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GRAPH COMPOSITIONS OF SUSPENDED Y -TREES

EUNICE MPHAKO-BANDA AND SIMON WERNER

ABSTRACT. We count the number of graph composi-
tions of suspended Y -trees via flats of the cycle matroid of
the suspended Y -trees.

1. Introduction. The notion of graph composition was introduced
by Knopfmacher and Mays in [3]. In this original work, various
formulas, generating functions and recurrence relations for composition
counting functions are given for several families of graphs. Graph
compositions play an important role in the generalization of both
ordinary compositions of positive integers and partitions of finite sets.

This work is extended further to bipartite graphs, as well as some
operations on graphs, including unions of graphs and the 2-sum of
graphs in [1, 2, 7]. In [4], the terminology of graph composition is
explored further, but under a new term, comppartition. In [5], it is
shown that the number of graph compositions is equal to the total
number of flats of the cycle matroid.

The number of compositions for the following graphs are given in [3]:

(i) Tn: a tree on n vertices,
(ii) Pn: a path with n vertices,
(iii) Sn: a star graph on n vertices,
(iv) Kn: a complete graph on n vertices,
(v) Cn: a cycle graph on n vertices,
(vi) Wn: a wheel on n vertices,
(vii) Ln: a ladder graph on 2n vertices, and
(viii) Km,n: a complete bipartite graph.

In particular, it is shown that C(Tn) = C(Pn) = C(Sn) = 2n−1.
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In this paper, we study the number of graph compositions of cer-
tain suspended trees through their corresponding cycle matroids. In
addition, we show that, although non-isomorphic trees have the same
number of compositions, the resulting suspended trees do not have the
same number of graph compositions.

2. Relationship between graph compositions and flats of
cycle matroids. A matroid M(E) is a set E, with rank function r,
for which the following properties hold:

(i) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.
(ii) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).
(iii) If X and Y are subsets of E, then

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

The set E is called the ground set M(E). Let G be a graph with
vertex set V (G) and edge set E(G), the rank function of G is defined
as r(G) = V (G)− C(G), where C(G) is the number of components of
the graph G. Clearly, any graph G is a matroid, where E(G) is the
ground set. This is what is known as the cycle matroid of graph G.
We denote the cycle matroid of G by M(G).

The closure operator is one of the functions associated with a
matroid. Let X be a rank r subset of E. Then the closure of X denoted
by cl(X) is defined as the the largest rank-r subset of E containing X.
A flat of M(E) is a set A ⊆ E for which cl(A) = A. For a cycle matroid
of G, it is clear that a flat is just a closed subgraph of G.

The relationship between graph compositions and flats of cycle
matroids were established in [5]. We state the following theorems with-
out proof; for details, we refer to [5].

Theorem 2.1. Let G be a graph with vertex set V (G) and edge set
E(G). Let W be a subset of V (G). A subgraph ⟨W ⟩ is a vertex induced
subgraph if and only if ⟨W ⟩ is a flat of the cycle matroid M(G).

In what follows, we will denote the set of all distinct compositions
of G by C0(G). Recall that C(G) denotes the number of compositions
of the graph G. Thus, C(G) = |C0(G)|.
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Theorem 2.2. Let G be a labeled graph with vertex set V (G), edge set
E(G) and cycle matroid M(G). Then there is a bijection between the
distinct compositions of G and the flats of M(G).

Theorem 2.3. Let G be a labeled graph with vertex set V (G) and edge
set E(G). Let C0(G) be the set of all distinct compositions of G, such
that C(G) = |C0(G)|, and let F(M(G)) be the set of all distinct flats of
M(G). Then, C(G) = |F(M(G))|.

3. Graph compositions of suspended Y -trees. We define a Y-
tree to be a graph with n vertices {a1, a2, . . . , an} and edge set:

{{a1a2}, {a2a3}, . . . , {an−2an−1}, {an−2an}}.

A suspended tree is obtained from a tree graph by adding an extra
vertex, which subsequently is connected to each leaf of the tree. Hence,
we define the suspended tree of Yn to be the graph with n+ 1 vertices
{a1, a2, . . . , an, x} and edge set

{{a1a2}, {a2a3}, . . . , {an−2an−1}, {an−2an} ∪ {a1x}, {an−1x}, {anx}}.

To ease notation, we shall denote a Y -tree on n vertices by Yn and the

suspended tree of Yn by Ỹn.

It is clear from the definition that any suspended Y -tree has a
subgraph with edge set

{{an−2an−1}, {an−2an}, {an−1x}, {anx}},

which is isomorphic to C4. This special subgraph will be denoted by

C̃4. Similarly, the subgraph

{{a1a2}, {a2a3}, . . . , {an−2an−1}, {an−1x}, {a1x}},

which is isomorphic to Cn, will be denoted by C̃n1 . The subgraph

{{a1a2}, {a2a3}, . . . , {an−2an}, {anx}, {a1x}},

which is also isomorphic to Cn, will be denoted by C̃n2 . Thus, for any

positive integer i, we have C̃i
∼= Ci.
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Lemma 3.1. Let Ỹn be a suspended Y -tree. Then the intersection of
the subgraphs will be

C̃4 ∩ C̃n1
∼= P3.

Lemma 3.2. Let Ỹn be a suspended Y -tree on n vertices, Yn. Then

M(Ỹn) cannot have a flat of size k > (n+ 2).

Proof. By definition, Yn has three leaves and, since it is a tree, it
has (n− 1) edges. By suspending this tree, we add three edges. Hence,

Ỹn has only (n+ 2) edges. �

We denote the set of all flats of size k by fk. Thus, the number of all
flats of size k is represented by |fk|. For a suspended Y -tree, different
values of k give different formulas; hence, we have the following lemmas.

Lemma 3.3. Let Cn be a cyclic graph of order n. There is no closed
set of size (n− 1).

Proof. Let Cn have edge set {a1, a2, . . . , an−1, an}. It is clear that
any (n− 1) edge set will not be a flat because the remaining edge can
be added without changing the rank of this subset. �

Lemma 3.4. Let Ỹn be a suspended Y -tree on n vertices, Yn, with

n > 4. Let fk represent the set of all flats of size k of M(Ỹn). Then,
for k ≤ 3, we have:

|fk| =


1 k = 0,

n+ 2 k = 1,(
n+2
2

)
k = 2,(

n+2
3

)
−

(
4
3

)
k = 3.

Proof. Let Ỹn represent a suspended Y -tree. We prove each case
separately.

Case (k = 0). It is clear that there is only one flat of size k = 0,
which is the empty set.

Case (k = 1). A flat of size k = 1 is just an edge. Ỹn has (n + 2)
edges.
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Case (k=2). A flat of size k = 2 is just a pair of edges. Since there
are no parallel edges, all possible combinations of pairs are flats. Hence,
there are

(
n+2
2

)
possible combinations.

Case (k=3). For flats of size k = 3, there are
(
n+2
3

)
possible com-

binations of 3-edge sets. By Lemma 3.3, any 3-edge set from the

C̃4 subgraph of Ỹn is not a flat. There are
(
4
3

)
such possibilities; hence,

we exclude these in order to get the number of flats to be:(
n+ 2

3

)
−
(
4

3

)
. �

Lemma 3.5. Let Ỹn be a suspended Y -tree, with n > 4. Let fk be the

set of all flats of size k for M(Ỹn). Then, for 4 ≤ k < (n− 1),

|fk| =
(
n+ 2

k

)
−
(
4

3

)(
n− 2

k − 3

)
.

Proof. Let Ỹn be a suspended Y -tree. By definition and Lemma 3.1,

there exist subgraphs C̃4 and C̃n with intersection P3. For any k, such
that 4 ≤ k < (n− 1), we have

(
n+2
k

)
k-edge set combinations, of which

some are flats and some are non-flats. Consider a general k-edge set,

if three of the k-edges are contained in the C̃4 subgraph. Then this
k-edge set is not a flat. But, there are

(
4
3

)
ways that this could happen,

and the other (k−3)-edges are chosen from the remaining (n−2) edges.
Hence, by the principle of inclusion/exclusion, we have

(
n+2
k

)
total k-

edge sets, of which some are flats and some are non-flats. Thus, we
exclude

(
4
3

)(
n−2
k−3

)
k-edge sets, which are not flats,

|fk| =
(
n+ 2

k

)
−
(
4

3

)(
n− 2

k − 3

)
. �

The case of k = (n − 1) gives a special formula, considering that
there are two special subgraphs Cn1 and Cn2 that are isomorphic to
Cn. By Lemma 3.3, we know that Cn has no flat of size (n− 1).
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Lemma 3.6. Let Ỹn be a suspended Y -tree. Let fk be the set of all

flats of size k of M(Ỹn). Then, for k = (n− 1),

|fk| =
(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
− 2

(
n

k

)
.

Proof. Let Ỹn be a suspended Y -tree. By definition, there exist
subgraphs

C̃4
∼= C4, C̃n1

∼= Cn and C̃n2
∼= Cn.

There are
(
n+2
n−1

)
possible (n− 1) edge sets, of which some are flats and

some are non-flats.

Consider a general k-edge set where k = (n−1). There are two cases
of non-flats.

Case (i). If three of the edges are contained in the subgraph C̃4, then
this set is not a flat by Lemma 3.3. There are

(
4
3

)
ways of choosing the

3-edges in C̃4, and
(
n−2
k−3

)
ways of choosing the remaining k − 3. Thus,

we have
(
4
3

)(
n−2
k−3

)
sets, which are non-flats in this case.

Case (ii). If all of the k-edges where k = (n − 1) are contained in

the subgraph C̃n1 or subgraph C̃n2 , then by Lemma 3.3, there is a flat
of size (n− 1) in Cn. Hence, there are 2

(
n
k

)
sets which are non-flats in

this case.

Therefore, by the principle of inclusion/exclusion we have
(
n+2
n−1

)
possible k-edge sets, of which some are flats and some are non-flats.
Thus, we exclude the

(
n−2
k−3

)
+ 2

(
n
k

)
k-edge sets which are not flats, to

get

|fk| =
(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
− 2

(
n

k

)
. �

Lemma 3.7. Let Ỹn be a suspended Y -tree, with n > 4. Let fk be the

set of all flats of size k in M(Ỹn). Then, for n ≤ k ≤ (n+ 2),

|fk| =


(
n+ 2

k

)
−
(
4

3

)(
n− 2

k − 3

)
−
(
4

1

)
k = n,

0 k = (n+ 1),

1 k = (n+ 2).
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Proof. We will prove each of these three cases separately.

Case (i). (k = n). Let Ỹn be a suspended Y -tree. We have
(
n+2
k

)
k-

edge set combinations, of which some are flats and some are non-flats.
Consider a general k-edge set where k = (n − 1). There are two cases
of non-flats.

Case (ii). If three of the edges are contained in the subgraph C̃4,
then this set is not a flat by Lemma 3.3. There are

(
4
3

)
ways of choosing

the three edges in C̃4, and
(
n−2
k−3

)
ways of choosing the remaining (k−3).

Hence, we have (
4

3

)(
n− 2

k − 3

)
sets which are non-flats in this case.

Case (iii). If (n− 1) of the edges are contained in the subgraph C̃n1

or subgraph C̃n2 , then this set is not a flat by Lemma 3.3. There are(
n

n−1

)
ways of choosing the (n− 1) edges in C̃n1 or C̃n2 , and

(
2
1

)
ways

of choosing the remaining edge. Hence, we have(
n

n− 1

)(
2

1

)
sets which are non-flats in this case. It follows that there are

2

(
n

n− 1

)(
2

1

)
sets which are non-flats in this case.

There are
(
n+2
n

)
possible combinations of edge sets of size (k = n)

which include both closed and non closed sets. If three of these edges are
contained in the C4 subgraph, then we do not have a closed set. There
are

(
4
3

)
ways that this could happen. In each case of the remaining

(n− 2) edges, (k − 3) are now unavailable for our potential closed set,
hence we exclude these. Furthermore, there are

(
4
1

)
, two for each Cn

subgraph, where the closed set would have (k−1) of its edges contained
in a cyclic graph. Since, in this case, (k− 1) = (n− 1), we cannot have
such closed sets, as they are not maximums.

Case k = (n + 1). Let Ỹn represent a suspended Y -tree. Any sub-
graph made from a combination of (n + 1) edges will not be a closed
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set, as the final edge can be added without the rank of this subgraph
being changed.

Case k = (n + 2). Let Ỹn represent a suspended Y -tree. There is
only one subgraph with (n+2) edges, and that is the entire graph itself,
which happens to be a closed set and the only set of size k = (n+2). �

Lemma 3.8.

n−2∑
k=4

[(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)]
= 3(2n) + 4−

[
70n+ 2n3

6

]
.

Proof. Let

A =
n−2∑
k=4

(
n+ 2

k

)
,

and let

B =
n−2∑
k=4

(
4

3

)(
n− 2

k − 3

)
.

Then,

A =

n−2∑
k=4

(
n+ 2

k

)

=
n+2∑
k=1

(
n+ 2

k

)
−
[(

n+ 2

0

)
+

(
n+ 2

1

)
+

(
n+ 2

2

)
+

(
n+ 2

3

)]
−
[(

n+ 2

n− 1

)
+

(
n+ 2

n

)
+

(
n+ 2

n+ 1

)
+

(
n+ 2

n+ 2

)]
= 2n+2 −

[
2

(
n+ 2

n− 1

)
+ 2

(
n+ 2

n

)
+ 2

(
n+ 2

n+ 1

)
+ 2

(
n+ 2

n+ 2

)]
= 2n+2 −

[
2
(n+ 2)(n+ 1)n

3!
+ 2

(n+ 2)(n+ 1)

2
+ 2(n+ 2) + 2

]
= 2n+2 −

[
2n3 + 12n2 + 34n

6
+ 8

]
.
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B =
n−2∑
k=4

(
4

3

)(
n− 2

k − 3

)

= 4

( n−2∑
k=0

(
n− 2

k

)
−
[(

n− 2

0

)
+

(
n− 2

n− 4

)
+

(
n− 2

n− 3

)
+

(
n− 2

n− 2

)])
= 4

(
2n−2 −

[
n2 − 3n+ 6

2

])
= 2n −

[
2n2 − 6n+ 12

]
.

Therefore,

n−2∑
k=4

[(
n+ 2

k

)
−
(
4

3

)(
n− 2

k − 3

)]
= A−B

= 2n+2 −
[
2n3 + 12n2 + 34n

6
+ 8

]
−
(
2n −

[
2n2 − 6n+ 12

])
= 3(2n) + 4−

[
70n+ 2n3

6

]
. �

The following two lemmas can be easily verified.

Lemma 3.9.(
n+ 2

n− 1

)
−
(
4

3

)(
n− 2

n− 4

)
− 2

(
n

n− 1

)
=

1

6
(n3 − 9n2 + 50n)− 12.

Lemma 3.10.(
n+ 2

n

)
−
(
4

3

)(
n− 2

n− 3

)
−
(
4

1

)
=

1

6
(3n2 + 9n)− 4n+ 5.

Now, we are in a position to state and prove the main theorem.
Recall that we denote the set of all flats of size k by fk. Thus, the
number of all flats of size k is represented by |fk|. Recall that we
denote the set of all distinct compositions of G by Co(G). Also recall
that C(G) denotes the number of compositions of the graph G. Thus,
C(G) = |Co(G)|.
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Theorem 3.11. Let Ỹn be a suspended Y -tree on n vertices. The

number of graph compositions of Ỹn are

C(Ỹn) = 3(2n − n)− 2.

Proof. By Theorem 2.3, we know that

C(Ỹn) = |F(M(Ỹn))|,

where F(M(Ỹn)) is the set of all distinct flats of M(Ỹn). Thus,

C(Ỹn) = |F(M(Ỹn))| =
n+2∑
k=0

|fk|.

By Lemmas 3.4, 3.5, 3.6 and 3.7, we obtain:

n+2∑
k=0

|fk| = 1 +

[
n+ 2

]
+

[(
n+ 2

2

)]
+

[(
n+ 2

3

)
−
(
4

3

)]

+

n−2∑
k=4

[(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)]
+

[(
n+ 2

n− 1

)
−
(
4

3

)(
n− 2

n− 4

)
− 2

(
n

n− 1

)]
+

[(
n+ 2

n

)
−
(
4

3

)(
n− 2

n− 3

)
−
(
4

1

)]
+ 1.

Hence, simplifying and applying Lemmas 3.8, 3.9 and 3.10, we get

n+2∑
k=0

|fk| =
(
n3 + 3n2 + 17n

6

)
+

(
3(2n) + 4−

[
70n+ 2n3

6

])
+

(
1

6
(n3 − 9n2 + 50n)− 12

)
+

(
1

6
(3n2 + 9n)− 4n+ 5

)
+1

= 3(2n)− 2

+

(
n3+3n2+17n−70n−2n3+n3−9n2+50n+3n2+9n−24n

6

)
= 3(2n)− 3n− 2.
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Therefore,
n+2∑
k=0

|fk| = C(Ỹn) = 3(2n − n)− 2. �
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