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LOWER BOUND FOR THE HIGHER MOMENT OF
SYMMETRIC SQUARE L-FUNCTIONS

GUANGHUA JI

ABSTRACT. Let Sk(N) be the space of holomorphic
cusp forms of weight k, level N and let Bk(N) be an
orthogonal basis of Sk(N) consisting of newforms. Let
L(s, sym2f) be the symmetric square L-function of f ∈
Bk(N). In this paper, the lower bound of the higher moment
of L(1/2, sym2f) is established, i.e., for any even positive
number r,∑

f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)r

≫ (logN)r(r+1)/2

holds for N → ∞.

1. Introduction and statement of results. An important prob-
lem in number theory is to determine the asymptotic formula of the
moments of central values of L-functions varying in a family. This
problem has been intensively studied in recent years.

Katz and Sarnak [7] have introduced the idea of a family of L-
functions with an associated symmetry type, and they gave strong
evidence that the symmetry group governs many properties of the
distribution of zeros of the L-functions. Later, Conrey and Farmer
[3] proved that the symmetry group also governs the behavior of the
mean values of the L-functions.

The general conjecture for the moment of L-functions can be ob-
tained by random matrix theory. For a family F of L-functions
with functional equations s 7→ 1 − s and appropriate gamma factors,
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L(1/2, f) is the central value. The conjecture is that, as D → ∞,

1

D∗

∑
f∈F

c(f)≤D

L

(
1

2
, f

)r

∼ argr
Γ(1 +B(r))

(
logDA

)B(r)
,

where the family F is partially ordered by the conductor c (f), and
D∗ the number of elements with c (f) ≤ D, for details, see [3]. Let
L(s, sym2f) be the symmetric square L-function of f ∈ Bk(N). In the
context of the moment of L(1/2, sym2f), random matrix theory says
that one should have, as N → ∞,∑

f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)r

∼ C(k, r)(logN)r(r+1)/2.

The above asymptotic formulas for r = 1, 2 are known, see [2].

Following the idea of Rudnick and Soundararajan [11], we shall
consider the lower bounds for the moments of symmetric square L-
functions in this paper. Our main theorem is as follows.

Theorem 1.1. Let k be a fixed even integer and N a squarefree number.
Let L(s, sym2f) be the symmetric square L-function of f ∈ Bk(N). For
any even positive number r, we have∑

f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)r

≫ (logN)r(r+1)/2

holds for N → ∞.

The research on lower bounds for the moments of the central values
of L-functions began with Ramachandra [9] and Heath-Brown [4], and
has been studied by many authors, see [1, 6, 8, 10, 11, 12]. In
particular, Rudnick and Soundararajan [11] and Tang [12] obtained
the lower bound of the moments of L(s, f) and L(s, sym2f) in the
weight k aspect for the full modular group SL(2,Z), respectively. And
in the paper, [8], Radziwill and Soundararajan extended the idea of
Rudnick and Soundararajan to obtain lower bounds of the Riemann
zeta function for all real numbers r ≥ 1. Following the method of
Rudnick and Soundararajan, we can obtain lower bounds for these
moments in Theorem 1.1 for all rational numbers r ≥ 1.
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2. Preliminaries.

2.1. Holomorphic cusp forms. For a fixed even positive integer k
and a squarefree number N , the space Sk(N) of the holomorphic cusp
forms of the weight k for the Hecke congruence subgroup Γ0(N) is a
finite-dimensional Hilbert space with respect to the Petersson inner
product

⟨f, g⟩ =
∫
Γ0(N)\H

f(z)g(z)yk−2dx dy, f, g ∈ Sk(N).

Let Bk(N) be an orthogonal basis of Sk(N) consisting of newforms,
that is, normalized eigenforms for all Hecke operators. We write the
Fourier expansion of a newform f ∈ Bk(N)

f(z) =
∑
n≥1

λf (n)n
(k−1)/2e(nz).

Then the Ramanujan conjecture, now a theorem due to Deligen, says

|λf (n)| ≤ τ(n),

where τ(n) is the number of divisors of n. The Hecke eigenvalues λf (n)
satisfy the relation

(2.1) λf (1) = 1, λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
.

2.2. Peterssson trace formula. Write the weight function

ωf =
(4π)k−1

Γ(k − 1)
⟨f, f⟩ = (k − 1)N

2π2
L(1, sym2f),

where ⟨f, f⟩ is the Petersson inner product and L(s, sym2f) is the
symmetric square L-function of f(z). The following bound is well
known

1

N log3 N
≪ ω−1

f ≪ logN

N
.

The Petersson trace formula states that∑
f∈Bk(N)

ω−1
f λf (m)λf (n)=δ(m,n)+2πi−k

∑
N |c

S(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
,
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where δ(m,n) is the diagonal symbol, Jk−1(x) is the standard J-Bessel
function and S(m,n; c) is the classical Kloosterman sum defined by

S(m,n; c) =
∑

dd̄≡1(mod c)

e

(
md+ nd

c

)
.

Using the estimate Jk−1(x) ≪ min(1, x/k) and the Weil bound
for Kloosterman sums, we have the following result, see [5, Corol-
lary 14.24].

Lemma 2.1. With notation as above, we have for any m,n ≥ 1,∑
f∈Bk(N)

ω−1
f λf (m)λf (n)

= δ(m,n)+O

(
τ3((m,n))(m,n,N)1/2(mn)1/4

τ(N)

N
√
k
log

(
1+

(mn)1/4√
Nk

))
,

where the implied constant is absolute.

2.3. Symmetric square L-functions. For a newform f ∈ Bk(N),
the symmetric square L-function is given by

L(s, sym2f) = ζ(N)(2s)
∑
n≥1

λf (n
2)

ns
,

where ζ(N)(s) is the Riemann zeta function with the local factor at
the prime N removed. The completed L-function Λ(s, sym2f) =
NsL∞(s, sym2f)L(s, sym2f) is entire and it satisfies the functional
equation

Λ(s, sym2f) = Λ(1− s, sym2f),

where

L∞(s, sym2f) = π−3s/2Γ

(
s+ 1

2

)
Γ

(
s+ k + 1

2

)
Γ

(
s+ k

2

)
,

is the local factor at the infinity place. The first moment of central
values of the symmetric square L-functions is established, see [2].
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Lemma 2.2. For (m,N) = 1 and any ϵ > 0, one has

∑
f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)
λf (m

2)

=
1√
m

(
2γ +

L′
∞

L∞

(
1

2
, sym2f

)
+ log

√
N

m
+
∑
p|N

2 log p

p− 1

)

+Ok,ϵ

((
m

N3/4
+

1

N1/4

)
(mN)ϵ

)
.

3. Proof of the theorem.

Proof. Let x = N1/2r and consider

A(f) = A(f, x) =
∑
n≤x

λf (n
2)√

n
.

Define

S1 =
∑

f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)
A(f)r−1,

and

S2 =
∑

f∈Bk(N)

ω−1
f A(f)r,

where r is an even positive integer. By Hölder’s inequality, we have( ∑
f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)
A(f)r−1

)r

≤
( ∑

f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)r )( ∑
f∈Bk(N)

ω−1
f A(f)r

)r−1

,

which gives ∑
f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)r

≥ Sr
1

Sr−1
2

.
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We will prove the main theorem by finding the asymptotic orders of
the magnitude of S1 and S2.

In order to get the asymptotic formula of S2, we need to study the
combinatorics of the Fourier coefficient λf (n

2). Following from the
Hecke multiplicity (2.1), we may write

λf (n
2
1)λf (n

2
2) · · ·λf (n

2
r) =

∑
t|n1n2···nr

bt(n1, n2, . . . , nr)λf (t
2),

where bt(n1, n2, . . . , nr) are certain non-negative integers which satisfy

bt(n1, n2, . . . , nr) ≪ (n1n2 · · ·nr)
ϵ.

It is easy to see that b1 satisfies a multiplicative property. If( r∏
i=1

mi,

r∏
i=1

ni

)
= 1,

then

b1(m1n1,m2n2, . . . ,mrnr) = b1(m1,m2, . . . ,mr) b1(n1, n2, . . . , nr).

Denote
Br(n) =

∑
n1,n2,...,nr
n1n2···nr=n

b1(n1, n2, . . . , nr),

then we have that Br(n) is a multiplicative function. Note that Br(p
a)

is independent of p and grows at most polynomially in a and

Br(p) = 0, Br(p
2) =

r(r − 1)

2
,

which follows from

b1(p, 1, . . . , 1) = b1(p
2, 1, . . . , 1) = 0

and

b1(p, p, . . . , 1) = 1.

Consequently, we can estimate S2 as follows:

S2 =
∑

n1,n2,...,nr≤x

1
√
n1n2 · · ·nr
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∑
t|n1n2···nr

bt(n1, n2, . . . , nr)
∑

f∈Bk(N)

ω−1
f λf (t

2)

=
∑

n1,n2,...,nr≤x

b1(n1, n2, . . . , nr)√
n1n2 · · ·nr

+O

(
N−3/2+ϵxr

∑
n1,n2,...,nr≤x

1

(n1n2 · · ·nr)1/2−ϵ

)

=
∑

n1,n2,...,nr≤x

b1(n1, n2, . . . , nr)√
n1n2 · · ·nr

+O
(
N−3/4+ϵ

)
,

where we have used Lemma 2.1 in the second step. As for the main
term, we have

∑
n≤x

Br(n)√
n

≤
∑

n1,n2,...,nr≤x

b1(n1, n2, . . . , nr)√
n1n2 · · ·nr

≤
∑
n≤xr

Br(n)√
n

.

By the properties of Br(n), we have that the generating function
satisfies

∞∑
n=1

Br(n)

ns
= ζ(2s)r(r−1)/2D(s),

where D(s) is a Dirichlet series which converges absolutely in ℜs >
1/3 + ϵ. A standard argument gives that, for a positive constant Cr,∑

n≤z

Br(n)√
n

∼ Cr(log z)
r(r−1)/2.

Finally, we get

S2 ≍ (log x)r(r−1)/2 ≍ (logN)r(r−1)/2.(3.1)

Returning to S1, note that

A(f)r−1 =
∑

n1,...,nr−1≤x

1
√
n1 · · ·nr−1

∑
t|n1···nr−1

bt(n1, . . . , nr−1)λf (t
2).



922 GUANGHUA JI

By bound (2.2), we obtain

S1 =
∑

n1,n2,...,nr−1≤x

∑
t|n1n2···nr−1

bt(n1, n2, . . . , nr−1)
√
n1n2 · · ·nr−1∑

f∈Bk(N)

ω−1
f L

(
1

2
, sym2f

)
λf (t

2)

=
1

2
logN

∑
n1,n2,...,nr−1≤x

1
√
n1n2 · · ·nr−1∑

t|n1n2···nr−1

bt(n1, n2, . . . , nr−1)√
t

+O(N−1/4r+ϵ).

Note that

b1(n1, n2, . . . , nr−1, t) =

{
bt(n1, n2, . . . , nr−1) if t | n1n2 · · ·nr−1,

0 otherwise.

Therefore,

S1 =
1

2
logN

∑
n1,n2,...,nr−1≤x

nr≤xr−1

b1(n1, n2, . . . , nr−1, nr)√
n1n2 · · ·nr−1nr

+O(N−1/4r+ϵ).

Using b1(n1, n2, . . . , nr−1, nr) ≥ 0, we have that S1 ≫ (logN)S2. Argu-
ing, as in the case of S2, we finally get that

S1 ≫ (logN)1+r(r−1)/2.(3.2)

From (3.1) and (3.2), we have

Sr
1

Sr−1
2

≫ (logN)r(r+1)/2,

where the implied constant depends on r. This completes the proof. �
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