−1y)− Pα(Lxf)(x

−1ay)) dx

∣∣∣∣
=

∣∣∣∣ ∫ (φ(a−1x)− φ(x))Pα(Lxf)(x
−1ay) dx

∣∣∣∣
≤ ∥Pα∥∥f∥∥δa ∗ φ− φ∥1
< ∥f∥ϵ,
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whenever φ ∈ L1(G). This shows that ∥Pβ(T )− T∥ < ϵ for all β ≽ β0
and T ∈ F .

Now, let F be a bounded subset of B(LUC(G), X). Given a compact
set K ⊆ G and ϵ > 0, from Theorem 3.9, there is a β0 ∈ J such that
∥Pβ(LaT (f)) − LaPβ(T (f))∥ < ϵ for all β ≽ β0, T ∈ F , a ∈ K and
f ∈ b(LUC(G)). For β ≽ β0, T ∈ F and f ∈ b(LUC(G)), we have

|⟨LaPβ(T )(f)−Pβ(LaT )(f), φ⟩|
= |⟨LaPβ(T (f)), φ⟩ − ⟨Pβ(LaT (f)), φ⟩|
≤ ∥LaPβ(T (f))− Pβ(LaT (f))∥∥φ∥1
< ∥φ∥1ϵ,

whenever φ ∈ L1(G). We conclude that ∥LaPβ(T )−Pβ(LaT )∥ < ϵ for
all β ≽ β0, a ∈ K and T ∈ F . This completes the proof. �
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