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KUMMER SURFACES AND K3 SURFACES
WITH (Z/27)* SYMPLECTIC ACTION

ALICE GARBAGNATI AND ALESSANDRA SARTI

ABSTRACT. In the first part of this paper we give a
survey of classical results on Kummer surfaces with Picard
number 17 from the point of view of lattice theory. We
prove ampleness properties for certain divisors on Kummer
surfaces, and we use them to describe projective models
of Kummer surfaces of (1,d)-polarized abelian surfaces for
d =1,2,3. As a consequence, we prove that, in these cases,
the Néron-Severi group can be generated by lines.

In the second part of the paper we use Kummer surfaces
to obtain results on K3 surfaces with a symplectic action of
the group (Z/2Z)*. In particular, we describe the possible
Néron-Severi groups of the latter in the case that the Picard
number is 16, which is the minimal possible. We also de-
scribe the Néron-Severi groups of the minimal resolution of
the quotient surfaces which have 15 nodes. We extend cer-
tain classical results on Kummer surfaces to these families.

1. Introduction. Kummer surfaces are particular K3 surfaces, ob-
tained as minimal resolutions of the quotient of an abelian surface by
an involution. They are algebraic and form a three-dimensional family
of K3 surfaces. Kummer surfaces play a central role in the study of
K3 surfaces; indeed, certain results on K3 surfaces are easier to prove
for Kummer surfaces (due to their relation with abelian surfaces), but
can be extended to more general families of K3 surfaces. The most
classical example of this is the Torelli theorem, which holds for every
K3 surface.
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The aim of this paper is to describe some results on Kummer sur-
faces, some of which are classical, and to prove that these results extend
to four-dimensional families of K3 surfaces. Every Kummer surface has
the following properties. It admits the group (Z/27Z)* as a group of au-
tomorphisms which preserves the period (these automorphisms will be
called symplectic) and it is also the desingularization of the quotient
of a K3 surface by the group (Z/2Z)* which acts preserving the pe-
riod. The families of K3 surfaces with one of these properties are four-
dimensional. We study these families using the results on Kummer
surfaces, and we prove that several properties of the Kummer surfaces
hold more in general for at least one of these families.

The first part of the paper (Sections 2, 3, 4 and 5) is devoted to
Kummer surfaces. We first recall their construction and the definition
of the Shioda-Inose structure which was introduced by Morrison [33].
In particular, we recall that every Kummer surface Km(A) is the
quotient of both an abelian surface and a K3 surface by an involution,
cf., Proposition 2.16. Since we have these two descriptions of the
same surface Km(A), we also obtain two different descriptions of the
Néron-Severi group of Km(A), see Proposition 2.6 and Theorem 2.18.
In Section 3, we recall that every Kummer surface admits certain
automorphisms, and in particular, the group (Z/2Z)* as a group of
symplectic automorphisms. In Proposition 3.3, we show that the
minimal resolution of the quotient of a Kummer surface Km(A) by
(Z/27)* is again Km(A). This gives a third alternative description of
a Kummer surface and shows that the family of Kummer surfaces is a
subfamily both of the family of K3 surfaces X admitting (Z/2Z)* as a
group of symplectic automorphisms and of the family of K3 surfaces Y
which are quotients of some K3 surfaces by the group (Z/27Z)%.

The main results on Kummer surfaces are obtained in Section 4
and applied in Section 5. Nikulin [36] showed that a non empty set
of disjoint smooth rational curves on a K3 surface can be the branch
locus of a double cover only if it contains exactly 8 or 16 curves. In the
first case, the surface which we obtain by taking the double cover and
contracting the (—1)-curves is again a K3 surface. In the second case,
the surface obtained in the same way is an abelian surface, and the K3
surface is in fact its Kummer surface.

In the sequel, we call even sets the sets of disjoint rational curves
in the branch locus of a double cover. In [13], we studied the Néron-
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Severi group, the ampleness properties of divisors and the associated
projective models of K3 surfaces which admit an even set of 8 rational
curves. Here, we prove similar results for K3 surfaces admitting an
even set of 16 rational curves i.e., for the Kummer surfaces as well. In
Section 4, we prove that certain divisors on Kummer surfaces are nef,
big and nef, or ample. In Section 5, we study some maps induced by the
divisors considered previously, and we obtain projective models for the
Kummer surfaces of the (1, d)-polarized abelian surfaces for d = 1,2, 3.
As a byproduct, we show that these Kummer surfaces have at least
one model such that their Néron-Severi group is generated by lines.
Several models described are already well known, but here we suggest
a systematic way of producing projective models of Kummer surfaces
by using lattice theory.

In the second part of the paper (Sections 6, 7, 8, 9 and 10) we
apply the previous results on Kummer surfaces to obtain general results
on K3 surfaces X with symplectic action by (Z/2Z)* and on the
minimal resolutions Y of the quotients X/(Z/2Z)*. In Theorem 7.1,
Proposition 8.1 and Theorem 8.3, we explicitly describe N.S(X) and
NS(Y), and thus, we describe the families of K3 surfaces X and Y,
proving that they are four-dimensional. We further specialize to the
family of Kummer surfaces.

In [25], Keum proves that every Kummer surface admits an Enriques
involution, i.e., a fixed point free involution. Here, we prove that this
property extends to every K3 surface X admitting a symplectic action
of (Z/2Z)* and with Picard number 16 (the minimal possible). This
shows that the presence of a certain group of symplectic automorphisms
on a K3 surface implies the presence of a non-symplectic involution as
well.

On the other hand, certain results proved for Kummer surfaces also
hold for the K3 surfaces Y. In Proposition 8.5, we prove that certain
divisors on Y are ample (or nef and big) as we did in Section 4 for
Kummer surfaces. The surface Y admits 15 nodes, by construction.
We recall that every K3 surface with 16 nodes is in fact a Kummer
surface; we prove that similarly every K3 surface which admits 15 nodes
is the quotient of a K3 surface by a symplectic action of (Z/2Z)*. This
result is not trivial; indeed, the analogue for a symplectic action of
7./27 is false, i.e., a K3 surface with eight nodes is not necessarily
the quotient of a K3 surface by a symplectic involution. Moreover,
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we show in Theorem 8.3 that K3 surfaces with 15 nodes exist for
polarizations of any degree (some examples are given in Section 10).
This answers the question, what is the maximal number of nodes a K3
surface with a given polarization can have (when it does not contain
further singularities)? If the polarization L with L? = 2t has t even,
then the maximal number is 16. It is precisely attained by Kummer
surfaces; otherwise, this maximum is 15. Further, in Section 10, we give
explicit examples of surfaces X and Y, and we describe their geometry.

2. Generalities on Kummer surfaces.

2.1. Kummer surfaces as quotients of abelian surfaces. Kum-
mer surfaces are K3 surfaces constructed as desingularization of the
quotient of an abelian surface A by an involution ¢. Equivalently, they
are K3 surfaces admitting an even set of 16 disjoint rational curves. We
briefly recall the construction. Let A be an abelian surface (here we
only consider the case of algebraic Kummer surfaces), and let ¢ be the
involution ¢ : A — A, a > —a. Let A/i be the quotient surface. It has
16 singular points of type A1, which are the image under the quotient
map, of the 16 points of the set

A[2] = {a € A such that 2a = 0}.

Let ;17L be the desingularization of A/¢. The smooth surface Km(A) :=
;17L is a K3 surface. Consider the surface A, obtained from A by
blowing up the points in A[2]. The automorphism ¢ on A induces an
automorphism ¢ on A whose fixed locus are the 16 exceptional divisors
of the blow up of A. Hence, the quotient E/Tis smooth. It is well known
that A/7 is isomorphic to Km(A) and that we have a commutative
diagram:

(2.1) A—T o4

|

Km(A) —— A/L

We observe that, on A there are 16 exceptional curves of the blow
up of the 16 points of A[2] € A. These curves are fixed by the
involution 7 and hence are mapped to 16 rational curves on Km(A).
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Each of these curves corresponds uniquely to a point of A[2]. Since
Al2] ~ (Z/27Z)*, we denote these 16 rational curves on Km(A) by
K, a3.03.00> Where (a1,a2,as3,a4) € (Z/2Z)*. Since the points in A[2]
are fixed by the involution ¢, the exceptional curves on A are fixed by
7, and so the curves Kg, ,.a5,0, are the branch locus of the 2 : 1 cyclic
cover A — Km(A). In particular, the curves K, a3,a5,0, form an even
set, i.e.,

(X Kovwamson ) € NSUEmOA).

ai€7/27

N |

Definition 2.1 (cf., [36]). The Kummer lattice, the minimal primitive
sublattice of H?(Km(A),Z) containing the 16 classes of the curves
Ka, a5,a5,04, 15 denoted by K.

In [36], it is proved that a K3 surface X is a Kummer surface if and
only if the Kummer lattice is primitively embedded in N.S(X).

Proposition 2.2. [41, Section 5 Appendix, Lemma 4]. The lattice K
is a negative definite even lattice of rank 16. Its discriminant is 25.

Remark 2.3. Here we briefly recall the properties of K (these are well
known and can be found, e.g., in [4, 33, 41]):

1) Let W be a hyperplane in the affine four-dimensional space (Z/2Z)%,
i.e., W is defined by an equation of the type

4
E a;a; = €,
i=1

where a;,e € {0,1}, and a; # 0 for at least one i € {1,2,3,4}.
The hyperplane W consists of eight points. For every W, the class
(1/2) - ew Kp is in K, and there are 30 classes of this kind.

2) The class (1/2) 3 ,¢(7/27)s Kp is in K.

3) Let W; = {(a1,a2,a3,a4) € A[2] be such that a; =0}, i =1,2,3,4.
A set of generators (over Z) of the Kummer lattice is given by the
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classes:
1 K, 1 K
s 2 K)o 5D K
pE(Z/22) pEW,
1 1
52 Kn 5 ) Ky
pEW>2 pEWS

1
52 Ky, Ko0,00 Ki1,000, Ko1,00s
pEWy

Koo,1,0, Ko00,1, Koon1,1, Koi01, K100,
Koi1,0, Kio1,0 Ki1,00-

syt

4) The discriminant form of K is isometric to the discriminant form of
U(2)®3. In particular, the discriminant group is (Z/2Z), there are
35 non zero elements on which the discriminant form takes value 0
and 28 non zero elements on which the discriminant form takes
value 1.

5) With respect to the group of isometries of K, there are 3 orbits in
the discriminant group: the orbit of zero, the orbit of the 35 non zero
elements on which the discriminant form takes value 0 and the orbit
of the 28 elements on which the discriminant form takes value 1.

6) Let V and V’ be two-dimensional planes (they are the intersection
of two hyperplanes in (Z/27)* and thus isomorphic to (Z/27)?),
such that

VNV ={0,0,0,0)}.

Denote by
ViV i=VuVvV —(VnV).

Wy ::%ZKP

peV

Then the classes

are 35 classes in KV /K, and the discriminant form on them takes
value 0; the classes

1
Weg = 5 Z Kp
peV V'

are 28 classes in KV /K, and the discriminant form on them takes
value 1, (see, e.g., [10, Proposition 2.1.13]).
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7) Let
Vi; = {(0,0,0,0), 0,005, 00, + a;} C (Z/2Z)*, 1<i,5 <4,
where
ar = (1,0,0,0), as = (0,1,0,0),
asz = (0,0,1,0), ay =(0,0,0,1).
Then,

(2 m) 2T m)

peVi 2 peVis
L K L K
L2 ®) 5l 2 )
pEV1 4 peEVa 3
L K L K
L2 &) 5l X )
pEV2 4 PEV3 4

generate the discriminant group of the Kummer lattice.

Here, we want to relate the Néron-Severi group of the abelian surface
A with the Néron-Severi group of its Kummer surface Km(A). Recall
that, for an abelian variety A, we have H?(A,Z) = U®3 (see, e.g., [33,
Theorem-Definition 1.5]).

Proposition 2.4. The isometry (* induced by v is the identity on
H?%(A, 7).

Proof. The harmonic two forms on A are da; Adxj, @ # j, i, =
1,2,3,4, where x; are the local coordinates of A viewed as the real
four-dimensional variety (R/Z)*. By the definition of ¢, we have:

dz; N\ d(I}j li) d(—a:l) A\ d(—.’L‘j) =dx; N\ dxj.
So ¢ induces the identity on H?(A,R) = H?(A,Z) ® R, and hence on
H?(A,Z), since H*(A,Z) is torsion free. |

Let A be the blow up of A in the 16 fixed points of the involution
t, and let m4 : A — A/t be the 2 : 1 cover. With a slight abuse of

notation, we denote by m4 also the 2: 1 cover A — Km(A).
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As in [33, Section 3], let H; be the orthogonal complement in
Hz(g, Z.) of the exceptional curves, and let H,,(4) be the orthogonal
complement in H?(Km(A),Z) of the 16 (—2)-curves on Km(A). Then

1= H?*(A,Z), and there are the natural maps (see [33, Section 3]):

T« Hicm(ay — Hj; = H*(A,Z);
ma, t H*(A,Z) = H; — Hgmeay C H*(Km(A), Z).

Lemma 2.5. We have

Tan(UP) = 14, (HX(A,Z)") = HX(A,Z)" (2) = UP3(2).
Proof. Follows from [33, Lemma 3.1] and Proposition 2.4. O

By this lemma, we can write
Ars ® Q= H*(Km(4),Q) ~ (UQ2)* @ (-2)*°) @ Q.
The lattice U(2)®3 @& (—2)®16 has index 2! in Ags ~ U3 @ Eg(—1)%2.
Proposition 2.6. Let Km(A) be the Kummer surface associated to the

abelian surface A. Then the Picard number of Km(A) is p(Km(A)) =
p(A) + 16, in particular, p(Km(A)) > 17.

The transcendental lattice of Km(A) is Tgmay = Ta(2). The
Néron-Severi group N.S(Km(A)) is an overlattice Ky g4y of NS(A)(2)
® K and

[NS(Km(A)): (NS(A)(2) @ K)] = 2¢4),

Proof. We have that

74, (NS(A) ® Tx) = NS(A)(2) & Ta(2),

and this lattice is orthogonal to the 16 (—2)-classes in H2(Km(A),Z)
arising from the desingularization of A/¢.

Since w4, preserves the Hodge decomposition, we have
NS(A)(2) € NS(Km(A))
and

Ta(2) = Trm(a)
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(cf., [33, Proposition 3.2]). Hence, the Néron-Severi group of Km(A)
is an overlattice of finite index of NS(A)(2) @ K. In fact, we have

rank NS(Km(A)) =22 —rank Ty = 22 — (6 — rank(N.S(A)))
=16 + rank(N S(A4)) = rank(NS(A)(2) & K).

The index of this inclusion is computed comparing the discriminant of
these two lattices; indeed,

27PN A(Ty) = d(Tkm(ay) = d(NS(Km(A))),
and
A(NS(A)(2) @ K) = 202 (N S(A)) = 25PN q(Ty);
thus,
d(NS(A)(2)® K)/d(NS(Km(A)))
_ 26+P(A)d(TA)/26_”(‘4)d(TA) — 22,)(,4)7
which is equal to
[NS(Km(A)) : (NS(A)(2) ® K)J?

(see, e.g., [4, Chapter I, Lemma 2.1]). a

Now, we will consider the generic case, i.e., the case of Kummer
surfaces with Picard number 17. By Proposition 2.6, if Km(A) has
Picard number 17, then its Néron-Severi group is an overlattice, K,

of index 2 of
NS(A)(2)eo K ~ZH @ K,

where H? = 4d, d > 0. In the next proposition, we describe the
possible overlattices of ZH @ K with H? = 4d, and hence, the possible
Néron-Severi groups of the Kummer surfaces with Picard number 17.

Theorem 2.7. Let Km(A) be a Kummer surface with Picard num-
ber 17, and let H be a divisor generating K+ C NS(Km(A)), H? > 0.
Let d be a positive integer such that H? = 4d, and let Kyq := ZH © K.
Then

NS(Km(A)) = Kl

where K}, is generated by Kaq and by a class (H/2,v4q/2), with:
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o vy € K, v44/2 € K and v4q/2 € KV, in particular, vy - K; €
27);
e H? = —v?, mod 8, in particular, vi,; € 4Z.

The lattice Ky, is the unique even lattice, up to isometry, such that

K, Kaql = 2 and K is a primitive sublattice of K, ,. Hence, one can
[Kia 4d
assume that,

if H> =0 mod 8, then

Vaq = E K, = Ko0,0,0+ K1,000+ Ko,1,00 + K1,1,0,0;
pEV1 2

if H> =4 mod 8, then

Vad = Z Kp

pE(V1,2%V3 4)
= Ko,0,0,1 + Ko,0,1,0 + Ko,0,1,1 + K1,0,0,0 + Ko0,1,0,0 + K1,1,0,0-

Proof. The conditions on v4q for constructing the lattice Ky4q can

be proved as in [13, Proposition 2.1]. The uniqueness of K/, and
the choice of v4q follows from the description of the orbits under
the group of isometries of K on the discriminant group KV /K, see
Remark 2.3. O

Remark 2.8. (cf., [4, 11]).

1)

Let

(we use the notation of diagram (2.1) and as above 74 denotes both
A — Km(A) and A — A/t). The six vectors w; ; form the basis of
U(2)®3. The lattice generated by the Kummer lattice K and by the

six classes
1
Uij =5 wij + Y Koy asasas )

where the sum is over (a1, a2, as, as) € (Z/27)* such that a; = a; =
0, {i,j,h, k} = {1,2,3,4} and h < k, is isometric to Ags.

Observe that since for each d € Z~ there exist abelian surfaces with
Néron-Severi group isometric to (2d) for each d there exist Kummer
surfaces with Néron-Severi group isomorphic to K.
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Let Fq, d € Z~q, denote the family of K -polarized K3 surfaces.
Then:

Corollary 2.9. The moduli space of the Kummer surfaces has a
countable number of connected irreducible components, which are the
.Fd, d S Z>0.

Proof. Every Kummer surface is polarized with a lattice K}, for
some d, by Proposition 2.6 and Theorem 2.7. On the other hand, if a
K3 surface is K/}, polarized, then there exists a primitive embedding of
K in its Néron-Severi group and, by [36, Theorem 1], it is a Kummer
surface. ]

Remark 2.10. The classes of type (H +vaq +>_ ey Kp)/2, where H
and vy are as in Theorem 2.6 and W is a hyperplane of (Z/2Z)*, are
classes in K);. We describe these kinds of classes modulo the lattice
Dpe(z/22)+ZK,. We use the notation of Theorem 2.7.

If H2 =4d =0 mod 8, the lattice K}, contains:

e four classes of type (H—3_ . ; Kj)/2 for certain Jy C (z)27)*
which contain four elements. These classes are (H +v44)/2 and
the classes (H + vaa + > ey Kp)/2, where

WD {(0707070)’ (1707070)’ (07 17070)’ (17 17070)};

e 24 classes of type (H —>_ ; Kp)/2 for certain Jg C (Z)27)*
which contain eight elements. These classes are (H + v4q +
> pew Kp)/2, where W N {(0,0,0,0), (1,0,0,0), (0,1,0,0),
(1,1,0,0)} contains two elements.

e Four classes of type (H — > ., K;)/2 for certain Jio C
(Z/2Z)* which contain 12 elements. These classes are (H +
Vaa+)_pez/2z)s Kp) /2 and the classes (H +via+3_ e Kp)/2,
where

wn{(0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0)} = 0.
If H? = 4d =4 mod 8, the lattice K/, contains:

e 16 classes of type (H — 3  ; K;)/2 for certain Js C (z)27)*
which contain six elements. These classes are (H + v4q)/2 and
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the classes (H + vaa + ), cw Kp)/2, where
Wn{(1,0,0,0), (0,1,0,0), (1,1,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1)}

contains four elements;
e 16 classes of type (H—)_ ; Kp)/2 for certain Jig C (z)27)*
which contain 10 elements. These classes are (H + v4q +

> pe(z/2m)s Kp)/2 and the classes (H + via + > e Kp)/2,
where

Wm{(]‘?()? 0’ 0)7 (07 13070)7 (1’17070)’ (0707 0’ 1)7 (07 0’ 170)7 (0’07171)}

contains 2 elements.

Remark 2.11. The discriminant group of K, ; is generated by:

<H/4d>+§( > Kp>, ;( ) Kp)v

PEV3 4 PEVL 3
L K L K
sL2 K)o 5l 2 )
PEV1 4 pEVa 3
1
(2 w)
pEV2 4

if H2> =4d =0 mod 8, and by

<H/4d>+§( > Kp) ;( ) Kp)

PEV] 2 peEVi 3
L K L K
sL2 ) 5l 2 )
pEVi 4 pEVa 3
1
(2 w)
PEV2 4

if H2 = 4d =4 mod 8.

2.2. Kummer surfaces as K3 surfaces with 16 nodes. Let S be
a surface with n nodes, and let S be its minimal resolution. On S,
there are n disjoint rational curves which arise from the resolution of
the nodes of S. If S is a K3 surface, then n < 16, [36, Corollary 1]. By
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[36, Theorem 1], if a K3 surface admits 16 disjoint rational curves, then
they form an even set and the K3 surface is in fact a Kummer surface.
Conversely, as remarked in the previous section, every Kummer surface
contains 16 disjoint rational curves. Thus, the Kummer surfaces are the
K3 surfaces admitting the maximal numbers of disjoint rational curves
or, equivalently, they are the K3 surfaces which admit a singular model
with the maximal number of nodes.

2.3. Kummer surfaces as a quotient of K3 surfaces.

Definition 2.12. (cf., [33, Definition 5.1]). An involution ¢ on a K3
surface Y is a Nikulin involution if 1*w = w for every w € H2°(Y).

Every Nikulin involution has eight isolated fixed points and the
minimal resolution X of the quotient Y/ is again a K3 surface ([38,
Sections 5, 11]). The minimal primitive sublattice of N.S(X) containing
the eight exceptional curves from the resolution of the singularities of
Y/ is called the Nikulin lattice, and it is denoted by N, its discriminant
is 26,

Definition 2.13. (cf., [15]). A Nikulin involution ¢ on a K3 surface
Y is a Morrison-Nikulin involution if 1* switches two orthogonal copies
of Fg(—1) embedded in NS(Y).

By definition, if Y admits a Morrison-Nikulin involution, then
Es(—1) ® Eg(—1) ¢ NS(Y). A Morrison-Nikulin involution has the
following properties (cf., [33, Theorems 5.7, 6.3]):

L] TX = Ty(?);

e the lattice N @ Eg(—1) is primitively embedded in N.S(X);

o the lattice K is primitively embedded in NS(X), and so X is
a Kummer surface.

Definition 2.14. (cf., [33, Definition 6.1]). Let ¥ be a K3 surface
and ¢ a Nikulin involution on Y. The pair (Y,:) is a Shioda-Inose

structure if the rational quotient map w : Y — — = X is such that X
is a Kummer surface and 7, induces a Hodge isometry Ty (2) = Tx.
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The situation is shown in the following diagram (A° denotes an
abelian surface):

A° Y

~ -
~ -
/ ~ e \
~ e
A £

A)i<—— X = Km(A?)

Y/

We have Ty = T 40 by [33, Theorem 6.3].

Let Y be a K3 surface and ¢ a Nikulin involution on Y. By [33,
Theorems 5.7, 6.3], we conclude that:

Corollary 2.15. A pair (Y,t) is a Shioda-Inose structure if and only
if v is a Morrison-Nikulin involution.

For the next result, see [40, Lemma 2].

Proposition 2.16. Fvery Kummer surface is the desingularization of
the quotient of a K3 surface by a Morrison-Nikulin involution, i.e., it
is associated to a Shioda-Inose structure.

Remark 2.17. In [40, Lemma 5], it is proved that, if X is a K3
surface with p(X) = 20, then each Shioda-Inose structure is induced
by the same abelian surface. This means that, if (X,¢;) and (X, ¢2)
are Shioda-Inose structures and Y; = Km(B;) is the Kummer surface
minimal resolution of X/¢;, i = 1,2, then B; = By, and so Y7 = Y5.

By Proposition 2.16, it follows that Kummer surfaces can also be
defined as K3 surfaces which are desingularizations of the quotients of
K3 surfaces by Morrison-Nikulin involutions. This definition leads to
a different description of the Néron-Severi group of a Kummer surface,
which we give in the following.

Theorem 2.18. Let Y be a K3 surface admitting a Morrison-Nikulin
involution . Then p(Y) > 17 and NS(Y) ~ R & Eg(—1)?, where
R is an even lattice with signature (1,p(Y) — 17). Let X be the
desingularization of Y/i. Then NS(X) is an overlattice of index
2(rank(R)) of R(2) ® N @ Fg(—1).
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In particular, if p(Y') = 17, then
NS(Y) ~ (2d) ® Eg(—1)°.

The surface X is the Kummer surface of the (1,d)-polarized abelian
surface and the Néron-Severi group of X is an overlattice of index 2 of
(4d) ® N ® Eg(—1).

Proof. By [33, Theorem 6.3], and the fact that Es(—1) is unimod-
ular, one can write

NS(Y)=R® Eg(—1)%,

with R even of signature (1,p(Y) — 17). In [33, Theorem 5.7], it is
proved that N @ Es(—1) is primitively embedded in NS(X). Thus,
arguing on the discriminant of the transcendental lattices of Y and
X and on the lattice R as in Proposition 2.6, one concludes the first
part of the proof. For the last part of the assertion observe that the
lattices NS(Y) and Ty are uniquely determined by their signature and
discriminant forms ([33, Theorem 2.2]), so Ty = (—2d) & U?. By
construction,

Ty(2) = TX = TAO (2) SO TAO = Ty.

This uniquely determines NS(A°), which is isometric to (2d). Hence,
A is a (1, d)-polarized abelian surface. O

The overlattices Nj, of index 2 of (2d) @ N are described in [13]
and, by Theorem 2.18, we conclude that, if p(Y') = 17, then NS(X) ~
4a ® Es(=1).

Remark 2.19. Examples of Shioda-Inose structures on K3 surfaces
with Picard number 17 are given, e.g., in [9, Appendix], [15, 27, 30,
43]. In all of these papers, the Morrison-Nikulin involutions of Shioda-
Inose structures are induced of a translation by a 2-torsion section on
an elliptic fibration. In particular, in [27], all the Morrison-Nikulin
involutions induced in such a way on elliptic fibrations with a finite
Mordell-Weil group are classified.

Remark 2.20. Proposition 2.6 and Theorem 2.18 give two different
descriptions of the same lattice (the Néron-Severi group of a Kummer
surface of Picard number 17). The first one is associated to the
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construction of the Kummer surface as a quotient of an abelian surface;
the second one is associated to the construction of the same surface as
a quotient of another K3 surface. In general, it is an open problem to
pass from one description to the other, and hence, to find the relation
between these two constructions of a Kummer surface. However, in
certain cases, this relation is known. In [35], Naruki describes the
Néron-Severi group of the Kummer surface of the Jacobian of a curve
of genus 2 as in our Proposition 2.6, and he determines a nef divisor that
gives a 2 : 1 map to P? (we describe this map in subsection 5.1). Then,
16 curves on P2 are constructed, and it is proved that their pull backs
on the Kummer surface generate the lattice N @ Eg(—1). Similarly, this
relation is known if the abelian surface is E x E’, the product of two
non isogenous elliptic curves E and E’. In [39], the Néron-Severi group
of Km(E x E') is described as in Proposition 2.6. Then the elliptic
fibrations on this K3 surface are classified. In particular, there exists
an elliptic fibration with a fiber of type I1* and two fibers of type Ij.
The components of I1* which do not intersect the 0 section generate a
lattice isometric to Eg(—1) and are orthogonal to the components of Ij.
The components with multiplicity 1 of the two fibers of type I generate
a lattice isometric to N and orthogonal to the copy of Es(—1) that we
have described before. Thus, one has an explicit relation between the
two descriptions of the Néron-Severi group.

3. Automorphisms on Kummer surfaces. In general, it is a
difficult problem to describe the full automorphism group of a given
K3 surface. However, for certain Kummer surfaces it is known. For
example, the group of automorphisms of the Kummer surface of the
Jacobian of a curve of genus 2 is described in [24, 29]. Similarly, the
group Aut(Km(E x F)) is determined in [26] in the cases: E and F
generic and non isogenous, F and F' generic and isogenous, E and F
isogenous and with complex multiplication.

A different approach to the study of the automorphisms of K3 sur-
faces is to fix a particular group of automorphisms and to describe the
families of K3 surfaces admitting such (sub)groups of automorphisms.
For this point of view the following two known results (Propositions 3.1
and 3.3) assure that every Kummer surface admits particular automor-
phisms. Moreover, we also prove a result (Proposition 3.5), which limits
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the list of the admissible finite group of symplectic automorphisms on
a generic Kummer surface.

3.1. Enriques involutions on Kummer surfaces. We recall that
an Enriques involution is a fixed point free involution on a K3 surface.

Proposition 3.1. ([25, Theorem 2]). Every Kummer surface admits
an Enriques involution.

To prove the proposition, in [25], the following is first shown (see
[19, 37]).

Proposition 3.2. ([25, Theorem 1]). A K3 surface admits an En-
riques involution if and only if there exists a primitive embedding of the
transcendental lattice of the surface in U U (2) ® Eg(—2), such that its
orthogonal complement does not contain classes with self-intersection
equal to —2.

In [25], the author applies the proposition to the transcendental
lattice of any Kummer surface. We observe that this does not give an
explicit geometric description of the Enriques involution.

3.2. Finite groups of symplectic automorphisms on Kummer
surfaces.

Proposition 3.3. (see, e.g., [11]). The group G = (Z/2Z)* acts
symplectically on every Kummer surface Km(A). The elements of G
are induced by the translation by points of order 2 on the abelian surface
A and the desingularization of Km(A)/G is isomorphic to Km(A);
thus, every Kummer surface is also the desingularization of the quotient
of a Kummer surface by (Z/27)*.

Proof. Let A[2] be the group generated by 2-torsion points. This is
isomorphic with (Z/2Z)*, it operates on A by translation and commutes
with the involution ¢. Hence, it induces an action of G = (Z/2Z)*
on Km(A), and thus on H?(Km(A),Z). Observe that G leaves the
lattice U(2)%® ~ (w;;) invariant; in fact, G, as a group generated by
translations on A, does not change the real two forms dx; A dx;. Since
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Trma) C U(2)®3, the automorphisms induced on Km(A) by G are
symplectic. Moreover, since ¢ and G commute, we obtain that the

—_~—

surfaces Km(A/A[2]) and Km(A)/G are isomorphic. Finally, from the
exact sequence,

O—>A[2]—>A'—2>A—>0,

we have A/A[2] = A, and so

Km(A)/G ~ Km(A/A[2]) ~ Km(A). O

Remark 3.4. One can also consider the quotient of K'm(A) by sub-
groups of G = (Z/27)*, for example, by one involution. Such an
involution is induced by translation by a point of order 2. Take
the abelian surface A = R*/A, where A = (2e1,e2,e3,64) and con-
sider the translation ¢., by e;. Thus, A/(t.,) is the abelian surface
B := R*/(ey,ea,e3,e4). So the desingularization of the quotient of
Km(A) by the automorphism induced by ¢., is again a Kummer sur-
face and, more precisely, it is Km(B). In particular, if NS(A) = (2d),
then NS(B) = (4d), [6]. This implies that, if NS(Km(A)) ~ K,
then NS(Km(B)) ~ K{,;. Analogously, one can consider the sub-
groups G, = (Z/2Z)"™ C G (generated by translations), n = 1,2,3: if
NS(Km(A)) ~ Kl,, then NS(Km(A/Gy)) ~ K)on 4

Proposition 3.5. Let G be a finite group of symplectic automorphisms
of a Kummer surface Km(A), where A is a (1,d)-polarized abelian
surface and p(A) = 1. Then G is either a subgroup of (Z/27)*, 7./37Z
or ZJAZ.

Proof. Let G be a finite group acting symplectically on a K3 surface,
and denote by Q¢ the orthogonal complement of the G-invariant
sublattice of the K3 lattice Ax3. An algebraic K3 surface admits the
group G of symplectic automorphisms if and only if Q¢ is primitively
embedded in the Néron-Severi group of the K3 surface, cf., [18, 38];
hence, the Picard number is greater than or equal to rank(Qg) + 1.
The list of the finite groups acting symplectically on a K3 surface and
the values of rank(Q¢) can be found in [47, Table 2] (observe that
Xiao considers the lattice generated by the exceptional curves in the
minimal resolution of the quotient; he denotes its rank by c. This is
the same as rank(Q¢) by [23, Corollary 1.2]).
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Since we are considering Kummer surfaces such that p(Km(A)) =
17, if G acts symplectically, then rank(Qg) < 16. This gives the
following list of admissible groups G:

Z\' .
(%) fori=1,2,3,4;

Z

7 for n = 3,4, 5, 6;

Dy, for m = 3,4,5,6 (D, is the dihedral group of order 2m);

z . (Z\' Z ..
22,7 47" \3z) ' 2z~ "

As 3, (see [34] for the definition); 2.

We can exclude that G acts symplectically on a Kummer surface for
all the listed cases except (Z/2Z)%, i = 1,2,3,4, Z/3Z and Z/AZ
by considering the rank and the length of the lattice Q¢, which is
the minimal number of generators of the discriminant group. For
example, let us consider the case G = Ds. The lattice Qp, is an
even negative definite lattice of rank 14. Since the group Ds3 can be
generated by two involutions, Qp, is the sum of two (non orthognal)
copies of Q07 ~ Eg(—2) and admits D3 as a group of isometries
(cf., [12, Remark 7.9]). In fact, Qp, ~ DIHg(14), where DIHg(14)
is the lattice described in [16, Section 6]. The discriminant group
of Qp, ~ DIHg(14) is (Z/3Z)* x (Z/6Z)* [16, Table 8]. If D5 acts
symplectically on Km(A), NS(Km(A)) is an overlattice of finite index
of Qp, ® R where R is a lattice of rank 3. But there are no overlattices
of finite index of Qp, & R with discriminant group (Z/2Z)* x Z/2dZ,
which is the discriminant group of NS(Km(A)). Indeed, for every
overlattice of finite index of Qp, @ R, since the rank of R is 3, the
discriminant group contains at least two copies of Z/37Z.

In order to exclude all the other groups G listed before, one must
know the rank and the discriminant group of 2. This can be found
in [14, Proposition 5.1] if G is abelian; in [12, Propositions 7.6, 8.1] if
G =Dy, m=4,5,6, G =7Z/2Z x Dy and G = s 3; in [5, subsection
4.1.1] if G = Ay. O
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Remark 3.6. We cannot exclude the presence of symplectic automor-
phisms of orders 3 or 4 on a Kummer surface with Picard number 17,
but we have no explicit examples of such an automorphism. It is known
that there are no automorphisms of such a type on K'm(A), if A is prin-
cipally polarized, cf., [24, 29]. If Km(A) admits a symplectic action of
Z/3Z, then d = 0 mod 3. This follows comparing the lengths of €7/37
and of NS(Km(A)) as in the proof of Proposition 3.5. Moreover, the
automorphism of order 3 generates an infinite group of automorphisms
with any symplectic involution on Km(A). Otherwise, if it generates a
finite group, it must be one of the groups listed in Proposition 3.5, but
there are no groups in this list containing both an element of order 2
and one of order 3.

3.3. Morrison-Nikulin involutions on Kummer surfaces. Ex-
amples of certain symplectic automorphisms on a Kummer surface (the
Morrison-Nikulin involutions) come from the Shioda-Inose structure.
We recall that every K3 surface with Picard number at least 19 ad-
mits a Morrison-Nikulin involution. In particular, this holds true for
Kummer surfaces of Picard number at least 19. This is false for Kum-
mer surfaces with a lower Picard number. In fact, since a Kummer
surface with a Morrison-Nikulin involution also admits a Shioda-Inose
structure as shown in subsection 2.3, it suffices to prove the following.

Corollary 3.7. Letting Y = Km(B) be a Kummer surface of Picard
number 17 or 18, then Y does not admit a Shioda-Inose structure.

Proof. If a K3 surface Y admits a Shioda-Inose structure, then
by Theorem 2.18 we can write NS(Y) = R @ Es(—1)? with R, an
even lattice of rank 1 or 2. Hence, the length of NS(Y) satisfies
I(Ansyy) < 2. It follows immediately that we also have I(Ar, ) < 2.
Let ey,...,e;, © = 5, respectively 4, be the generators of Ty. Since
Y =2 Km(B), we have that Ty = Tp(2) and so the classes e;/2 are
independent elements of Ty /Ty ; thus, we have 2 > [(Ar, ) > 4, which
is a contradiction. O

In the case where the Picard number is 19 we can give a more precise
description of the Shioda-Inose structure.
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Proposition 3.8. Let Y ~ Km(B) be a Kummer surface, p(Y') = 19
(so Y admits a Morrison-Nikulin involution t). Let Km(A®) be the
Kummer surface which is the desingularization of Y/i. Then A° is not
a product of two elliptic curves.

Proof. If A° = E; x Ey, E;, i = 1,2, an elliptic curve, then the
classes of £y and E5 in NS(AO) span a lattice isometric to U. To
prove that AY is not such a product it suffices to prove that there
is no primitive embedding of U in NS(AY). Assume the contrary.
Then NS(A%) = U @ Zh, so {((NS(A%) = 1. Since Y ~ Km(B) is
a Kummer surface, Ty ~ Tp(2), and thus Tyo ~ T5(2). This implies
that 1 = ¢(NS(A%)) = £(T40) = 3, which is a contradiction. O

4. Ampleness of divisors on Kummer surfaces. In this sec-
tion, we consider projective models of Kummer surfaces with Picard
number 17. The main idea is that we can check whether a divisor is
ample, nef, or big and nef (which is equivalent to pseudo ample) be-
cause we have a complete description of the Néron-Severi group and so
of the (—2)-curves. Hence, we can apply the following criterion (see [4,
Proposition 3.7]).

Let L be a divisor on a K3 surface such that L? > 0. Then it is nef
if and only if L-D > 0, for all effective divisors D, such that D?* = —2.

This idea was used in [13, Proposition 3.2], where it was proven
that, if there exists a divisor with a negative intersection with L, then
this divisor has self-intersection strictly less than —2. We refer to the
description of the Néron-Severi group given in Proposition 2.6, where
the Néron-Severi group is generated, over Q, by an ample class and
by 16 disjoint rational curves, which form an even set over Z. Since
the proofs of the next propositions are very similar to the ones given
in [13, Section 3] (where the Néron-Severi groups of the K3 surfaces
considered are generated over Q by an ample class and by eight disjoint
rational curves forming an even set) we omit them. We denote by ¢,

the map induced by the ample (or nef, or big and nef) divisor L on
Km(A).

Proposition 4.1. (c¢f., [13, Proposition 3.1]). Let Km(A) be a
Kummer surface such that NS(Km(A)) ~ K),. Let H be as in
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Theorem 2.7. Then we may assume that H is pseudo ample and |H)|
has no fixed components.

Remark 4.2. The divisor H is orthogonal to all curves of the Kummer
lattice, so ¢ contracts them. The projective model associated to this
divisor is an algebraic K3 surface with 16 nodes forming an even set.
More precisely, ¢ (Km(A)) is a model of A/s.

Proposition 4.3. (cf., [13, Propositions 3.2, 3.3]). Let Km(A) be a
Kummer surface such that NS(Km(A)) ~ K.
o Ifd>3, i.e., H® > 12, then the class
1
H— 2( > K,,) C NS(Km(A)),
pe(Z/22)*

is an ample class. For m € Z~, the classes

1
(sl 2,)
p€e(Z/2Z)*

and )

mH — 2( > Kp>

pE(Z/22)*
are ample.
o Ifd=2, i.e.,
1 2
(r=3( 2 =) -0
PE(Z/22)*

then

1
n(i-3( ¥ ®))
pE(Z/27)*

is nef for m > 1 and
1
mH — 2( > Kp>
pe(Z/22)*

is ample for m > 2.
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Proposition 4.4. (cf., [13, Proposition 3.4]). The divisors

1
H—2( Z Kp),
pe(Z/27)4

mH—;( > Kp)

pE(Z/22)*

and

m(H—;( > Kp)> m € Zo,

pE(Z/27)4

do not have fized components for d > 2.

Lemma 4.5. (¢f., [13, Lemma 3.1]). The map ¢H_(ZPE(Z/22)4 K,)/2 8
an embedding if H? > 12.

Proposition 4.6. (c¢f. [13, Proposition 3.5]).

1) Let D be the divisor D = H — (K1 + -+ K,.), up to relabelling of
the indices, 1 <r <16. Then D is pseudo ample for 2d > r.
2) Let D= (H—- Ky —...— K;)/2 withr = 4,8,12 if d = 0 mod 2
andr=06,10 if d =1 mod 2. Then:
e the divisor D is pseudo ample whenever it has positive self-
intersection,
o if D is pseudo ample, then it does not have fixed components,

=2 . =T ..
e if D" =0, then the generic element in |D| is an elliptic curve.

Remark 4.7. In the assumptions of Lemma 4.5 the divisor

1
H— 3 < Z Kp)
pe )*

(Z./27,

defines an embedding of the surface Km(A) into a projective space
which sends the curves of the Kummer lattice to lines. A divisor D as
in Proposition 4.6 defines a map from the surface Km(A) to a projective
space, which contracts some rational curves of the even set and sends
the others to conics on the image. Similarly, D defines a map from
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the surface Km(A) to a projective space which contracts some rational
curves of the even set and sends the others to lines on the image.

5. Projective models of Kummer surfaces with Picard num-
ber 17. Here we consider certain Kummer surfaces with Picard num-
ber 17, and we describe projective models determined by the divisors
presented in the previous section. Some of these models are very clas-
sical.

5.1. Kummer of the Jacobian of a genus 2 curve. Let C be a
general curve of genus 2. It is well known that the Jacobian J(C)
is an abelian surface such that NS(J(C)) = ZL, with L? = 2 and
Ty ~(—2) ®U @ U. Hence,

see Proposition 2.6 and Theorem 2.7.

Here, we want to reconsider some known projective models of
Km(J(C)), see [17, Chapter 6], using the description of the classes
in the Néron-Severi group introduced in the previous section.

The singular quotient surface J(C) /¢ is a quartic in P3 with 16 nodes.
For each of these nodes there exist six planes which pass through that
node, and each plane contains five more nodes. Each of these planes
cuts the singular quartic surface in a conic with multiplicity 2. In this
way, we obtain 16 hyperplane sections which are double conics. These
16 conics are called tropes. They are the images, under the quotient
map J(C) — J(C)/¢, of different embeddings of C in J(C).

We have seen that every Kummer surface admits an Enriques invo-
lution, cf., Proposition 3.1. If the Kummer surface is associated to the
Jacobian of a curve of genus 2, an explicit equation of this involution
on the singular model of Km(J(C)) in P? is given in [25, subsection
3.3].

5.1.1. The polarization H. The map ¢y contracts all the curves
in the Kummer lattices, and hence, ¢x(Km(J(C))) is the singular
quotient J(C)/c in P2. The class H is the image in NS(Km(J(C)))
of the class generating NS(J(C)) (Proposition 2.6). The 16 classes
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(described in Remark 2.10, case 4d =4 mod 8) of the form

wJ, ::;(H— ZKP)

pEJs

correspond to the tropes. Indeed,

2uJ6+ZKp:H,

pEJs

so they correspond to a curve in a hyperplane section with multiplic-
ity 2; u?,e = —2, thus they are rational curves; uj, - H = 2, thus they
have degree 2. In particular, the trope corresponding to the class wuy,
passes through the nodes obtained by contracting the six curves K,
where p € Jg. It is a classical result, cf., [20, Chapter I, Section 3],
that the rational curves of the Kummer lattice and the rational curves
corresponding to the tropes in this projective model form a 16g con-
figuration of rational curves on Km(J(C)). The intersections between
the curves K, p € (Z/27)* and the classes u, can be directly checked.

5.1.2. The polarization H — K¢ ,0,0. Another well-known model is
obtained by projecting the quartic surface in P? from a node. This gives
a 2 : 1 cover of P2, branched along six lines, which are the image of
the tropes passing through the node from which we are projecting.
The lines are all tangent to a conic, cf., [35, Section 1]. Taking
the node associated to the contraction of the curve Ky 0,0, then the
linear system associated to the projection of J(C')/¢ from this node is
|H — Ko,0,0,0]- The classes uy, such that (0,0,0,0) € Js are sent to
lines and the curve K g,0,0 is sent to a conic by the map,

PH Koot Km(J(C)) — P2

This conic is tangent to the lines which are images of the tropes
Uje. So the map dr_rk,o00 : Km(J(C)) — P? exhibits Km(A) as
a double cover of P2, branched along six lines tangent to the conic
C = ¢H_Ky.0.0.0H0,000). The singular points of the quartic J(C)/t,
which are not the center of this projection, are singular points of
the double cover of P2. So the classes Kg, 4y.05.0, of the Kummer
lattice, such that (a1,as,as,as) # (0,0,0,0) are singular points for
PH-Ko0.00(HEm(J(C))), and in fact, correspond to the 15 intersection
points of the 6 lines in the branch locus. Observe that, if we fix three
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of the six lines, the conic C is tangent to the edges of this triangle. The
remaining three lines form a triangle as well and the edges are tangent
to the conic C. By a classical theorem of projective plane geometry
(a consequence of Steiner’s theorem on generation of conics) the six
vertices of the triangles are contained in another conic D, and in fact,
this conic is the image of one of the tropes which do not pass through the
singular point corresponding to Kg,0,0. This can be checked directly
on NS(Km(J(C))). Observe that we have in total 10 such conics.

5.1.3. Deformation. We observe that this model of Km(J(C)) ex-
hibits the surface as a special member of the four-dimensional family
of K3 surfaces which are a 2 : 1 cover of P? branched along six lines
in general position. The covering involution induces a non-symplectic
involution on Km(J(C)) which fixes six rational curves. By Nikulin’s
classification of non-symplectic involutions, cf., e.g., [1, Section 2.3],
the general member of the family has a Néron-Severi group isomet-
ric to (2) ® A; @ Dy @ Dyo and a transcendental lattice isometric to
U(2)%2? @ (—2)®2, which clearly contains

Trm(s(cy) = U((2)%* @ (—4).

This is a specific case of Proposition 7.13.

5.1.4. The polarization 2H — [(}_,¢(z/27)4)/2]Kp. We denote this
polarization by D. The divisor D is ample by Proposition 4.3. Since
D? = 8, the map ¢p gives a smooth projective model of Km(J(C)) as
an intersection of three quadrics in P?. Using suitable coordinates, we

can write C' as
5

y2 = H(]J - Si)v

=0

with s; € C, s; # s; for i # j (it is the double cover of P! ramified on
six points). Then, by [46, Theorem 2.5], ¢p(K'm(J(C))) has equation

B+ +22 =0,
(5 1) 2 2 2 2 2 2 _ 0
. S0z + 8121 + 8225 + 8323 + s425 + s525 = 0,
SE28 + 8327 + 8323 + 8323 + 552 + 5222 =0,
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in P°. The curves of the Kummer lattice are sent to lines by the map
ép; indeed, D- K, = 1 for each p € (Z/2Z)*. The image of the rational
curves associated to a divisor of type wj,, i.e., the curves which are
tropes on the surface ¢ (Km(J(C))), are lines. In fact, we compute
D -uj, = 1. So on the surface ¢p(Km(J(C))) we have 32 lines which
admit a 16¢ configuration. Keum [24, Lemma 3.1] proves that the set
of the tropes and the curves K, p € (Z/27)* generate the Néron-Severi
group, over Z. Here, we find the same result as a trivial application of
Theorem 2.7. Moreover, we can give a geometric interpretation of this
fact; indeed, this implies that the Néron-Severi group of the surface
¢p(Km(J(C))) is generated by lines (other results about the Néron-
Severi group of K3 surfaces generated by lines can be found e.g., in
[7]). More precisely, the following hold.

Proposition 5.1. The Néron-Severi group of the K3 surfaces which
are smooth complete intersections of the three quadrics in P® defined by
(5.1) is generated by lines.

Proof. By applying Theorem 2.7 we find a set of classes generating
NS(Km(J(C))) which corresponds to lines in the projective model of
the Kummer surface ¢p(Km(J(C))). This set of classes is:

S = {el = 1(H — vy),

2
1
ey 1= §(H — Ko,00,0 = K1,000 = Ko,1,01 = Ko1,1,0
— K1,1,o,0 - K0,1,171)7
1
ez = §(H — Ko,0,00 ~ Ko1,00 — K100 = Ki,0,1,0

— K001 —Ki,01,1),
1
€4 1= §(H — Ko,0,0,0 — Ko0,0,1,0 — Ko,0,1,1 — K1,0,0,1
— Ko1,01—Ki101),

1
e5 = 5 (H = Koo00 ~ Kooo1 ~ Koo11 — Kio10

—Ki11,0—Koi,1,0),

1
€g = i(H — Ko,0,0,0 — K1,0,00 — Ko,1,00 — K1,1,0,1
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—Ki11,0—Ki1,1,1), K0,0,0,00 K1,0,0,0, K0,1,0,0,

Ko,0,1,0, K0,0,0,1, K0,0,1,1, Ko,1,0,1, K1,0,0,15
Ko,1,1,0, K1,0,1,0, K1,1,0,0}-

Indeed, by Theorem 2.7, a set of generators of NS(Km(J(C))) is
given by e; and a set of generators of the Kummer lattice K (a set of
generators of K is described in Remark 2.10). Since, for j = 2,3,4,5,

1
ej —el = 5{)6; K, mod (®pe(z/22)0ZKp)
-1

and

1
B Z K, mod (@pE(Z/QZ)4ZKp),

pE(Z/2Z)*

€1 —ezt+es —eg

S is a Z-basis of NS(Km(J(C))). It is immediate to check that every
element of this basis has intersection 1 with D and thus is sent to a
line by ¢p. ([l

5.1.5. The nef class H — (H —}_ .y, Kp)/2. Without loss of gen-

erality, we consider i = 1, and we call this class D. By Proposition 4.6,
it defines an elliptic fibration on K'm(J(C)), and the eight (—2)-classes
contained in D are sections of the Mordell-Weil group; the other eight
(—2)-classes are components of the reducible fibers. Observe that the
class

1

i(H — K1,000—Ki1.1,00— Ko1,01 —Ko,1,1.0— Ko,1,11 — Ko0,0,0)

has self intersection —2, intersection 0 with D and meets the classes
Ki,0,0,0 and Kj 10,0 in one point. One can easily find three more
classes than the previous one, so that the fibration contains four fibers
I,. Checking in [31, Table, page 9] we see that this is the fibration
number 7 so it has no other reducible fibers, and the rank of the
Mordell-Weil group is 3.

5.1.6. Shioda-Inose structure. We now describe the three-dimen-
sional family of K3 surfaces which admit a Shioda-Inose structure
associated to Km/(J(C)) as described in Theorem 2.18. This is obtained
by considering K3 surfaces X with p(X) = 17, with an elliptic fibration
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with reducible fibers I7; + I> and Mordell-Weil group equal to Z/27Z
(see Shimada’s list of elliptic K3 surfaces [44, Table 1, Case 1343] for
the arXiv version of the paper). By using the Shioda-Tate formula, cf,
e.g., [45, Corollary 1.7], the discriminant of the Néron-Severi group of
such a surface is (22 - 2)/22.

The translation ¢ by the section of order 2 on X is a Morrison-Nikulin
involution; indeed, it switches two orthogonal copies of Eg(—1) C
NS(X). Thus, the Néron-Severi group is (2d) @ Eg(—1) @ Es(-1),
and d = 1 because the discriminant is 2. Hence, X has a Shioda-Inose
structure associated to the abelian surface J(C'). The desingularization
of the quotient X/t is the Kummer surface K'm(J(C)) and has an
elliptic fibration induced by the one on X, with reducible fibers IZ +61
(this is number 23 of [31]) and Z/2Z as a Mordell-Weil group. This
Shioda-Inose structure was described in [30, subsection 5.3].

In Theorem 2.18, we gave a description of the Néron-Severi group
of Km(J(C)) related to the Shioda-Inose structure. In particular, we
showed that NS(Km(J(C)) is an overlattice of index 2 of (4) ® N &
Es(—1). The generator of (4) is denoted by Q; the classes of the rational
curves in the Nikulin lattice N by N;, i =1,...,8; and the generators
of Eg(—1) (we assume that E;, j =1,...,7 generate a copy of A7(—1)
and E3E8:1) by Ej,j: ].,...,8.

Then a Z-basis of NS(Km/(J(C))) is

8

Q+ N+ Ny N;
{27N1""3N772123E17"'aE8 .

It is easy to identify a copy of N and an orthogonal copy of Eg(—1) in
the previous elliptic fibration (the one with reducible fibers IF + 615);
in particular, we remark that the curves N; and Ej, j = 2,...,8, are
components of the reducible fibers and the curve E; can be chosen to
be the zero section. This immediately gives the class of the fiber in
terms of the previous basis of the Néron-Severi group, F := Q —4FE; —
TFEy —10FE3; — 8F, — 65 — 4Eg — 2E7; — 5Fs.

5.2. Kummer surface of a (1,2)-polarized abelian surface. In
this section, A will always denote a (1, 2) polarized abelian surface, and
NS(A) = ZL where L? = 4.
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5.2.1. The polarization H. By Proposition 4.1, the divisor H is
pseudo-ample and the singular model ¢p(Km(A)) has 16 singular
points (it is in fact A/i). Since H?> = 8 and since, by [42, Theorem
5.2], H is not hyperelliptic, the K3 surface ¢ (Km(A)) is a complete
intersection of three quadrics in P°. This model is described by Barth
in [2]:

Proposition 5.2. ([2, Proposition 4.6]). Let us consider the following
quadrics:

+ (15 — A3 (%-503):0}
Qs = {(13 + \3)w172 — 2u3 3w374 + (43 — A3)x576 = 0}

Let r =11 972,373,1 where ry ; = ()\Quk )\ku])()\?)\% —u%u?). Ifr #0,
the quadrics Q1, Q2, Q3, generate the ideal of an irreducible surface
Q1N QaNQsz CP° of degree 8, which is smooth except for 16 ordinary
double points and which is isomorphic to A/¢.

The surface A/c is then contained in each quadric of the net,
a1Q1+asQ2+a3Q3, a; € C. We observe that the matrix M associated
to this net of quadrics is a block matrix:

By 0 0
M=1|0 By 0],
0 0 Bs
where
B, — [aa(el +AT) + az(pz + A7) as(p3 + A3)
i as(p3 + A3) ar(uf + A7) — az (i +A3)]”
B, — _—2(11#1)\1 - 20&2#2)\2 —20[3,[1,3)\3
2 L 720[3[1,3)\3 720&1[141A1 + 20[2[1,2)\2
By — |1l = AD) +az(ps = A) as(ps — A3) ]
az(p3 — A3) ar(pi = A) — az(p3 — A3)]
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A singular quadric of the net is such that
det(M) = det(B;) det(By) det(Bs) = 0.

One can easily check that det(By) = det(Bz) + det(B3). So, if oy,
a9, ag are such that det(B;) = det(B;) = 0, 7 # j, then also for the
third block Bp, h # i, h # j, one has det(By) = 0. Hence, such a
choice corresponds to a quadric of rank 3. There are only four possible
choices of (a1, az, as) € C? which satisfy the condition det(B;) = 0 for
1=1,2,3. Putting \; = 1,47 =1,2,3, and

wy = /(43 — 1) (3 — 1),
wy = /(4 — 1) (w3 — 1),
wz = \/(ﬂ% — i) (uips — 1),

the rank 3 quadrics S; correspond to the following choices of (a1, ag, as)

e C3:

Sy (o, a2, a3) = (w1, w2, w3),
Sa: (a1, ag, ag) = (wy, wa, —ws),
S3: (a1, ag, ag) = (wy, —wa, w3),
Syt (a1, a9, a3) = (wy, —ws, —ws).
Since for these choices det(B;) = 0, for ¢ = 1,2, 3, the quadrics S, Sa,

S3, Sy are of type
(Brx1 + Bow2)? + (B33 + Baza)® + (Bsas + Bewe)® = 0,

the singular locus of such a quadric is the plane of P?:
prz1 + Baxe = 0,
B33 + Baxy = 0,
Bss + Bexe = 0.

We observe that the singular planes of S; and Sy are complementary
planes in P°, and the same is true for the singular planes of S3 and Sj.
Then, up to a change of coordinates, we can assume that:
S1=yi + 5+,
Sy =22 + 22+ 22,
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Sz = (liyr +mi21)* + (laya + maz2)? + (I3ys + ma323)?,
A
7 =51 NSNS8s.

The intersection between Sing(S7) and S is a conic Cy. The intersec-
tion of this conic with the hypersurface S3 is made up of four points.
Therefore,

Sing(Sl) N (A/L) = Slng(Sl) n (Sl N SQ n 53) = Slng(Sl) n SQ n 53

is made up of four points which must be singular on A/¢ (since A/¢ is
the complete intersection between S7, Sy and S5 and the points are in
Sing(S51)). These four points are nodes of the surface A/c. There is a
complete symmetry between the four quadrics Sy, S2, S3 and Sy, so we
have:

Lemma 5.3. On each plane Sing(S;) there are exactly four singular
points of the surface A/t.

Let us now consider the classes of Remark 2.10 described by the
set Js C (Z/2Z)*. We call any of them uj,. These classes have
self intersection —2, and they are effective. Since wj, - H = 4, they
correspond to rational quartics on A/. passing through eight nodes of
the surface. Moreover, they correspond to curves with multiplicity 2;
indeed,

2u g, + ZKP
€Jg

is linearly equivalent to H, which is the class of the hyperplane section.
The classes of these rational curves and the classes in the Kummer
lattice generate the Néron-Severi group of Km(A). These curves are
in a certain sense the analogue of the tropes of Km(J(C)). Similarly
to the tropes of Km(J(C)), these curves are rational and obtained as
special hyperplane sections of Km(A). They generate the Néron-Severi
group of the Kummer surface together with the curves of the Kummer
lattice.

5.2.2. The polarization H — K,,, — K, — K. Let us choose three
singular points p;, i = 1,2, 3, such that p;, ps are contained in Sing(.S7)
and p3 ¢ Sing(S;). These three points generate a plane in P°. The
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projection of ¢g(Km(A)) from this plane is associated to the linear
system H — K,, — K,, — K;,. The map

(]5}[,}(})1,[(1)2,}{1)3 : Km(A) — P27

isa 2 : 1 cover of P2 ramified along the union of two conics and two lines.
The lines are the images of two of the rational curves with classes of
type uj,, where Jg contains pq, p2, ps € Js. This description of Km/(A)
was presented in [10].

5.2.3. Deformation. This model exhibits Km(A) as a special mem-
ber of the six-dimensional family of K3 surfaces which are a double
cover of P? branched along two conics and two lines. The covering
involution is a non-symplectic involution fixing four rational curves.
By Nikulin’s classification of non-symplectic involutions, see e.g., [1,
subsection 2.3], it turns out that the generic member of this family of
K3 surfaces has Néron-Severi group isometric to (2) @ A; @ DF® and
transcendental lattice U(2)®2 @ (—2)®* (this family is studied in detail
in [28]). The transcendental lattice U(2)%% @ (—8) of Km(A) clearly
embeds in the previous lattice.

5.2.4. The polarization 2H — [(}_ ¢ (7/27)1)/2]Kp. We call this di-
visor D. It is ample by Proposition 4.3. The projective model
ép(Km(A)) is a smooth K3 surface in P!3. The curves of the Kummer
lattice and those associated to classes of type wj, are sent to lines, and
hence, the Néron-Severi group of ¢ p(Km(A)) is generated by lines, cf.,
Proposition 5.1.

5.2.5. The nef class (H —3_ ; K;)/2. We call it F'. By Proposi-
tion 4.6, it defines a map ¢r : Km(A) — P! which exhibits Km(A) as
an elliptic fibration with 12 fibers of type Is and Mordell-Weil group
isomorphic to Z3 @ (Z/2Z)%. Indeed the zero section and three in-
dependent sections of infinite order are the curves Kgp 4 such that
F-Kg4pcd=1. The non trivial components of the 12 fibers of type I
are K¢ ¢,g.n, such that F'- K. ¢, = 0. The curves

F+2Ko000— ( > Kp> /2

peEWS3
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and

F+2K000 — < > Kp> /2

peEW,

are two 2-torsion sections. This description of an elliptic fibration on
Km(A) follows immediately by the properties of the divisors of the
Néron-Severi group. However, a geometrical construction giving the
same result is obtained by considering the projection of the model
of ¢g(Km(A)) C P® from the plane Sing(S;). The image of this
projection lies in the complementary plane Sing(S2) and is a conic C.
Let p be a point of C, and let Pf’, be the space generated by Sing(S)
and by p. The fiber over p is So N S3 N IP’?,. The fiber over a generic
point of C' is an elliptic curve (the intersection of two quadrics in P3).
There are 12 points in C, corresponding to the 12 singular points of
¢ (Km(A)) which are not on the plane Sing(S;), such that the fibers
over these points are singular and in fact of type I. A geometrical
description of this elliptic fibration is also provided in [32], where it is
obtained as a double cover of an elliptic fibration on Km(J(C)).

5.2.6. Shioda-Inose structure. We now describe the three-dimen-
sional family of K3 surfaces which admit a Shioda-Inose structure
associated to K'm(A) as described in Theorem 2.18. It is obtained
by using results of [15, Section 4.6]. Consider the K3 surface X
with p(X) = 17, and admit an elliptic fibration with fibers I;5 + 813
and Mordell-Weil group isometric to Z/2Z. By [15, Proposition 4.7],
the discriminant of NS(X) is 4 and the translation ¢ by the 2-torsion
section is a Morrison-Nikulin involution. Thus, the desingularization
of X/t is a Kummer surface, which is in fact Km(A) by Theorem 2.18.
The elliptic fibration induced on K'm(A) has Ig + 815 singular fibers
and Mordell-Weil group (Z/2Z)?. Using the curves contained in the
elliptic fibration, we can easily identify the sublattice

N @ Eg(—1) of NS(Km(A)).

The lattice N contains eight non trivial components of the eight fibers
of type I, and the lattice Eg(—1) is generated by seven components of
the fiber of type Ig and by the zero section.

As in the case of the Jacobian of a curve of genus 2, we give a Z-
basis of the Néron-Severi group of Km(A) related to the Shioda-Inose
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structure, and we identify the class of the fiber of this fibration. With
the previous notation, a Z-basis is given by

8
Ny + No 4+ N3+ N. N;
{<Q+ 1+ 2+ 3+ 4>7N1a ~3N772

9 1, 3 8};

£ 27

=1
where Q? = 8 and (@ is orthogonal to N & Fg(—1). The class of the
fiber in terms of the previous basis of the Néron-Severi group is

F:=Q—-5E, —10Ey — 15FE3 — 12E, — 9F5 — 6Es — 3E; — 8Es.

5.3. Kummer surface of a (1,3) polarized abelian surface. Let
A be a (1,3) polarized abelian surface. Then, NS(A) = ZL, L? = 6.

5.3.1. The polarization H. The model of the singular quotient A/.
is associated to the divisor H in NS(Km(A)) with H> = 12. By
Proposition 4.1 and [42, Theorem 5.2] this model is a singular K3
surface in P7.

Let us now consider the 16 classes of Remark 2.10 associated to
the set Jig C (Z/2Z)*. We call any of them wuy,,. They are (—2)-
classes (see Remark 2.10) and are sent to rational curves of degree 6
on ¢(Km(A)).

5.3.2. The polarization H — (3_,¢(7/27)s Kp)/2. We call'it D. It is

ample by Proposition 4.3 and, since D? = 4, the surface ¢p(Km(A))
is a smooth quartic in P3. The curves of the Kummer lattice and the
curves associated to u.,, are sent to lines. Since the classes of the curves
in the Kummer lattice and the classes u,, generate the Néron-Severi
group of Km(A), the Néron-Severi group of ¢p(Km(A)) is generated
by lines, cf., Proposition 5.1.

5.3.3. The polarization H— KO,O,l,O — KO,O,l,l — Kl,O,O,O — K0717070 —
Ko01,1- This defines a 2 : 1 map from Km(A) to P2. Since 11 curves
K, are contracted, the branch locus is a reducible sextic with 11 nodes.

5.3.4. Deformation. The generic K3 surface double cover of P2
branched on a reducible sextic with 11 nodes lies in an eight-dimensional
family and has transcendental lattice equal to U(2)®2 @ (—2)®6, see [1,
subsection 2.3]. Clearly, the transcendental lattice U(2)®% @ (—12)
can be primitively embedded in U(2)%% & (—2)%°  so the family of
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Kummer surfaces of a (1, 3)-polarized abelian surface is a special three-
dimensional subfamily.

5.3.5. The nef class (H —3_ ; Kp)/2. We call it F'. By Proposi-
tion 4.6, it defines an elliptic fibration Km(A4) — P! with 10 fibers of
type Is. The components of these fibers not meeting the zero section
are the curves K p . q of the Kummer lattice such that F'- K, q = 0.
The Mordell-Weil group is Z°, and the curves K., such that
F - K. sgn = 1 are the zero section and five sections of infinite or-
der (but they are not the Z-generators of the Mordell-Weil group).

5.3.6. Shioda-Inose structure. We now describe the three-dimen-
sional family of K3 surfaces which admits a Shioda-Inose structure
associated to Km(A) as described in Theorem 2.18. It was already
described independently in [10, Remark 3.3.1] and [27, subsection
3.1]. Let us consider the K3 surfaces X with p(X) = 17, with an
elliptic fibration with reducible fibers I§ + Ig and Mordell-Weil group
7./27 (as in the arXiv version [44, Table 1, line 1357]). The translation
t by the 2-torsion section is a Morrison-Nikulin involution (in fact,
it is immediate to check that it switches two orthogonal copies of
Es(—1) ¢ NS(X)), and hence, the desingularization of the quotient
X/t is a Kummer surface. The latter admits an elliptic fibration
induced by the one on X, with reducible fibers I3 + I3 + 613 and a
2-torsion section. By the Shioda-Tate formula, see e.g., [45, Corollary
1.7], the discriminant of the Néron-Severi group of such an elliptic
fibration is (4-3-2¢)/22, and thus this is the Kummer surface of a (1, 3)-
polarized abelian surface. As in the case of the Jacobian of a curve of
genus 2, we give a Z-basis of the Néron-Severi group of Km(A) related
to the Shioda-Inose structure, and we can identify the class of the fiber
of this fibration. The eight curves N; are the six non trivial components
of each fiber of type Iy and two non trivial components of I with
multiplicity 1; the curves F; are the zero section, two components of
I3 and five components of I5. With the previous notation, a Z-basis is
given by

8

(Q+ N1+ No) N;
{27N17"'1N77i_212aE1a"'7E8 )
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where Q2 = 12 and @ is orthogonal to N & Eg(—1). The class of the
fiber in terms of this basis of the Néron-Severi group is

F = Q - 6E1 - 12E2 - 18E3 - 15E4
—12E5 — 8Fs —4E7 — 9E3.

6. K3 surfaces with symplectic action of the group (Z/27)*
and their quotients. In the following sections we study two four-
dimensional families of K3 surfaces that contain subfamilies of Kummer
surfaces. Indeed, we have seen that every Kummer surface admits
a symplectic action of the group (Z/27)* (Proposition 3.3), but the
moduli space of K3 surfaces with symplectic action by (Z/2Z)* has
dimension 4, and thus the Kummer surfaces are a three-dimensional
subfamily. We will also study the family of K3 surfaces obtained as
desingularization of the quotient of a K3 surface by the group (Z/2Z)*
acting symplectically on it. By Proposition 3.3, this family also contains
the three-dimensional family of Kummer surfaces.

Let G = (Z/2Z)* be a group of symplectic automorphisms on a
K3 surface X. We observe that G' contains (2* — 1) = 15 symplectic
involutions, so we have 8 - 15 = 120 distinct points with non trivial
stabilizer group on X, and these are all the points with a non trivial
stabilizer on X, cf., [38, Section 5]. Moreover, we have a commutative
diagram:

B

X = X
(6.1) Tl ) 7
vy 2 v,

where Y is the quotient of X by G, X is the blow up of X at 120 points
with non trivial stabilizer (hence, it contains 120 (—1)-curves) and Y
is the minimal resolution of the quotient Y and simultaneously the
quotient of X by induced action. Observe that Y contains 15 (—2)-
curves coming from the resolution of the singularities. In fact, each
fixed point on X has a G-orbit of length 8. In particular, the rank
of the Néron-Severi group of Y is at least 15 and in fact 16 if X, and
so also Y, is algebraic. In particular, since by [23, Corollary 1.2],
rank NS(X)=rank NS(Y), a K3 surface with a symplectic action of
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(Z/2Z)* has at least Picard number 15 (16 if it is algebraic). Finally,
7 is 16 : 1 outside the branch locus.

7. K3 surfaces with symplectic action of (Z/2Z)*. In this
section, we analyze the K3 surface X admitting a symplectic action
of (Z/27)*; in particular, we identify the possible Néron-Severi groups
of such a K3 surface if the Picard number is 16, which is the minimum
possible for an algebraic K3 surface with this property. This allows us
to describe the families of such K3 surfaces, cf., Corollary 7.11, and to
prove that every K3 surface admitting (Z/27Z)* as a group of symplectic
automorphisms also admits an Enriques involution. This generalizes a
similar result for Kummer surfaces given in Proposition 3.1.

7.1. The Néron-Severi group of X.

Theorem 7.1 (cf., [10]). Let X be an algebraic K3 surface with a
symplectic action of (Z/27)*, and let Qé_Z/QZ)“ = (—8) @ U(2)®3 be
the invariant lattice H2(X,Z)%/?D* . We have p(X) > 16 and, if
p(X) = 16, then denote by L a generator of Q(LZ/QZ)A; N NS(X) with
L?=2d > 0. Let

E%%/QZ)‘I = ZL EB Q(Z/ZZ)4 C NS(X)

Denote an overlattice of ﬁ%g/22)4 of index r by E’(2Z‘§2Z)477_. Then there
are the following possibilities for d, L and r.

1) Ifd=0 mod 2 andd # 4 mod 8, thenr =2, L =w, := (0,1,¢,0,
0,0,0) € Q%Z/2Z)4 and L? = w} = 4t.

2) Ifd=4 mod 8 and d £ —4 mod 32, then either r =2, L = w; :=
(0,1,,0,0,0,0) € Qfmz)‘* and L? =w? =4t, orr =4, L = wy :=
(1,2,25,0,0,0,0) € Q(LZ/2Z)4 and L? = w? = 8(2s — 1).

3) If d = —4 mod 32, then either r =2, L =w; := (0,1,¢,0,0,0,0) €
Q(LZ/QW and L? = w? = 4t, orr =4, L = wy := (1,2,25,0,0,0,0) €
Q&/QZ)4 and L? = w3 =8(25s — 1), orr =8, L = w3z := (1,4, 4u,0,
0,0,0) € Q&/2Z)4 and L? = w? = 8(8u — 1).

If NS(X) is an overlattice of Zwy @ Qz/2z)s, then Tx ~ (=8) ©
(—4t) ® U(2)%2.
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If NS(X) is an overlattice of Zwy ® Qz)9z)s, then

_[-8 4 ®2
Tx~|, _48]@U(2) .

If NS(X) is an overlattice of Zws @ Qz/97)s, then

(-8 2

TXz_Q —4uy

} o U(2)%2.

Proof. Since §(z/27ys C NS(X), and X is algebraic, we have p(X) >
16. The proof of the unicity of the possible overlattices of E?% 274 is
based on the following idea. Let us consider the lattice orthogonal to
Qz/2z)+ in Ag3. For each element s(= L) € Q(LZ/2Z)4 in a different orbit
under isometries of Q(LZ/QZ)AI, we can consider the lattice Zs @ €(z/27)4-
To compute the index of the overlattice R(= NS(X)) of Zs ® Q727
which is primitively embedded in Ag3, we consider the lattice

Rt =stn Q&/2Z)4 = (ZS D Q(Z/QZ)4))L C Aks

(which is isometric to Tx ). Then, we compute the discriminant group
of Rt to get the discriminant group of R, and so we get the index r of
Zs @ Qz/2z)+ in R(= NS(X)). Recall that

Vzjomp =~ (—8) ®U(2)® = ((—4) ® U*)(2).

The orbits of elements by isometries of this lattice are determined by
the orbits of elements by isometries of the lattice (—4)®U?. In the next
sections we investigate them. Then the proof of the theorem follows
from the results of subsection 7.2.

Moreover, we remark that under our assumptions two overlattices
R; D Zw; ® Qz/27ys and R; D Zw; @ Qz/27)4, © # j, cannot be
isometric in Ag3 since their orthogonal complements R;- and Rj- are
different. These are determined in Proposition 7.8 below, and they are
the transcendental lattices T'x in our statement. O

7.2. The lattice (—2d) U & U.

Lemma 7.2. Let (ay,as2,a3,a4) be a vector in the lattice U & U.
There exists an isometry which sends the vector (ay,as,as,aq) to the
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vector (d,de,0,0). In particular, the vector (a1, as,0,0) can be sent to
(d,de,0,0) where d = ged(ay, az) and d’e = ajas.

Proof. The lattice U @ U is isometric to the lattice {M(2,7Z), 2 det}
of the square matrices of dimension 2 with bilinear form induced by the
quadratic form given by the determinant multiplied by 2. Explicitly,
the isometry can be written as:

vor—wea, (%)) [ 2]

It is well known that, under the action of the orthogonal group
O(M(2,Z)), each matrix of M(2,Z) can be sent in a diagonal matrix
with diagonal (dy,dz), dy | d (this is the Smith normal form). Thus,
the lemma follows. O

Lemma 7.3. There exists an isometry which sends the primitive vector
(ag,ar,az,a3,a4) € Tog := (=2d) U & U,
to a primitive vector (a,d,de,0,0) € (=2d) @ U @& U.

Proof. The primitive vector (ag, a1, a2, as,aq) is sent to a primitive
vector by any isometry. By Lemma 7.2, there exists an isometry sending
(a1,a2,as,a4) € U DU to (d,de,0,0) € U @ U; thus, there exists an
isometry sending (ag, a1, as, as, aq) to (ag, d, de,0,0), and (ag, d, de, 0, 0)
is primitive. (|

The previous lemma allows us to restrict our attention to the vectors
in the lattice Agq := (—2d) & U.

Lemma 7.4. There exists an isometry of Aaq which sends the vector
(a,1,¢), to the vector (0,1,1), where 2¢ — 2da® = 2r.

Proof. First we observe that (a, 1,¢)-(a,1,¢) = (0,1,7)-(0,1,r) = 2r.
Let R, denote the reflection with respect to v = (1,0,d). Then, for
w = (x,y, z), we have

—r+y
v= Y
—2dx +dy + =

Rv(w)zw—Zw'v

v-v
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If a > 0, we apply the reflection R, to (a,1,c¢), (v =(1,0,d)). Then
we obtain the following.

a 1—a
R, (1] = 1
c —2da +d+c

Let D be the isometry of Asgg,

-1 0 0
D=0 1 0
0 0 1
Then,
a a—1
DoR,|1]| = 1
—2da+d+c

Applying a times the isometry D o R,,, we obtain

a 0
(DoR)*|1]=(1]. O
c 2r

Lemma 7.5. There exists an isometry of Asq which sends a vector
g2 := (wh * j,w,wt), with t,h € Z, w,j € N, 0 < j < vd/2,, to the
vector ps := (j,w, s), where s = —dwh? F 2dhj + wt.

Proof. Without loss of generality, we can assume h > 0 (if h < 0,
it is sufficient to consider the action of D). Let us apply the isometry
D o R, to the vector gs:

wh+£j wlh—1)+j
(Do Ry) w = w
wt —2d(wh + j) + dw + wt

As in the previous proof, applying Do R, decreases the first component,
and the second remains the same. Applying h-times the isometry to
q2, we obtain that the first component is j or —j. In the second case,
we again apply the isometry D, and so in both situations, we obtain
Da. U
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Lemma 7.6. Let p be a prime number. Let us consider the lattice
Ty, = (—2p) U S U. There exists an isometry of To, which sends the
vector q := (n,b,bf,0,0), b € Z~g, n € N, ged(n,b) = 1, to one of the
following vectors:

e vy = (0,1,7,0,0), where 2bf — 2pn? = 2r;

o vy = (1,2,25,0,0), where 2b>f — 2pn? = 8s — 2p;

e v, = (I,p,pt,0,0), where 26> f — 2pn? = 2p*t — 2pl?, 0 < | <
Lp/2;

e vy, = (4,2p,2pu,0,0), where 2b*f — 2pn® = 8p?u — 2pj?,
0<j<p,j=1 mod 2.

Proof. We can assume n € N and b > 0 (if this is not the case, it
suffices to consider the action of —id and of D). Let us consider the
reflection R,, associated to the vector v = (1,0,p,0,0). We have

n -n+b
b b
R, |bf | = | —-2pn+pb+bf
0 0
0 0

By changing the sign of the first component we obtain (b—n, b, —2pn+
pb + bf,0,0). By Lemma 7.2, this vector can be transformed to
(b —n,b1,b1f1,0,0), where ged(b, —2pn + pb + bf) = b;. Then by <
b := by. We now apply Lemma 7.2 to the vector (nqy, by, b1 f1,0,0), with
ny := [b—n| > 0 (eventually changing the sign of b,, by using the matrix
D). The second component of the vector by is a positive number, so
after a finite number of transformations there exists 1 such that b, =
by4+1 and ged(ng,b,) = 1. Since b, | (pb, + b, f) and ged(ny,b,) = 1
(recall that the image of a primitive vector by an isometry is again
primitive) b,y = b, 41 if and only if b, divides 2p, i.e., if b, = 1,2, p, 2p.
Moreover, ged(b, — ny,b,) = 1. With the use of Lemma 7.3, by
applying the transformation D to obtain a positive vector for the first
component, after a finite number of transformations, we obtain that
q is isometric to one of the vectors (a,1, f',0,0), (2k + 1,2,2f7,0,0),
(ph £ 1,p,pf’,0,0) or (2pk £ j,2p,2pf’,0,0). Applying Lemmas 7.4
and 7.5, we obtain that these vectors are isometric to (0,1,7,0,0),
(1,2,2s5,0,0), (I,p,pt,0,0) or (4,2p,2pu,0,0), respectively. |
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Remark 7.7. The vector (ts,t, f,0,0) is isometric to (0,t,*,0,0) by
applying D o R, s-times.

Proposition 7.8. Let p be a prime number. The orbits of the following
vectors of Ty, under isometries of Ty, are all disjoint:

=(1,0,0,0,0);
(O,l,r,0,0);
v = (1,2,25,0,0);
= (I,p,pt,0,0), where 0 <1 < vLp/2;
= (4, 2p, 2pu,0,0), where 0 < j <p, j =1 mod 2.

Proof. 1f two vectors x and y of Ty, are isometric, then z? = y?,
and the discriminants of the lattices orthogonal to x and y are equal:
d(xt) = d(y*). We list the properties of the vectors v; in the following
table:

v Vo U1 V2 Up V2p

v —2p 2r —2p + 8s —2pl? + 2p2t| —2pj? + 8pu

vt | UeU|[TF S ]eU|[ ) he U] e U a.]eU

J —2u

dwh)] 1 —4pr —p(ds—p) | —Apt =) | —dpu+j°
For each copy of vectors z and y chosen from vy, v1, v2, vp, v2p, the
conditions 22 = y? and d(z) = d(y"*) are incompatible. For example,

let us analyze the cases of v, and vy, the other cases being similar.
We have:

—2pl? 4 2p*t = —2pj® + 8p*u and — 4(pt — I*) = —4dpu + ;2.

By the first equation, —I? +pt = —j2 +4pu. Substituting in the second
equation we obtain 3(pt — %) = 0 and so pt = [2. This implies p | I?
and so p | I. Since | < Lp/2,, this is impossible. O

The previous results imply the following proposition.

Proposition 7.9. A primitive vector (ag, a1, a2, as,as) of the lattice
(—2p) @ U @ U is isometric to exactly one of the vectors:

® Vg = (1707()’070)1
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e v; =(0,1,7,0,0), where 2a1as + 2aza4 — 2pa(2) = 2r;

o vy =(1,2,25,0,0), where 2a1as + 2aza4 — 2pa(2) = —2p+8s;

o v, = (I,p,pt,0,0), where 0 <1 < Lp/25 and 2a1a2 + 2aza4 —
2pa3 = —2pl® + 2p*t;

o vy = (§,2p,2pu,0,0), where 0 < j < p, j =1 mod 2 and
2a1az + 2azay — 2pal = —2pj* + 8pu.

Remark 7.10. In particular, in the case where p = 2, the only
possibilities are the vectors (1,0,0,0,0), (0,1,r,0,0), (1,2,2s,0,0) and
(1,4,4u,0,0).

7.3. The family. Let us denote by E%ﬁﬂi, the overlattice of index r
of Zw; & Qz/27)s, with w? = 2d described as in Theorem 7.1. If X
is a K3 surface such that NS(X) ~ £29, for certain r = 2,4,8 and
i =1,2,3, then Q727+ is clearly primitively embedded in N.S(X), and
thus X admits (Z/2Z)* as a group of symplectic automorphisms, cf.,
[38, Theorem 4.15]. Hence, the lattices £2%, determine the family of
algebraic K3 surfaces admitting a symplectic action of (Z/2Z)*. More
precisely,

Corollary 7.11. The families of algebraic K3 surfaces admitting a
symplectic action of (Z/2Z)* are the families of (L%, )-polarized K3
surfaces, for certain r = 2,4,8, i = 1,2,3, d € 2Nsqg. In particular,
the moduli space has countable numbers of connected irreducible com-
ponents of dimension 4.

Remark 7.12. If one fixes the value of d, then there is a finite number
of possibilities for r and w;. For example, if d = 2, thenr = 2 and i = 1,
wy = (0,1,1,0,0,0,0). This implies that the family of quartic surfaces
in P? admitting a symplectic action of (Z/2Z)* has only one connected
irreducible component of dimension 4. In [8], the family of quartics
invariant for the Heisenberg group(~ (Z/2Z)%) is described. Since it is
a four-dimensional family of K3 surfaces admitting (Z/27)* as a group
of symplectic automorphisms, we conclude that the family presented
in [8] is the family of the (L3, )-polarized K3 surfaces. The Néron-
Severi group of such K3 surfaces are generated by conics as proved in
[8, Corollary 7.4].
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7.4. The subfamily of Kummer surfaces. By Corollary 2.9, for
every non negative integer d, there exists a connected irreducible
component of the moduli space of Kummer surfaces, which we call
Fq and is the family of the K} ;-polarized K3 surfaces. For every d, the
component Fy is three-dimensional. By Proposition 3.3, it is contained
in a connected component of the moduli space of K3 surfaces X,
admitting G as group of symplectic automorphisms. Proposition 7.13
identifies the components of the moduli space of K3 surfaces with a
symplectic action of G which contains Fy.

Proposition 7.13. The family of the K} ,-polarized Kummer surfaces

is a codimension 1 subfamily of the following families: the (L%flwl)—

polarized K3 surfaces, the (Eifiiil))-polarized K3 surfaces and the
(ngiifl))-polarized K3 surfaces.

Proof. Tt suffices to show that there exists a primitive embedding
L}, C Ky or equivalently a primitive embedding (Kj,)* C (£],,,)",

for (i,4,h) = (2,1,4d), (4,2,8(2d—1)), (8,3,8(8d —1)). We recall that
(Ki)t = (—4d) @ U(2) & U(2),

and (Eﬁwj)J- is the transcendental lattice of the generic K3 sur-
face X described in Theorem 7.1. With the notation of Theo-
rem 7.1 we send a basis of (—4d) @ U(2) @ U(2) to the basis vec-
tors (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0) and
(0,0,0,0,0,1) of (£}, )", witht = d, s = d, u = d, if i = 2,4,8
respectively. We obtain an explicit primitive embedding of (K, d)J- in
(ch )t O

7,Wj

We observe that the sublattice of NS(Km(A)) is invariant for the
action induced by the translation of the two torsion points on A, i.e.,
invariant for the action of G defined in Proposition 3.3, and is generated

by H and
1
2( T Kp>.
pE(Z/27,)*

Indeed, H is the image of the generator of N.S(A) by the map 74, with
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the notation of diagram (2.1). Thus, the lattice £z /97)4 is isometric to

<H;( > )>LQNS(Km(A)),

PE(Z/22)* K,

and in fact, the lattice £3%, (which contains €(z/27): and an ample
class) is isometric to

<; <p€ > Kp> >l N NS(Km(A)).

(Z./22)4

Remark 7.14. The previous proposition implies that the family of the
Kummer surfaces of a (1, d)-polarized abelian surface is contained in at
least three distinct connected irreducible components of the family of
K3 surfaces admitting a symplectic action of G. In particular, the
intersection among the connected irreducible components of such a
family of K3 surfaces is non empty and of dimension 3.

7.5. Enriques involution. In Section 3, we have seen the result of
Keum [25]. Every Kummer surface admits an Enriques involution. We
now prove that, in general, this property holds for the K3 surfaces ad-
mitting (Z/27)* as a group of symplectic automorphisms and minimal
Picard number.

Theorem 7.15. Let X be a K3 surface admitting (Z/27)* as a group
of symplectic automorphisms such that p(X) = 16. Then X admits an
Enriques involution.

Proof. By Proposition 3.2, it suffices to prove that the transcenden-
tal lattice of X admits a primitive embedding in U & U(2) & Es(—2)
whose orthogonal does not contain vectors of length —2. The existence
of this embedding can be proved as in [25]. We briefly sketch the proof.
Let @ be one of the following lattices:

-4 2 —4 1
(—4) @ (=20), [ 2 —23] ’ { 1 —2u} '
The transcendental lattice of X is (U? @ Q)(2). It suffices to prove
that there exists a primitive embedding of U(2) ® Q(2) in U & Eg(—2).
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The lattice (—2) & @ is an even lattice with signature (0,3). By [37,
Theorem 14.4], there exists a primitive embedding of (—2) ® @ in
Es(—1), which induces a primitive embedding of (—4)®Q(2) in Fs(—2).
Let by, by and b3 be the bases of (—4) ® Q(2) in Es(—2). Let e and f
be standard bases of U, i.e., e = f2 = 0, ef = 1. Then the vectors
e, e+ 2f 4 by, by and bs give a primitive embedding of U(2) & Q(2) in
U @ Es(—2) whose orthogonal complement does not contain vectors of
length —2, cf., [25, Section 2, Proof of Theorem 2]. |

8. The quotient K3 surface. The surface Y obtained as a desin-
gularization of the quotient X/(Z/2Z)* contains 15 rational curves
M;, which are the resolution of the 15 singular points of type A; on
X/(Z/27Z)*. The minimal primitive sublattice of NS(Y) containing
these curves is denoted by Mz 27)+. It is described in [38, Section 7]
as an overlattice of the lattice (M;);=1 . 15 of index 24,

Proposition 8.1. Let Y be a K3 surface such that there ezists a
projective K3 surface X and a symplectic action of (Z/27)* on X with

Y = X/(Z/2Z)*. Then p(Y) > 16.

Moreover, if p(Y) = 16, let L = M(lZI/V;Z()YQ. Then NS(Y) is an
overlattice of index 2 of ZL © M z,/27)s, where L? =2d > 0. In partic-
ular, NS(Y') is generated by ZL & Mz/97ys and by a class (L/2,v/2),
v/2 € M(\’Z/QZ)4/M(Z/2Z)4, which is not trivial in M(VZ/ZZ)4/M(Z/QZ)4,
L? = —v? mod 8.

Proof. A K3 surface Y obtained as a desingularization of the quo-
tient of a K3 surface X by the symplectic group of automorphisms
(Z)27,)* has Mz 9zys € NS(Y). Since Mz/o7)+ is negative defi-
nite and Y is projective (it is the quotient of X which is projec-
tive), there is at least one class in N.S(Y') which is not in Mz,97)s,
so p(Y) > 1+rank M(z/57)s = 16. In particular, if p(Y') = 16, then the
orthogonal complement of Mz/27)2 in NS(Y) is generated by a class
with a positive self-intersection; hence, N.S(Y') is either ZL © Mz 27,4
or an overlattice of ZL @ Mz/27)+ with a finite index. The discriminant
group of Mz 27y is (Z/2Z)" by [38, Section 7] and so the discriminant
group of the lattice ZL & Mz /o7y is (Z/2dZ) x (Z/2Z)". Tt has eight
generators. If the lattice ZL & Mz/27)+ is the Néron-Severi group of
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a K3 surface Y, then the discriminant group of Ty also has eight gen-
erators, but Ty has rank 22 — p(Y') = 6, so this is impossible. Hence,
NS(Y) is an overlattice of ZL © Mz/57)s. The index of the inclu-
sion and the construction of the overlattice can be computed as in [13,
Proposition 2.1] or as in Theorem 2.7. g

The Kummer surfaces are also examples of K3 surfaces obtained
as a desingularization of the quotient of K3 surfaces by the action of
(Z/2Z)* as a group of symplectic automorphisms, see Proposition 3.3.

In [11, subsections 4.2, 4.3], the action of G on the Kummer lattice

and the construction of the surface K'm(A)/G are described. A single
curve is obtained by the images of the curves Kgp.c4, (a,b,c,d) €
(Z)22)* on Km(A) under the quotient map Km(A) — Km(A)/G.
This curve can be naturally identified with the curve K00 on the
minimal resolution Km(A)/G = Km(A), see [11]. The minimal
resolution also contains 15 (—2)-curves which come from blowing up the
nodes on Km(A)/G and can be identified with K. f 41, (e, f,9,h) €
(2/27)*\{(0,0,0,0)}. These are the 15 (—2)-curves in Mz,27)+; hence,
Mz ozys = K(J(_),O,o,o) N K. This allows us to identify the curves of
Mz,/97)» with points of the space (Z/2Z)*\{(0,0,0,0)}; hence, we
denote them by Mgp.ca, (a,b,c,d) € (Z/2Z)*\{(0,0,0,0)}. More
explicitly, we are identifying the curve K, .4 with the curve Mg p ¢ q
for any (a,b, c,d) € (Z/2Z)*\{(0,0,0,0)}. By [38], the lattice Mz /27)s
contains the 15 curves My pc.d, (a,b,¢,d) € (Z/22)*\{(0,0,0,0)}. It
is generated by 11 of these curves and by 4 other classes which are
linear combinations of these curves with rational coefficients. These
four classes must also be contained in K (because M, s2zyt C K ), and
hence, they correspond to hyperplanes in (Z/2Z)* which do not contain
the point (0,0,0,0) (because Kg0,0,0) & M(z/22)+)-

From now on, Ky, respectively My, denotes 1/2 ZpGW K,, re-
spectively 1/23° y, My, for a subset W of (Z)27Z)*, respectively W
a subset of (Z/27)*\{(0,0,0,0)}. We determine the orbits of elements

in the discriminant group of Mz/97)+ and their isometries using those
of K.

Proposition 8.2. Regarding the group of isometries of M(z/27)4, there
are ezxactly siz distinct orbits in discriminant group M(VZ/2Z)4/M(Z/2Z)4.
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Proof. Let W be one of the following subspaces.

1) W = (Z/27)%

2) Wisa hyperplane in (Z/27)%

3) W is a two-dimensional plane in (Z/2Z)%;
4) W =V %V’ where V and V' are two-dimensional planes and VNV’

is a point.

By Remark 2.3, the classes Ky are in KV and, if W is asin 1) or 2), the
classes Ky € K are trivial in KV /K. If W is such that (0,0,0,0) ¢ W,
then the class My = K is contained in M(VZ/2Z)4' Indeed, it is a
linear combination with rational coefficients of the curves M, p .4y With
(a,b,c,d) € (Z/2Z)*\{(0,0,0,0)}, i.e., it is in Mz,22y+ ® Q. Moreover,
the class My = Ky has an integer intersection with all the classes in
K, and so, in particular, with all the classes in M(z/27)+ C K, they are
in M(VZ/2Z)4. We observe that, if W is a hyperplane, as in case 2), and
is such that (0,0,0,0) ¢ W, then the class My is a class in Mz,/27)4
(and hence trivial in the discriminant group, see Remark 2.3).

If (0,0,0,0) € W, let W' be W = W —{(0,0,0,0)}. The class My
is a class in M(VZ/2Z)4' Indeed, it is clear that My~ € Mz/22ys @ Q
has an integer intersection with all the classes M, p.c.a) € M(z/22)4,
(a,b,c,d) € (Z/27)*\{(0,0,0,0)}. Let Z be a hyperplane of (Z/27Z)*
which does not contain (0,0,0,0). Since Mz € M z/27)1, we must
check that My - Mz € Z. We recall that Ky is in KV, and so it
has an integer intersection with all the classes Kz. This means that
W N Z is made up of an even number of points. Since (0,0,0,0) ¢ Z,
(0,0,0,0) ¢ W N Z, and hence W' N Z, is an even number of points,
this implies that My - M 5 € Z.

If MW S M(VZ/QZ)4’ then either FW or FWU{(O,O,O,O)} is in KV.
Indeed by Remark 2.3 the Kummer lattice is generated by the curves
Kap,c,a), (a,b,c,d) € (Z)27)*, by four classes of type Ky, where W;
is the hyperplane a; =0, i = 0,1, 2,3 (see the notation of Remark 2.3)
and by the class F(Z /2z)4- This is clearly equivalent to saying that K is
generated by the curves K, p, ¢4y, by four classes of type FW{ where W/
is the hyperplane a; = 1 and by the class F(Z/Qz)z;. If My € M(VZ/QZ)47
then My - My = Kw - Ky, € Z. Moreover, since (0,0,0,0) ¢ W/
we also have FWU{(QO,O,O)} -?W{ SYA
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To conclude that either Ky or KWu{(o,o,o,o)} isin KV, it suffices to
prove either that FW . F(Z/2Z)4 € Z or FWU{(O,O,O,O)} 'F(Z/2Z)4 €.
This is clear, indeed Ky -F(Z/QZ)A; € 7, if and only if W consists of an
even number of points. If it is not, clearly W U {(0,0,0,0)} consists of
an even number of points. Thus, the classes My are in M(VZ/QZ)4 for
the following subspaces.

1) W = (/22)7{(0,0,0,0)};

2a) W is a hyperplane in (Z/2Z)*, (0,0,0,0) ¢ W;

2b) W\{(0,0,0,0)} where W is a hyperplane in (Z/2Z)*, (0,0,0,0)
eWw;

3a) W is a two-dimensional plane in (Z/2Z)* and (0,0,0,0) ¢ W;

3b) W\{(0,0,0,0)} where W is a two-dimensional plane in (Z/27Z)*
and (0,0,0,0) € W;

4a) W =V V' where V and V' are two-dimensional planes and
V NV'is a point, (0,0,0,0) ¢ V xV’;

4b) W\{(0,0,0,0)} where W = V % V', V and V'’ are two-
dimensional planes and V NV’ is a point, (0,0,0,0) € V * V.

In the quotient M&/QZ)4/M(Z/QZ)4, each of the above cases corre-
sponds to a class of equivalence. Here we study them. We will denote
by H, a hyperplane of (Z/2Z)* such that (0,0,0,0) ¢ H. We observe
that Myw.g = Mw+Mpg mod @,ZM,. Clearly, the two classes M
and MW*H coincide in M(VZ/2Z)4/M(Z/QZ)4 if MH S M(Z/QZ)4- Let n be
the cardinality of W N H, and let m be the number of curves M4 p.¢,q)
appearing in My . with a rational, non integer coefficient.

In the following table, we list the classes of M (VZ /27)4 which coincide
modulo Mz/27)+ and, for each, we give the value discr of the discrim-
inant form on it. The first value of m in the table is the number of
curves in My, and we put a 0 for n.

Case n m discr
1);2b) | 0;0,83 | 15;7,7:7 | 1/2
3a) | 0,4,2,0 | 4,4,8,12| 0

3b) 0,0,2 | 3,7,11 | 1/2
1a) 4,2 6,10 1
4b) 1,2 5,9 ~1/2

By Remark 2.3, the orbit of elements in the discriminant group Ag
of K is 3 up to isometry. To prove that the orbit of A is 6

(z/272)4
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up to isometry, one considers the action of the group GL(4,7Z/27)
on (Z/27Z)*, which in fact we can identify with a subgroup of O(Ag).
Since GL(4,7Z/27) fixes (0,0,0,0), it also acts on (Z/2Z)*\{(0,0,0,0)},
and so we can identify it with a subgroup of O(AM(Z/22)4). This
means that, under the action of GL(4,Z/2Z), we have at most six
orbits associated to the cases 2a), 1;2b), 3a), 3b), 4a), 4b). We
observe that the orbit of 2a) is one of class 0 € AM(Z/22)4‘ We now
show that all these orbits are disjoint, so we have exactly six (five
non trivial) orbits in M&/ZZ)4/M(Z/QZ)4. One can check by direct
computation that the classes of cases 1) and 2b) coincide in the
quotient. The classes in M(z/27)s with self-intersection —2 are only
+Mapcay, (a,bc,d) € (Z/27)*\{(0,0,0,0)}. Indeed, each class in
Mz,/27)+ is a linear combination,

D= Z O4(04,b,c,d)1\40,,177(:,da
(a,b,c,d)€(2/22)*—{(0,0,0,0)}
with
€ IZ
« —7.
(aab7cad) 2
The condition
—2=D*=-2 ) afycq
(a,b,c,d)

implies that either there is one (4 p,,q) = £1 and the others are zero,
or there are four a4, ¢,q) equal to £1/2 and the others are zero. Since
there are no classes in M(z/27)+ which are linear combinations with
rational coefficients of only four classes, we have D = £M 4 q) for
a certain (a,b,c,d) € (Z/2Z)*\{(0,0,0,0)}. Since the isometries of
M z,/27)s preserve the intersection product, they send the classes of the
curves M, 1 ¢ q) either to the class of a curve or to the opposite of the
class of a curve. In particular, there are no isometries of Mz /27)+ which
identify classes associated to the six cases 1); 2b), 2a), 3a), 3b), 4a),
4b); indeed, in each class, there is some linear combination with non
integer coefficients of a different number of curves M,y c.q)- O

Theorem 8.3. Let Y be a projective K3 surface such that there
exists a K3 surface X and a symplectic action of (Z/27)* on X with

—_~—

Y = X/(2/2Z)*, and let p(Y) = 16.
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Then NS(Y') is generated by ZL © Mz/27)+ with L? =2d > 0 and

by a class
L M
(ﬁ) 0¥ e ey
2 2 2 M(Z/QZ)4
with L? = —v? mod 8. Up to isometry, there are only the following
possibilities.

(i) Ifd=1 mod 4, then v/2 = My, where
W= {(L 1,0, 1)7 (1’ 1,1, 0)’ (17 1,1, 1)a (1,0, 0, 0)7 (07 1,0, 0)}

(case 4b) of proof of Proposition 8.2);
(ii) if d =2 mod 4, then v/2 = My, where

W = {(07 07 0’ ]')7 (07 07 1’ 0)7 (07 0’ ]'7 ]‘)7 (17 0’ 07 0)7 (0’ ]'707 0)7 (]" 1707 0)}

(case 4a) of proof of Proposition 8.2);
(iii) if d =3 mod 4, then, either
(a) v/2 = My, where

w ={(0,0,0,1),(0,0,1,0),(0,0,1,1)}
(case 3b) of proof of Proposition 8.2), or

(b) v/2 = Mw, where
W = (Z/27)* — {(0,0,0,0)}

(cases 1-2b) of proof of Proposition 8.2);
(iv) ifd=0 mod 4, then v/2 = My, where

w =1{(,10,0),(1,1,1,0),(1,1,0,1),(1,1,1,1)}
(case 3a) of proof of Proposition 8.2).

Moreover, for each d € N, there exists a K3 surface S such that NS(S)
is an overlattice of index 2 of the lattice (2d) & Mz97)s.

In cases (i), (i), (iii) and (iv),
Ty ~U(2) 0 U(2) & (-2) & (—2d).

In case iv), denote by qo the discriminant form of U(2). Then the
discriminant group of Ty is (Z/27)° x 7./2dZ, with discriminant form

0 1/2
%@%@(1/2 (—d—l)/?d)'
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Proof. In Proposition 8.1, we proved that the lattice NS(Y) must
be an overlattice of index 2 of ZL & M(z/27)s. The unicity of the choice
of v up to isometry depends on the description of the orbit of the group
of isometries of M(\’Z/QZ)4/M(Z/2Z)4 given in Proposition 8.2.

By an explicit computation, one can show that the discriminant
group of the overlattices described in cases (i), (ii), (iii) and (iv) is
(Z)27)° x (Z/2dZ), and the discriminant form in all cases except (iii) is
g2 B q2 B (1/2) @ (1/2d). In case iv), the discriminant form is described
in the statement. In any case, by [37, Theorem 1.14.4 and Remark
1.14.5], the overlattices have a unique primitive embedding in the K3
lattice Axs; hence, by the surjectivity of the period map, there exists
a K3 surface S as in the statement of the theorem. Moreover, by
[87, Theorems 1.13.2, 1.14.2] the transcendental lattice is uniquely
determined by signature and discriminant form. This concludes the
proof. O

Remark 8.4. The Kummer surfaces appear as specializations of the
surfaces Y as in Proposition 8.3 such that d =0 mod 2. Indeed, let us
consider the surface Y such that d = 2d’. The transcendental lattice of
a generic Kummer of a (1, d')-polarized abelian surface is

Trm(a) = U(2) @ U(2) & (—4d'),
and it is clearly primitively embedded in

Ty ~U(2)aU(2) ® (—2) & (—4d').

8.1. Ampleness properties. As in Section 4, we can prove that
certain divisors on Y are ample (or nef or nef and big) using the
description of the Néron-Severi group of Y given in Theorem 8.3. The
ample (or nef or nef and big) divisors define projective models, which
can be described in the same way as in Section 5, where we described
projective models of the Kummer surfaces.

Proposition 8.5. With the notation of Theorem 8.3, the following
properties for divisors on'Y hold:

o L is pseudo ample and it has no fixed components;
e the divisor D := L — (My + ---+ M,), 1 <r < 15 is pseudo
ample if d > r;
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e letD:=(L—M—---—M,)/2e NS(Y)®Q; if De NS(Y),
then it is pseudo ample if d > 7.

8.2. K3 surfaces with 15 nodes. Here we show that a K3 surface
with 15 nodes (respectively with 15 disjoint irreducible rational curves)
is in fact the quotient (respectively the desigularization of the quotient)
of a K3 surface by a symplectic action of (Z/2Z)*. This is in a certain
sense the generalization of a similar result for Kummer surfaces (cf.,
subsection 2.2).

Theorem 8.6. Let Y be a projective K3 surface with 15 disjoint
smooth rational curves M;, i = 1,...,15, or equivalently, a K3 surface
admitting a singular model with 15 nodes. Then,

1) NS(Y) contains the lattice Mz o7)4.
2) There exists a K3 surface X with a G = (Z/2Z)* symplectic action,
such that Y is the minimal resolution of the quotient X/G.

Proof.

1) Let @ be the orthogonal complement in NS(Y) to ®12,ZM; and
R the lattice Q @ (®12,ZM;). Observe that NS(Y) is an overlattice of
finite index of R and RY/R = QV/Q ® (Z/27)%* so I(R) = 1(Q) + 15.
Let us denote by k the index of R in NS(Y); thus, ((NS(Y)) =
[(Q)+15—2k. On the other hand, the rank of the transcendental lattice
is 22 — rank(R) = 7 — rank(Q). Hence, I(Q) + 15 — 2k < 7 — rank(Q).
Thus, k& > (8 +1(Q) + rank(Q))/2. We observe that k is the minimum
number of divisible classes we must add to R in order to obtain N.S(Y).

By definition, the lattice @ is primitive in N.S(Y); thus, the non
trivial classes that we can add to R in order to obtain overlattices
are either classes in (9;ZM;)" /(®;ZM;) or classes like v + v/, where
v €QV/Qandv € (®;ZM,;)" /(®;ZM;) is non trivial. By construction,
the independent classes of the second type are at most I(Q), and thus,
there are at least

8 +1(Q) + rank(Q) 8 + rank(Q) — [(Q)
(@ @) i) - ;

classes which are in (9;ZM;)V /(®;ZM;). We recall that rank(Q) —
1(Q) > 0, and hence, there are at least four classes which are rational
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linear combinations of the curves M;. By [36, Lemma 3], such a class
in NS(Y) can only contain 16 or 8 classes. Since 16 is not possible in
this case, all these classes contain 8 (—2)-curves. Let u;, j =1,2,3,4,
be four independent classes in (¢;ZM;)Y /(®ZM;) such that the u; are
contained in NS(Y). For each j # h, j,h = 1,2, 3,4, there are exactly
four rational curves which are summands of both u; and u;; otherwise,
the sum u; + u; € NS(Y) contains half the sum of £’ disjoint rational
curves for k' # 8, which is absurd. It is now a trivial computation
to show, as required in (®;ZM;)Y/(®ZM;), that there are at most
four independent classes (and thus exactly four) and that, for each
choice of these four classes u;, the lattice obtained adding the classes
ui, i =1,2,3,4, to ©;ZM,; is exactly M(z/27)s. Indeed, without loss of
generality, the first class can be chosen to be

8

ur =y (M;/2);

i=1

thus, the second class can be chosen to be

ug = (Mi/2) + Y (M;/2).

i=1 =9

The third class has four curves in common with ©; and us and thus can
be chosen to be ug = (M + Mo+ My + Mg+ Mg+ Myo+ My3+ M4)/2.
Similarly, one determines the class uy = (M7 + M3+ M5 + My + My +
M1 + Mz + Mis)/2.

2) We consider the double cover 71 : Z; — Y ramified on 2u;. Since
2u; contains eight disjoint rational curves, Z; is smooth. Moreover, the
pullback E; of the curves M;, i = 1,...,8, have self-intersection —1;
hence, these can be contracted to smooth points on a variety Y7, and
the covering involution that determines m; descends to a symplectic
involution ¢; on Y7 with eight isolated fixed points, cf., [33, Section 3].
The divisors 2u;, i = 2, 3,4, each contain four curves which are also in
support of 2u;.

We study the pull back of 2uy; the study is similar for the other
classes. We have

2m1 (ug) = 7 (2uz)

=2(Ey + -+ Eq) + M3 + M2 + Mg + Mg
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+ M} 4 M2 + Mg + M2,

where ’R’l(M;) = M; for ¢ = 1,2, and j = 5,6,7,8. Hence, the divisor
M} + M2 + M} + MZ + M} + M2 + M} + M3 is divisible by 2 in
NS(Z,), and so its image is divisible by 2 on N.S(Y7). With the same
construction as before, using this class we obtain a K3 surface Y3 with
an action by a symplectic involution to. Observe that ¢; preserves the
divisor M3 + M2 + Mg + Mg + M} + M2 + Mg + M2, and so ¢; and
to commute on NS(Ys). Now, considering the pull-back of 2uz and
2uy on Y3, one can repeat the construction, arriving at a K3 surface
X := Y, with an action by (Z/2Z)* and such that the quotient is Y.
We observe that the smooth model of a K3 surface admitting a singular
model with 15 nodes contains 15 disjoint rational curves, and we prove
that such a K3 surface is a (Z/2Z)* quotient of a K3 surface. O

Remark 8.7. Now assume that a K3 surface S either has a lattice
isometric to M(z/27)s primitively embedded in the Néron-Severi group
or its Néron-Severi group is an overlattice of Q @ (—2)!5 for a certain
lattice @. Then, Theorems 8.3 and 8.6 do not imply that S is a
(Z)2Z)* quotient of a K3 surface. Indeed, in the proof of Theorem 8.6
part 2) we used that the lattice (—2)' (contained with index 2% in
Mgz /22)4) is generated by irreducible rational curves. In other words,
the description of the Néron-Severi group from a lattice theoretic point
of view is not enough to obtain our geometric characterization. Thus,
we cannot conclude that the family of the K3 surfaces, which are
(Z/27)* quotients of K3 surfaces, coincides with the family of K3
surfaces polarized with certain lattices.

Remark 8.8. In the proof of Theorem 8.6 we proved that, if a K3
surface contains 15 disjoint rational curves M;, then there are 15 subsets
S;, 1 = 1,...,15, which contain exactly 8 of these curves and which
form an even set. Similarly, if a K3 surface has 15 nodes, there are
15 subsets of 8 of these nodes which form an even set. In [3, 13],
some geometric properties of the even set of curves and nodes on K3
surfaces are described. For example, if a quartic in P? contains eight
nodes which form an even set, then the eight nodes are contained in
an elliptic curve, and there are three quadrics in P? containing these
nodes. Hence, if a quartic in P? has 15 nodes, each even set S; has the
previous properties.
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Corollary 8.9. Let Y be a projective K3 surface with 14 disjoint
smooth rational curves M;, i =1,...,14. Then,

1) NS(Y') contains the lattice M(z,/27ys, which is the minimal primitive
sublattice of the K3 lattice Aks that contains the 14 rational curves.
2) There exists a K3 surface with a (Z/27)% symplectic action, such
that Y is the minimal resolution of the quotient of X by this group.

Proof. The lattice M(z/27ys is described in [38, Section 7]. The
proof of 1) and 2) is essentially the same as the proof of 1) and 2) of
Theorem 8.6. ]

Remark 8.10. An analogous result to those of Theorem 8.6 and
Corollary 8.9 does not hold considering 8 (respectively 12) disjoint
rational curves, i.e., considering the group Z/2Z (respectively (Z/27)?):

1) If a K3 surface is the minimal resolution of the quotient of a
K3 surface by the group Z/2Z, then it admits a set of eight disjoint
rational curves, but if a K3 surface admits a set of eight disjoint rational
curves, then it is not necessarily the quotient of a K3 surface by the
group Z/27Z acting symplectically. An example is given by the K3
surface with an elliptic fibration containing eight fibers of type I» and
trivial Mordell-Weil group, cf., [44, Table 1, Case 99]. It contains eight
disjoint rational curves (a component for each reducible fiber), which
are not an even set (otherwise the fibration admits a 2-torsion section).

2) If a K3 surface is the minimal resolution of the quotient of a
K3 surface by the group (Z/27)?, then it admits a set of 12 disjoint
rational curves, but if a K3 surface admits a set of 12 disjoint rational
curves, then it is not necessarily the quotient of a K3 surface by a
group (Z/27)* acting symplectically. Thus, it is surely the quotient of
a K3 surface by Z/27Z (the proof is again similar to that of Theorem
8.6). An example is given by the elliptic K3 surface with singular fibers
21 4 415 which is number 466 in Shimada’s list [44]. The components
of multiplicity 1 of fibers of type I and a component for each fiber of
type I are 12 disjoint rational curves. There is exactly one set of eight
of these curves which is a 2-divisible class (the sum of the components
of the I fibers of multiplicity 1). By using the Shioda-Tate formula,
one can easily show that there are no other divisible classes, and hence,
the surface cannot be the quotient of a K3 surface by (Z/27Z)?.
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9. The maps 7w, and 7*. In the previous two sections we de-
scribed the family of the K3 surfaces X admitting a symplectic action
of (Z/2Z)* and the family of the K3 surfaces Y obtained as desingu-
larizations of the quotients of K3 surfaces by the group (Z/27Z)*. Here
we explicitly describe the relation among these two families. More pre-
cisely, in Section 6, we described the quotient map 7 : X — Y, which
of course induces the maps 7, and 7* among the cohomology groups of
the surfaces. Here we describe these maps (similar results can be found
in [15] if the map = is the quotient map by a symplectic involution).
With the notation of diagram (6.1) we have the following.

Proposition 9.1. The map m, : H%(X,Z) — H2(Y,Z) is induced by
the following map

(—2)816 & U(2)%3 @ (<71>@8)€915 LN (—2) ® U(32)@3 @ (—2)@15
(k1,. .. kg, u, {n1ticj<s, - - {nis ficj<s) — (k,u,ma, ... mas),

where m.(k;) = k, for all i = 1,...,16; m.(n;;) = my, for all j =
1,...,8,i=1,...,15.

The map 7* : H*(Y,Z) — H? ()A(:, Z) is induced by the following map

(~2) & U(32)8% & (—2)815 Iy (—9)816 g [/(2)83 g ((—1)®%) %"
8 8
(k,u,ml,...,mls)H (klik,...,k16:k716u, Z 277,1]',...7 227115]).
= j=1

j=1

Proof. By [38, Theorem 4.7], the action of G on Agj3 does not
depend on the K3 surface we have chosen; hence, we can consider
X = Km(A) and G realized as in Section 3 (i.e., it is induced on

Km(A) by the translation of the 2-torsion points of the abelian surface
A).

1) m.. We have seen that G leaves U(2)®3 invariant and in fact
H?(X,7)¢ > U(2)%3; however, the map 7, multiplies the intersection
form by 16. In fact, for z1, 25 € U(2)®3, we have:

7. (x1) = 1624
so using the projection formula

(Mo, meo)y = (T mex1,T2) ¢ = 16(21, 22).
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Due to taking X = Km(A), the classes in (—2)®16 correspond to classes
permuted by G; their image by 7, is a single (—2)-class in H?(Y,Z).
Finally, the 120 (—1)-classes which are the blow up of the points with a
non trivial stabilizer on X are divided in orbits of length eight and each
orbit is mapped to the same curve m; on Y. By using the projection
formula and the fact that the stabilizer group of a curve n;; has order 2,
we have

(Mg, ms)y = (me(n4z), T (N45) ) v
= (7" (n45), m45) 5
= (2(7121 + -+ Tlig), nij);( = 2.
2) *. Let x € U(32)®3 and y € U(2)®3. Then

(ﬂ-*‘r’y)f( = (.’E,ﬂ'*y)y = (l‘,y)y = 16(*77’?/))2"

so m*(z) = 16x. Then we have 7*(u) = 16w since u is not a class in the
branch locus. Finally,

(7" (mi), nng) x = (Mis me(nng))y = (Mismp)y = —26in,
and (7*(m;), k) g = (7*(m;),u) ¢ = 0 for u € U(32)®3. Hence, 7*(m;)
is given as in the statement. (I

Remark 9.2. The lattice R = (—2)%16 @ U(32)%* (which is an
overlattice of index 2° of K & U(32)®3) has index 223 in Ag3. Here we
want to consider the divisible classes that we must add to (—2)®1¢ @
U(32)®3 to obtain the lattice Ags. Consider the Z basis {wi;}iz;
of U(2)% in H?(Km(A),Z). Recall that we have an exact sequence

0— A2] —» A 3 A 0, which corresponds to the multiplication
by 2 on each real coordinate of A. Thus, the copy of U(32)®3 C
H?(Km(A/A[2]),Z) is generated by 4w;;. Hence, let e;, f;, i = 1,2,3,
be the standard basis of each copy of U(32). Then the elements:

& fi

4’ 4
are contained in H?(Y,Z). Adding these classes to R, we find (—2)®1¢@
U(2)? as an overlattice of index 2'? of R.

In Remark 2.8, we describe the construction of the even unimodular
overlattice A g of (—2)P U (2)%3 (we observe that the index is 2!1).
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In conclusion, we can explicitly construct the overlattice Ax3 of R and
extend the maps, ., 7* to this lattice.

10. Some explicit examples. In this section, we provide geome-
trical examples of K3 surfaces X with Picard number 16 admitting a
symplectic action of G = (Z/2Z)* and of the quotient X/G, whose
desingularization is Y. We follow the notation of diagram (6.1), and
we denote by L the polarization on X orthogonal to the lattice € (z/27)
and by M the polarization on Y orthogonal to the lattice Mz/27)4.

10.1. The polarization L? = 4, M? = L?. We consider the projec-
tive space P3 and the group of transformations generated by:

To: T T2 T3 Ioiflﬂlil'gifl‘g)

)

ZTo: X1 To:T3) XTo:—T1: —To:T3)
)
)

0 — (

0 — (
Xo:ay X9 x3) — (1 T X3 XT2)

0 — (

(
(
(
(

To T, T2 T3 xgzmglezxo);

these transformations generate a group isomorphic to G = (Z/2Z)*.
The invariant polynomials are
4 4 4 4
po = xg+ x] + x5 + T3,
2.2 2.2
P1 =TTy + XT3,
2.2 2 2
P2 = Tyxy + T3,
2.2 2.2
D3 = TpTy + T1T3,
P4 = ToT122T3.
Hence the generic G-invariant quartic K3 surface is a linear combina-
tion.

4, .4, A, 4 2.2, 2.2 2.2, 2.2
ao(wg + o7 + 75 + 3) + a1 (x5 + 7573) + az(wprs + 2173)
+ az(x222 4+ 2ix2) + agzor w3 = 0.

Since the identity is the only automorphism commuting with all ele-
ments of the group G, the number of parameters in the equation is 4,
which is also the dimension of the moduli space of the K3 surfaces with
symplectic automorphism group G and polarization L with L? = 4.
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We now study the quotient surface. Observe that the quotient of P3
by G is the Igusa quartic, cf., [22, subsection 3.3], which is an order 4
relation between the p;’s, that is,

Iy 16ps + pgps + pips + pips + pap3 — A(pT +p3 + p3)pi — Pop1p2ps = 0.

Hence, the quotient is a quartic K3 surface which is a section of the
Igusa quartic by the hyperplane:

appo + a1p1 + asps + azpz + asps = 0.

The quartics in P? admitting (Z/27Z)* as a symplectic group of
automorphisms are described in a very detailed way in [8] (cf., also
Remark 7.12). We observe that the subfamily with ap = 0 is also a
subfamily of the family of quartics considered by Keum [24, Example
3.3]. In this subfamily, it is easy to identify an Enriques involution.
This is the standard Cremona transformation

11 1 1
(:cozaclzxg:xg)—)<:::>.

To T1 T2 I3

10.2. The polarization L? = 8, M? = [?/4 = 2. Let X be a K3
surface with a symplectic action of G and L? = 8. There are two
connected irreducible components of the moduli space on K3 surfaces
with these properties, cf., Theorem 7.1 and Corollary 7.11. One is
realized as follows. Let us consider the complete intersection of three
quadrics in P%:

2

Z aixz - 07
=0

> 2

Z blxz = 07
=0

> 2

Z Cixi = 07
=0

with complex parameters a;, b;, ¢;, it = 0,...,5. Group G is realized
as transformations of P° changing an even number of signs in the
coordinates. In order to compute the dimension of the moduli space
of these K3 surfaces we must choose three independent quadrics in a
six-dimensional space. Hence, we must compute the dimension of the
Grassmannian of the subspaces of dimension 3 in a space of dimension 6.
This is 3(6—3) = 9. Now the automorphisms of P5 commuting with the
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automorphisms generating GG are the diagonal 6 x 6-matrices; hence,
we find the dimension 9 — (6 — 1) = 4 as expected.

To determine the quotient, one sees that the invariant polynomi-

als under the action of G are 23,27, 23,23,22, 22 and the product
2021%222324%5. Denoting them by o, ..., ¥ys,t, then there is a relation
5
t2 = H Yi,
i=0

and so we obtain a K3 surface which is the double cover of the plane
given by the intersection of the planes of P°:

5
a;Y; = 07
1=0
5
biyi = 07
1=0
5
> ciyi = 0.
1=0

The branch locuses are 6 lines meeting at 15 points, whose preimages
under the double cover are the 15 nodes of the K3 surface.

We get a special subfamily of K3 surfaces, considering as in subsec-
tion 5.1, a curve I' of genus 2 with:

5

v =]J@-s), sie€C, si#s;

=0

for i # j. This determines a family of Kummer surfaces with (Z/27)*
action and equations in P°:

B+ 2224224224 22=0,

sozg + slz% + 3225 + 53z§ + 54@% + 55z§ =0,

8328 + 8227 + 5323 + 5325 + 5223 + 5222 = 0.
The quotient surface also specializes to the double cover ¢? = L yi of
the plane obtained as the intersection of the planes of P%:

Yo+y1+ty2+ys+ystys =0,
S0Y0 + S$1Y1 + S2y2 + S3Y3 + Says + S5Y5 = 0,
$8yo + sTy1 + s3y2 + s3ys + sjya + s2ys = 0.
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As before, the branch locuses are 6 lines meeting at 15 points, but in
this case, there is a conic tangent to the 6 lines.
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