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GOLOMB’S ARITHMETICAL SEMIGROUP
TOPOLOGY AND A SEMIPRIME SUFFICIENCY

CONDITION FOR DIRICHLET’S THEOREM

CHRIS ORUM

ABSTRACT. Dirichlet’s theorem on the distribution of
primes in arithmetic progressions states that every positive
integer sequence {an + b | n ≥ 0} with a and b coprime
contains infinitely many primes. In 1959, Golomb pointed
out that, by taking such arithmetic progressions as a base
for a topology D on the positive integers, the resulting
topological space (Z+, D) is both Hausdorff and connected.
More recently, Knopfmacher and Porubsky showed that (Z+,
D) is a topological semigroup under multiplication. After
revisiting this result, we show that Dirichlet’s theorem is
implied by the statement that the D-closure of the primes
contains the semiprimes.

1. Introduction. In [4], Golomb demonstrated a topological ap-
proach to Dirichlet’s theorem on the distribution of primes in arithmetic
progressions, working with a space previously considered by Brown [2].
A topology D on the positive integers Z+ is defined, by taking as a base
for D, those sets of the form {an+ b} with (a, b) = 1. Then, Dirichlet’s
theorem is equivalent to the statement that the primes P are dense in
(Z+, D) [4, Theorem 6].

The space (Z+, D) is Hausdorff [4, Theorem 2] and connected [2],
[4, Theorem 3], but not locally connected [6, Theorem 1]. On the
other hand, the related space (Z+, D′) subsequently introduced by
Kirch [6] is Hausdorff, connected and locally connected. A base for D′

consists of arithmetic progressions {an+ b} such that (a, b) = 1 and a
is square-free [6, Corollary to Theorem 4]. These spaces appear in the
collection of counterexamples given by Steen and Seebach [10] with
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the names Relatively Prime Integer Topology (D) and Prime Integer
Topology (D′). Further analysis of these and related spaces is given in
[1, 7, 8, 11, 12, 13].

The purpose of this paper is twofold. First, we revisit a result in [7]
that deserves to be better known: that the topology D endows Z+ with
the structure of a topological semigroup. Second, we use the topological
semigroup structure to prove the following sufficiency condition for the
density of P involving the semiprimes, P2 = {4, 6, 9, . . .}. These are
the positive integers with exactly two, not necessarily distinct, prime
factors. More generally, we write Pk, k ≥ 2, for the set of k-almost
primes. These are the positive integers with exactly k prime factors.

Theorem 1.1. If P2 ⊆ P , then P = Z+.

In other words, in order to prove that the set P of prime numbers is
dense in (Z+, D), it is sufficient to prove that the closure of P contains
the semiprimes.

Corollary 1.2. Let a and b denote positive integers. The following
statements are equivalent :

(i) Every arithmetic progression of the form {an + b | n ≥ 0}, with
(a, b) = 1, that contains at least one semiprime, also contains a
prime.

(ii) Every arithmetic progression of the form {an + b | n ≥ 0}, with
(a, b) = 1, contains infinitely many primes.

Theorem 1.1 is a consequence of the fact that (Z+,×,D) is a topo-
logical semigroup. This fact is established in [7] by Knopfmacher and
Porubsky who work with coset topologies defined on a given integral
domain R (or a more general type of ring) and related topologies on
the set R0 = R \ {0} and the set R0/∼ of its associate classes. Here
we reprove continuity of multiplication on (Z+, D) by a somewhat dif-
ferent approach that involves lifting continuity from multiplication on
the quotient rings of Z. This is given as the proof of Lemma 2.6. The-
orem 1.1 then follows using the fact that (Z+, D) is Hausdorff and
connected, and general properties of topological semigroups that are
not specific to the arithmetical properties of (Z+, D).
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Unfortunately, it appears unlikely that Theorem 1.1 can be used to
give an independent proof of Dirichlet’s theorem. The approach of using
novel topologies on the positive integers is still lacking in “powerful new
ideas and methods” as put forward by Golomb over 50 years ago (cf.,
[4]).

2. Main results.

2.1. Notation and preliminaries. We regard the positive integers
Z+ as a multiplicative subsemigroup of (Z0, ×), where Z0 = Z \ {0}
denotes the nonzero integers. Arithmetic progressions of the form
{an + b | n ≥ 0} with a, b ∈ Z+ are denoted by Ua(b). This
notation implies a, b > 0. A base for Golomb’s topology on Z+ is
the collection B = {Ua(b) | (a, b) = 1}. Here, (a, b) is the greatest
common denominator of a and b. Assuming b < a has no effect on the
resulting topology:

Proposition 2.1. Let

Σ1 = {Ua(b) | (a, b) = 1, b < a}.

Then, B and Σ1 generate the same topology.

Proof. Let D1 be the topology generated by Σ1. Since Σ1 ⊆ B, it
follows that D1 ⊆ D. If (a, b) = 1 and b > a, let {qk}∞k=0 be a sequence
of primes chosen to satisfy qk > ak + b for all k ≥ 0. Then, since
(qk, ak+ b) = 1 for all k ≥ 0, and (a, ak+ b) = 1 for all k ≥ 0, it follows
that (aqk, ak + b) = 1 for all k ≥ 0. We also have aqk ≥ qk > ak + b.
Consequently,

Ua(b) =
∞∪
k=0

Uaqk(ak + b)

is a representation of Ua(b) ∈ B as a union over members of Σ1. This
shows that D ⊆ D1. Hence, D = D1. �

We denote by hN : Z → Z/NZ, the ring homomorphism that sends
x ∈ Z to its residue class,

hN (x) = {x+mN | m ∈ Z}.
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Figure 1. Lifting continuity of multiplication from the quotient rings.

We index the collection of all such homomorphisms by N ≥ 1. We write
x for hN (x) in contexts where N is unambiguous. We let µ : Z×Z → Z
denote multiplication and we let

µN : Z/NZ× Z/NZ −→ Z/NZ,

denote multiplication on the quotient ring. We also write hN for the
restriction hN |Z+ , and µ for µ|Z+×Z+ . Then, for all N ≥ 1, the diagram
in Figure 1 is commutative. In particular,

γN = µN ◦ (hN × hN ) = hN ◦ µ.

We equip each quotient ring Z/NZ, N ≥ 1, with the invertible
element topology EN . A base for EN is Z/NZ, along with all sets of the
form {u}, where u ∈ U(Z/NZ), i.e., u belongs to the group of units of
the quotient ring. Equivalently,

∅ ̸= A ⊆ Z/NZ,

is closed if and only if A contains all zero divisors in Z/NZ. Next,
recalling the notion of an initial topology, we let Dw be the weakest
topology on Z+ that makes each hN continuous. We will show that
Dw = D.

Definition 2.2. Let

{fi : X −→ (Yi,Yi) | i ∈ I},

be a family of functions where X is any set, (Yi,Yi) are topological
spaces and I is an index set. The smallest topology T on X that
makes each fi continuous is called the initial topology.
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Proposition 2.3. Golomb’s topology D coincides with the initial topol-
ogy Dw generated by the family of maps

hN : Z+ −→ (Z/NZ, EN ), N ≥ 1.

Proof. Any collection of sets of the form h−1
N (S), where S runs over

a subbase of EN and N runs over the index set, will generate the initial
topology Dw, e.g., [9, page 79]. By letting S run over the sets {u},

u ∈ U(Z/NZ), N ≥ 1,

we obtain the collection Σ1 defined in Proposition 2.1, which generates
D. It follows that Dw = D. �

2.2. The topological semigroup and proofs. Our approach to
Theorem 1.1 draws on the following property of initial topologies. This
property actually characterizes them, as is well known, see e.g., [9,
page 138].

Theorem 2.4. [5, page 126]. Let X have the initial topology deter-
mined by a family of functions

{fi : X −→ Yi | i ∈ I},

where each Yi is a topological space and I is an index set. Then, for
any space Z, a function g : Z → X is continuous if and only if, for
each i ∈ I, the composition fi ◦ g : Z → Yi is continuous.

Definition 2.5. A topological semigroup (S,~, T ) is a semigroup
S = (S,~), provided with a Hausdorff topology T , such that the
semigroup operation (x, y) → x ~ y is continuous with the product
topology on S × S.

The operation x ~ y is often written as xy. We follow [3] in
stipulating that the topology be Hausdorff, but not all authors require
this. To verify continuity of multiplication it is sufficient to show that,
for each x, y ∈ S and each open set W ⊆ S, such that xy ∈ W , there
exist open sets U = Ux and V = Vy such that x ∈ U , y ∈ V and

UV = {uv | u ∈ U, v ∈ V } ⊆ W.
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Indeed, if this holds, then the preimage of an open set W ⊆ S, under
the inverse of the ~-operation, is the open set∪

{Ux × Vy | xy ∈ W}.

Lemma 2.6. With multiplication × as the semigroup operation,
(Z+,×,D) is a topological semigroup.

Proof. We equip each Z/NZ with the topology EN and

Z/NZ× Z/NZ

with the corresponding product topology. An element xy ∈ Z/NZ is
either a unit or zero divisor. It is a unit if and only if x and y are both
units, in which case, we take U = {x} and V = {y}. If xy is a zero
divisor, then the only open neighborhood of xy is Z/NZ, and we take

U = V = Z/NZ.

Thus, µN is continuous. With the topology D on Z+ and the product
topology on Z+ × Z+, the maps hN and hN × hN in Figure 1 are
continuous. Then,

γN = µN ◦ (hN × hN )

is continuous for each N ≥ 1, and the continuity of each γN = hN ◦ µ,
along with Theorem 2.4, implies the continuity of

µ : Z+ × Z+ −→ Z+. �

Proof of Theorem 1.1. Let

M = {x ∈ Z+ | xP ⊆ P}.

First, we show that M is closed. If

M c := Z+ \M = ∅,

then M is closed. If M c ̸= ∅, let a ∈ M c. Then, for some p ∈ P ,
we have ap /∈ P . Continuity of multiplication guarantees the existence
of open sets U and V such that a ∈ U , p ∈ V , and UV ⊆ (P )c. In
particular,

Up = {zp | z ∈ U} ⊆ (P )c.
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Accordingly, U ⊆ M c (by definition of M) and U is an open
neighborhood of a ∈ M c, which implies that M c is open. So again,
M is closed.

We now apply the hypothesis P2 ⊆ P . This implies that P ⊆ M .
Since P is the smallest closed set containing P , it follows that P ⊆ M .
Thus, for any x ∈ P and p ∈ P , we know that xp ∈ P . In particular,
letting k ≥ 1 be fixed but arbitrary and considering

PkP = {xp | x ∈ Pk, p ∈ P} = Pk+1,

we obtain the implication:

(2.1) Pk ⊆ P =⇒ Pk+1 ⊆ P .

This implication holds for all k ≥ 1. We now proceed by induction.
Taking P1 = P ⊆ P as the base step and equation (2.1) as the induction
step yields:

Z+ \ {1} =
∞∪
k=1

Pk ⊆ P .

We rule out P = Z+ \ {1}; otherwise, Z+ = P ∪ {1} would be the
union of two disjoint closed sets, violating the connectedness of Z+

(which, we recall, was shown in [4, Theorem 3]; see also [11, Theorem
3.3]). Hence, P = Z+. �

Remark 2.7. Elementary proofs of the fact that Um(1)∩P ≠ ∅ for all
m ≥ 1 are known (e.g., [14, Corollary 2.11]). Using this, we observe, in
order to conclude that P = Z+, it is sufficient to show that Pk+1 ⊆ P
for some k ≥ 1. Indeed, the set

Mk = {x ∈ Z+ | xPk ⊆ P},

may be shown to be closed by arguing as in the preceding proof. Then
Pk+1 ⊆ P implies P ⊆ Mk, and hence, P ⊆ Mk. Moreover,

PPk = {pqk | p ∈ P , qk ∈ Pk} ⊆ P ,

which implies that Pk ⊆ P using 1 ∈ P . Iterating this argument
establishes that P2 ⊆ P , and then P = Z+ by Theorem 1.1.
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3. Extensions. The proof of continuity of multiplication on (Z+,
D) readily extends to the class of spaces of the form (Z+, X ) that
arises in the following way:

(i) each quotient ring Z/NZ is equipped with a topology XN such
that multiplication is continuous on (Z/NZ, XN ),

(ii) the topology X on Z+ is the initial topology generated by the
family of maps

hN : Z+ −→ (Z/NZ,XN ), N ≥ 1.

The space (Z+, D′) is included in this class. So are some of the
arithmetical coset topologies discussed in [7], at least if the underlying
integral domain is Z.

In this last section, we consider Kirch’s topology D′ and the arith-
metical coset topology D∗ (defined below) in this framework.

3.1. Kirch’s topology D′. A base for Kirch’s topology D′ on Z+ is

B′ = {Ua(b) | (a, b) = 1, a is square-free}.

We will show that D′ coincides with an initial topology D′
w generated

by a family of maps,

hN : Z+ −→ (Z/NZ, XN ), N ≥ 1,

and that the topologies XN on the quotient rings fulfill requirement (i).
Consequently, (Z+,×,D′) is a topological semigroup.

The proof of the following proposition is similar to the proof of
Proposition 2.1 and is omitted.

Proposition 3.1. Let

Σ′
1 = {Ua(b) | (a, b) = 1, a is square-free, b < a}.

Then, B′ and Σ′
1 generate the same topology.

Proposition 3.2. Kirch’s topology D′ coincides with the initial topol-
ogy D′

w, generated by the family of maps

hN : Z+ −→ (Z/NZ, XN ), N ≥ 1,

where XN = EN if N is square-free, and trivial otherwise, i.e., XN =
{∅,Z/NZ} if N is not square-free.
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Proof. As in the proof of Proposition 2.3, the initial topology D′
w is

generated by sets of the form h−1
N (S), where N runs over the index set,

and for each fixed N , S runs over a subbase of XN . Accordingly, we
let S run over sets of the form {u},

u ∈ U(Z/NZ),

if N is square-free, and let S = Z/NZ if N is not square-free. In the
latter case, h−1

N (Z/NZ) contributes nothing to the definition of D′
w;

hence, D′
w is generated by the collection of sets

{h−1
N (u) | N ≥ 1 is square-free, u ∈ U(Z/NZ)}.

This is precisely the collection Σ′
1 which generates D′. Hence, D′

w =
D′. �

To complete the argument that (Z+,×,D′) is a topological semi-
group, we note that multiplication is continuous on each of the spaces
(Z/NZ,XN ). IfN is not square-free, then XN = {∅,Z/NZ}, and check-
ing the continuity of multiplication is trivial. If N is square-free, then
XN = EN , and continuity of multiplication is established in the proof
of Lemma 2.6.

3.2. The arithmetical coset topology D∗. Our second example
is (Z+, D∗), which arises as follows: the authors of [7] define, more
generally, the invertible coset topology τ3 on a commutative ring R
with identity. A base for τ3 consists of cosets of the form a+A, where
(a) and A are coprime ideals. Ideals A and B in such a ring are coprime
if and only if a + b = 1 for some a ∈ A and b ∈ B. If R is an integral
domain, then τ3 induces a subspace topology τ∗ on R0 := R\{0} which
converts the multiplicative semigroup R0 into a topological semigroup.
Moreover, τ∗ induces a quotient topology ∆∗ on the set GR = R0/∼
of equivalence classes of associates in R0 (a ∼ b if and only if the ideals
(a) and (b) coincide). Then (GR,∆

∗) is a topological semigroup when
GR is equipped with the natural multiplication.

While in general there is no canonical embedding of the semigroup
GR into R0, if R = Z, then GZ may be identified with the multiplicative
subsemigroup Z+ ⊆ Z0 := Z \ {0}. Following [7], we then obtain two
topologies on Z+. The first is the subspace topology induced by τ∗

because Z+ ⊆ Z0. This coincides with D. The second is the weaker
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(but still Hausdorff) topology D∗ ( D induced by the quotient topology
∆∗ on GZ and the identification of GZ with Z+.

We now observe that D∗ coincides with the initial topology induced
by the maps

hN : Z+ −→ (Z/NZ, E∗
N ), N ≥ 1.

A base for E∗
N consists of Z/NZ and the sets of the form {−u, u} where

u ∈ Z/NZ is a unit. It is straightforward to check that multiplication
is continuous on (Z/NZ, E∗

N ) for each N ≥ 1; hence, (Z+,×,D∗) is a
topological semigroup (cf., [7, pages 135–136]).
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