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GEOMETRY OF BOUNDED FRÉCHET MANIFOLDS

KAVEH EFTEKHARINASAB

ABSTRACT. In this paper, we develop the geometry
of bounded Fréchet manifolds. We prove that a bounded
Fréchet tangent bundle admits a vector bundle structure.
But, the second order tangent bundle T 2M of a bounded
Fréchet manifold M becomes a vector bundle over M if
and only if M is endowed with a linear connection. As an
application, we prove the existence and uniqueness of an
integral curve of a vector field on M .

1. Introduction. The geometry of Fréchet manifolds has received
serious attention in recent years, cf., [3] for a survey. In particular, sec-
ond order tangent bundles have been studied due to their applications
in the study of second order ordinary differential equations that arise
via geometric objects (such as autoparallel curves and parallel trans-
lation) on manifolds (see [1, 2]). However, due to intrinsic difficulties
with Fréchet spaces, only a certain type of manifolds was considered,
namely, those Fréchet manifolds which can be obtained as a projective
limit of Banach manifolds (PLB-manifolds). It was proved that the sec-
ond order tangent bundle T 2M of a PLB-manifold M admits a vector
bundle structure if and only if M is endowed with a linear connection
(see [4]).

Some of the basic issues in the theory of Fréchet spaces are mainly
related to the space of continuous linear mappings. Indeed, the space
of continuous linear mappings of one Fréchet space to another is not a
Fréchet space in general. On the other hand, the general linear group
of a Fréchet space does not admit any non-trivial topological group
structure. This defect brings into question the method of defining a
vector bundle. Another drawback is the lack of a general solvability
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theory for ordinary differential equations. Because of these reasons,
an arbitrary connection is hard to handle in the framework of Fréchet
bundles.

As mentioned above, there is a solution to these difficulties for
Fréchet manifolds which can be obtained as projective limits of Banach
manifolds. However, there is another manner of overcoming the afore-
mentioned problems. Recently, in [17], Müller introduced the concept
of bounded Fréchet manifolds and provided an inverse function theorem
in the sense of Nash and Moser in this category. Such spaces arise in
geometry and physical field theory and have many desirable properties.
For instance, the space of all smooth sections of a fiber bundle (over
closed or non-compact manifolds), which is the foremost example of
infinite-dimensional manifolds, has the structure of a bounded Fréchet
manifold, (see [17, Theorem 3.34]). As for the importance of bounded
Fréchet manifolds, we refer to [6], where Sard’s theorem was obtained
in this category. The statement of the theorem is as follows. Let M ,
respectively N , be bounded Fréchet manifolds with compatible metrics
dM , respectively dN , modeled on Fréchet spaces E, respectively F , with
standard metrics. Let f : M → N be an MCk- Lipschitz Fredholm map
with k > max{Ind f, 0}. Then, the set of regular values of f is residual
in N .

One of the essential ideas of this setting is to replace the space of all
continuous linear maps by the space Ld′,d(E,F ), for all linear Lipschitz
continuous maps. Then, Ld′,d(E,F ) is a topological group that has
satisfactory properties. For example, the composition map,

Ld,g(F,G)× Ld′,d(E,F ) −→ Ld′,g(E,G),

is bilinear continuous. In particular, the evaluation map Lg,d(E,F ) ×
E → F is continuous.

Our goal in this paper is to extend the known results of Fréchet
geometry to bounded Fréchet manifolds. We define the tangent bundles
TM and T 2M of a bounded Fréchet manifold M , modeled on a
Fréchet space F , and prove that they too are endowed with bounded
Fréchet manifold structures of the same type modeled on F 2 and
F 4, respectively. In addition, we show that TM admits a vector
bundle structure, which allows us to define a connection on TM via
a connection map, cf., [18, 19]. We shall interpret linear connections
as linear systems of ordinary differential equations on trivial bundles.
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Our main result is that T 2M admits a vector bundle structure if and
only if M is endowed with a linear connection. Moreover, a linear
connection on M determines a vector bundle structure on T 2M and
a vector bundle isomorphism T 2M → TM ⊕ TM . We conclude by
proving the existence and uniqueness of the integral curve of a vector
field on M .

It turns out that bounded Fréchet manifolds have some advantages
over both PLB-manifolds and infinite-dimensional convenient mani-
folds. In the case of PLB-manifolds, the difficulty is that to construct
a geometric object on manifolds, we need to establish the existence of
the projective limit of its Banach corresponding factors. In the case
of convenient manifolds, to construct such geometrical structures, we
need to define the notion of manifolds by charts. However, this drasti-
cally restricts the consequences of Cartesian closedness (see [13, 16]).
In addition, for convenient manifolds, we have two different kinds of
tangent bundles (kinematic and operational) and hence, we have two
different types of vector fields. Another drawback is that operational
vector fields do not necessarily have integral curves. On the other hand,
for a given kinematic vector field, integral curves may not exist locally,
and, if they exist, they may not be unique for the same initial condition
(see [13]).

2. Prerequisites. In this section, we summarize all the necessary
preliminary material that we need for a self contained presentation of
the paper. For detailed studies on bounded Fréchet manifolds we refer
to [6, 10, 17].

We denote by (F, d) a Fréchet space whose topology is defined by a
complete translational-invariant metric d. We define ∥f∥d = d(f, 0) for
f ∈ F , and write L · f instead of L(f) when L is a linear map between
Fréchet spaces. A metric with absolutely convex balls will be called
a standard metric. Note that every Fréchet space admits a standard
metric which defines its topology. If αn is an arbitrary sequence of
positive real numbers converging to 0, and if ρn is any sequence of
continuous semi-norms defining the topology of F , then,

dα, ρ(e, f) := sup
n∈N

αn
ρn(e− f)

1 + ρn(e− f)

is a metric on F with the desired properties.
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As mentioned in the introduction, we replace the space of all linear
continuous maps between Fréchet spaces by the space of all linear
Lipschitz continuous maps. Let (E, g) be another Fréchet space, and let
Lg,d(E,F ) be the set of all globally linear Lipschitz continuous maps,
i.e., linear maps L : E → F , such that

∥L∥g,d := sup
x∈E\{0}

∥L · x∥d
∥x∥g

< ∞.

We abbreviate Lg(E) := Lg,g(E,E) and write ∥L∥g = ∥L∥g,g for
L ∈ Lg(E). If d is a standard metric, then,

(2.1)
Dg,d : Lg,d(E,F )× Lg,d(E,F ) −→ [0,∞), (L,H) 7−→ ∥L−H∥g,d

is a translational-invariant metric on Ld,g(E,F ), turning it into an
Abelian topological group (see [10, Remark 1.9]). The latter is not a
topological vector space, in general, but a locally convex vector group
with absolutely convex balls. We shall always equip Fréchet spaces with
standard metrics and define the topology on Ld,g(E,F ) by the metric
Dg,d. The vector groups

L(i+1)
g,d (F,E) := (F,Li

g,d(F,E))

are defined by induction.

Let E,F be Fréchet spaces, let U be an open subset of E, and let
P : U → F be a continuous map. Let CL(E,F ) be the space of all
continuous linear maps from E to F , topologized by the compact-open
topology. We say that P is differentiable at the point p ∈ U , if there
exists a linear map:

dP (p) : E −→ F, with dP (p)h = lim
t→0

P (p+th)−P (p)
t , for all h ∈ E.

If P is differentiable at all points p ∈ U , if dP (p) : U → CL(E,F )
is continuous for all p ∈ U , and if the induced map P ′ : U × E →
F, (u, h) 7→ dP (u)h is continuous in the product topology, then we
say that P is Keller-differentiable. We define P (k+1) : U × Ek+1 → F
inductively by:

P (k+1)(u, f1, . . . , fk+1) = lim
t→0

P (k)(u+tfk+1)(f1,...,fk)−P (k)(u)(f1,...,fk)
t .
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If P is Keller-differentiable, dP (p) ∈ Ld,g(E,F ), for all p ∈ U ,
and the induced map dP (p) : U → Ld,g(E,F ) is continuous, then
P is called b-differentiable. We say P is MC0 and write P 0 = P
if it is continuous. We say P is an MC1 and write P (1) = P ′ if it
is b-differentiable. Let Ld,g(E,F )0 be the connected component of
Ld,g(E,F ) containing the 0 map. If P is b-differentiable and if V ⊆ U
is a connected, open neighborhood of x0 ∈ U , then P ′(V ) is connected,
and hence contained, in the connected component

P ′(x0) + Ld,g(E,F )0,

of P ′(x0), in Ld,g(E,F ). Thus,

P ′ |V −P ′(x0) : V −→ Ld,g(E,F )0

is again a map between subsets of Fréchet spaces. This enables a
recursive definition. If P is MC1 and V can be chosen for each x0 ∈ U ,
such that P ′ |V −P ′(x0) : V → Ld,g(E,F )0 is MCk−1, then P is called

an MCk-map. We give a piecewise definition of P (k) by

P (k) |V := (P ′ |V −P ′(x0))
(k−1)

,

for x0 and V , as before. The map P is MC∞ if it is MCk for all
k ∈ N0. We shall denote by D, D2 the first and the second differential,
respectively.

A bounded Fréchet manifold is a Hausdorff second countable topo-
logical space, with an atlas of coordinate charts, taking their values
in Fréchet spaces such that the coordinate transition functions are all
MC∞-maps.

We will need to consider the space of all globally Lipschitz continuous
k-multilinear maps. Let

B =

k∏
i=1

Fi

be the topological product of any finite number k of Fréchet spaces
(F1, d1), . . . , (Fk, dk). For x = (x1, . . . , xk) ∈ B and y = (y1, . . . , yk) ∈
B, we define the maximum metric dmax as follows:

dmax(x, y) = max
1≤i≤k

di(xi, yi).
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We shall always use this metric on B. Let (F1, d1), . . . , (Fk, dk) and
(F, d) be Fréchet spaces. The space of all globally Lipschitz continuous
k-multilinear maps is the space of all k-multilinear maps L : F1 × · · · ×
Fk → F such that, for all fi ∈ Fi \ {0}, 1 ≤ i ≤ k,

∥L∥d1,...,dk,d = sup
fi∈Fi\{0}

∥L(f1, . . . , fk)∥d
∥f1∥d1 , . . . , ∥fk∥dk

< ∞.

This space is denoted by Ld1,...dk,d(F1, . . . , Fk; F ). On the latter space,
we define a metric

Dd1,...,dk,d(L,H) = ∥L−H∥d1,...,dk,d,

which produces an Abelian topological group.

Throughout the paper, we suppose that d1, . . . , dk, d are fixed met-
rics, and for ease of notation, we will not write them when they appear
as indices.

Lemma 2.1. There are canonical topological group isomorphisms:

L(F1,L(F2, . . . , Fk;F )) ∼= L(F1, . . . , Fk;F )

∼= L(F1, . . . , Fk−1;L(Fk, F ))

∼= L(Fi1 , . . . , Fik ;F ),

where (i1, . . . , ik) is a permutation of (1, . . . , k).

Proof. Define

K : L(F1,L(F2, . . . , Fk;F )) −→ L(F1, . . . , Fk;F )

K(L(f1)(f2, . . . , fk)) = L̂(f1, . . . , fk).

The association L
K7→ L̂ is linear and a group isomorphism. Since K is

linear, we only need to show ∥L∥ = ∥L̂∥, to prove continuity of K and
its inverse. By straightforward verification, we have

∥L∥ = sup {∥L(f1)(f2, . . . , fk)∥ | ∥f1∥ = 1, . . . , ∥fk∥ = 1}

= sup
{
∥L̂(f1, . . . , fk)∥ | ∥f1∥ = 1, . . . , ∥fk∥ = 1

}
= ∥K(L) = L̂∥.

Likewise, the other isomorphisms are proved. �
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Convention. The terms bounded Fréchet tangent bundle and bounded
Fréchet second order tangent bundle are too long, so we remove bounded
Fréchet from the terms.

3. Constructions of TM and T 2M . In this section, we construct
TM and T 2M based on the work of Yano and Ishihara [20].

3.1. Tangent bundle. Let M be a bounded Fréchet manifold mod-
eled on a Fréchet space F , and let MCp(M) be the set of all MC∞-
mappings f : R → M that send 0 to p ∈ M . On MCp(M), we define an
equivalence relation ∼ as follows. Let Φ = {(Uα, φα)}α∈A be a compat-
ible atlas forM , (p ∈ Uα, φα) an admissible chart, and f , g ∈ MCp(M).
Let r be a fixed natural number. We say that f and g are equivalent
and write f ∼ g , if they satisfy:

(3.1) (φα ◦ f )′(0) = (φα ◦ g)′(0), . . . , (φα ◦ f )r(0) = (φα ◦ g)r(0),

where the orders of the derivatives run between 1 and r. It follows from
the chain rule for MCk-maps (see [10, Lemma B.1]) that the equiva-
lency at a point p is well defined. The equivalence class containing a
mapping f ∈ MCp(M) is called the r-jet of f at p, and is denoted by
jrpf .

Let TM be the set of all 1-jets of M , and let πM : TM → M be a
natural projection. The fiber π−1

M (p) is the tangent space TpM . The
space TpM has the structure of a Fréchet space, which is isomorphic to
F by means of the mapping φα◦πM : TpF → F , given by j1pf 7→ φα(p).
It is easily verified that this structure of TpM is independent of the
choice of the chart (Uα, φα). Then, TM is the disjoint union of
the tangent spaces TpM and is called the tangent bundle over M .
Let h : M → N be an MCk-map of manifolds. The tangent map
Th : TM → TN is defined by

Th(j1p(f )) = j1h(p)(h ◦ f ).

The following lemma is fundamental for constructing trivializing
atlases and vector bundle structures for TM and T 2M .

Lemma 3.1.

(i) Let h : M → N and g : N → K be MCk-maps of manifolds.
Then, T (h ◦ g) = Tg ◦ Th.
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(ii) If h : M → N is an MCk-diffeomorphism, then Th : TM →
TN is a bijection and (Th)−1 = T (h−1).

(iii) Let h : U ⊂ E → V ⊂ F be a diffeomorphism of open sets of
Fréchet spaces. The tangent map Th : U × F → V × E is a
local vector bundle isomorphism.

(iv) If h : U ⊂ E → V ⊂ F is an MCk-diffeomorphism of open sets
of Fréchet spaces, then Th is an MCk−1-diffeomorphism.

Proof.

(i) g ◦ h is MCk ([10, Lemma B.1]). Furthermore,

T (g ◦ h)(j1pf ) = j1(g ◦h)(p)(g ◦ h ◦ f )

= Tg(j1h(p))(h ◦ f )

= (Tg ◦ Th)(j1pf ).

(ii) By (i) and the definition of the tangent map, Th◦Th−1 = T idTN,
while Th−1 ◦ Th = T idTM.

(iii) Th is a local vector bundle morphism. Since h is a diffeomor-
phism, it follows that (Th)−1 = T (h−1) is a local vector bundle
morphism; thus, Th is a vector bundle isomorphism.

(iv) Let C be a curve passing through u ∈ U such that DC(0) · 1 = e
for a given e ∈ F . Define the map η(t) : R → E, by η(t) = u+ et,
which is tangent to C at t = 0. Define λ : U × F → TU by
λ(u, e) = j1u(η(t)). We have

(Th ◦ λ)(u, e) = Th · j1u(η(t)) = j1h(u)(h ◦ η(t)).

We also have

(λ ◦ h′)(u, e) = λ(h(u),Dh(u) · e) = j1h(u)(h(u) + (Dh(u) · e)t).

These are equal because the curves t 7→ h(u + et) and t 7→
h(u) + (Dh(u) · e)t are tangent at 0 by the definition of the
derivative and the previous parts. Therefore, Th ◦ λ = λ ◦ h′,
which means λ identifies U × E with TU . Correspondingly, we
can identify h′ with Th, so the results of earlier parts imply
statement (iv). �
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Proposition 3.2. Let πM : TM → M be a tangent bundle. Then, the
atlas {(Uα, φα)}α∈A, gives rise to a trivializing atlas

{(π−1
M (Uα), Tφα)}α∈A, on TM,

with

Tφα : π−1
M (Uα) −→ φα(Uα)× F,

j1p(f ) 7−→ (φα(p), (φα ◦ f )′(0)); f ∈ MCp(M).

This makes TM into a bounded Fréchet manifold modeled on F × F .

Proof. The proof follows from Lemma 3.1. �

The definition of vector bundles for Banach manifolds applies to
bounded Fréchet manifolds, with evident modifications (see [14] for
the definition of a Banach vector bundle). Note that the group of
automorphisms, Aut(F ), is topological ([10, Proposition 1.2]); thus,
it can serve as the structure group of a vector bundle. Let X be a
topological space, and let Π : X → M be a surjective continuous map.
Let (E, g) be a Fréchet space. Consider the atlas {(Uα, φα)}α∈A of M ,
and for each α ∈ A, suppose that we are given a mapping

τα : Π−1(Uα) −→ Uα × E,

satisfying the following conditions.

(VB1) The map τα is an MC∞-isomorphism commuting with the
projection on Uα, i.e., the following diagram is commutative.

Π−1(Uα)
τα //

Π
$$I

II
II

II
II

Uα × E

(u,e)7−→u{{ww
ww
ww
ww
w

Uα

.

In particular, for each p ∈ Uα, the induced map ταp : Π−1(p) →
E is an isomorphism.

(VB2) If Uα and Uβ are two members of the open covering, then the
map

ταp ◦ τ−1
βp : E −→ E

is an isomorphism in the category of topological vector spaces.
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(VB3) Let Uα and Uβ be two members of the open covering. Then

the map Uα ∩ Uβ → Aut(E), given by p 7→ (τα ◦ τ−1
β )p, is a

morphism.

The collection {(Uα, τα)}α∈A is called a trivializing covering for Π, and
the maps τα are called trivializing maps. Two trivializing coverings
are said to be VB-equivalent if their union satisfies conditions (VB2)
and (VB3). An equivalence class of such a trivializing covering is said
to determine the structure of a vector bundle on Π. The space M
is called the base space of the bundle, X the total space, and E the
fiber. The group Aut(E) is called the structure group of the bundle.
For each p ∈ M , the fiber Π−1(p) over p has the structure a Fréchet
space, which is isomorphic to E via ταp. Condition (VB2) insures that
this structure of Π−1(p) is independent of the choice of the trivializing
map ταp. Note that a vector bundle, as defined above, leads to a
groupless vector bundle defined by Hamilton [11, Definition 4.3.1].
Indeed, given p ∈ M , one can choose α ∈ A so that p ∈ Uα, and then
τα is an obvious candidate for the local trivialization around p required
in the definition of Hamilton.

Theorem 3.3. TM admits a vector bundle structure over M , with
fiber of type F , and structure group Aut(F ).

Proof. Consider the above atlas of M and its corresponding trivial-
izing atlas for TM . Let πr1 and πr2 be the projections to the first and
second factors, respectively. For all α ∈ A, we have πr1 ◦Tφα = πM ;
therefore, TM is a fiber bundle. Suppose Uα ∩ Uβ ̸= 0. Then, by
Lemma 3.1 (iii), the overlap map

Tφα ◦ Tφ−1
β : φβ(Uα ∩ Uβ)× F −→ φα(Uα ∩ Uβ)× F

is a local vector bundle isomorphism. Thereby, the transition maps
Θαβ = Tφα ◦Tφ−1

β can be considered as taking values in Aut(F ). The
following

Uα ∩ Uβ −→ Aut(F ), p 7−→ (πr2 ◦Tφα |TpM ◦Tφ−1
β |TpM )

is a smooth morphism; hence, all the conditions of [14, Proposition 1.2]
are verified. Thus, TM is a vector bundle over M , with structure group
Aut(F ). �
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3.2. Second order tangent bundle. Now that TM is a manifold,
we can define second order tangents. Assume r = 2 in the equivalence
relation (3.1). Let T 2

pM be the set of all 2-jets at p, and let

T 2M =
∪
p∈M

T 2
pM.

Let ΠTM : T 2M → M be a natural projection, defined by

ΠTM (j2p(f )) = p.

If we topologize T 2M in a natural way, then T 2M is called the second
order tangent bundle over M .

By virtue of Lemma 3.1, we have a trivializing atlas

{(Π−1
TM (π−1

M (Uα)), Φ̃α)}α∈A,

for T 2M , with

Φ̃α : Π−1
TM (π−1

M (Uα)) −→ φα(Uα)× F,

j2p(f ) 7−→ (φα(p), (φα ◦ f )′′(0)); f ∈ MCp(M).

T 2
pM can be identified with F × F under the isomorphism:

Ψ : T 2
pM −→ F × F, j2p(f ) 7−→ ((φα ◦ f )′(0), (φα ◦ f )′′(0)),

but fails to be a vector bundle over M because the trivializing isomor-
phism does not respect the linear structure of the fibers. The submer-
sion π12 : T 2M → TM , defined by π12(j

2
p(f )) = j1p(f ), is a vector

bundle. Let
π2 : T (TM) −→ TM

be an ordinary tangent bundle over TM . The space T 2M coincides
with

(3.2) {Υ ∈ T (TM) | π2(Υ) = TπM (Υ)} ,

and can be identified with a submanifold of T (TM), see [15, page 372,
Proposition 3.2]. The bundle T (TM) is a fiber bundle over M , with
the projection π2 = πM ◦ TπM . The restriction π2 |T 2M : T 2M → M is
again a fiber bundle.

Let Πi : Ni → M , i = 1, 2, be fiber bundles with the same group
structure Aut(F ). The fiber product is defined as usual. The bundle
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T (N1×N2) is canonically isomorphic to T (N1)×T (N2), with structure
group Aut(F ×F ). Furthermore, if TNi are vector bundles, then their
product is the Whitney sum TN1 ⊕ TN2 (see [8, 12]).

4. Connections. Here we define connections by using Vilms’s [19]
point of view for connections on infinite-dimensional vector bundles.
Also, we show that each linear connection corresponds, in a bijective
way, to an ordinary differential equation analogous to the case of
Banach manifolds (see [18]).

Henceforth, we keep the formalism of Section 3 for tangent bundles
and second order tangent bundles.

Definition 4.1. A smooth connection map K for the tangent bundle
πM : TM → M is a smooth bundle morphism K : T (TM) → TM such
that there exist smooth maps

τα : φα(Uα)× F −→ Ld(F ),

which give the local representatives of K by

Kα = Φα ◦ K ◦ (Φ̃α)
−1 : φα(Uα)× F × F × F −→ φα(Uα)× F,

Kα(f, g, h, k) = (f, k + τα(f, g) · h)

Ld(F ) is topologized by the metric (2.1).

A connection on M is a connection map on the tangent bundle
πM : TM → M . A connection K is linear if and only if it is linear
on the fibers of the tangent map. Locally, Tπ is the map

Uα × F × F × F −→ Uα × F,

defined by Tπ(f, ξ, h, γ) = (f, h); hence, locally its fibers are the spaces
{f} × F × {h} × F . Therefore, K is linear on these fibers if and only
if the maps (g, k) 7→ k + τα(f, g)h are linear, and this means that the
mappings τα need to be linear with respect to the second variable.

Assume that the connection K is linear and f ∈ Uα. The unique
local Christoffel symbol

Γα(p) : φα(Uα) −→ L(F × F ;F ),
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satisfying Γα(p)(g, h) = τα(p, g)h is associated to

τα(f, ·) ∈ L(F,L(F, F )) ∼= L(F × F ;F )

by the canonical isomorphism of Lemma 2.1.

Christoffel symbols satisfy the following compatibility condition,
cf. [7],

Γα(Θαβ(f))(DΘαβ(f)(g),DΘαβ(f)(h)) + (D2 Θαβ(f)(h))(g)

= DΘαβ(f)(Γβ(f)(g, h)),(4.1)

for all (f, g, h) ∈ φα(Uα ∩ Uβ)× F × F.

Here, we denote the diffeomorphisms φα ◦ φ−1
β of F by Θαβ .

Theorem 4.2. Every linear connection on M induces a vector bundle
structure on π2|T 2M : T 2M → M and gives rise to an isomorphism of
this vector bundle with the vector bundle TM ⊕ TM .

Proof. If we have a connection, then the connection map K :
T (TM) → M is defined. The following map,

(4.2) π2 ⊕K ⊕ TπM : T (TM) −→ TM ⊕ TM ⊕ TM,

is a diffeomorphism (see [5]). The diffeomorphism determines a unique
vector bundle structure for T (TM) over M . Let (Uα, φα) be a chart of
M . The induced chart {(π−1

M (Uα), Tφα)} in TM takes a vector bundle
structure by means of the diffeomorphism (4.2). Let

ı : TM ⊕ TM → TM ⊕ TM ⊕ TM

be the natural isomorphism. T 2M is a submanifold of T (TM), consist-
ing of tangent vectors Υ such that π2(Υ) = TπM (Υ). Therefore, the
inclusion ı is the isomorphism onto (π2 ⊕K ⊕ TπM )(T 2M); thus,

ı−1 ◦ (π2 ⊕K ⊕ TπM )(T 2M) = π2 ⊕K(T 2M).

Hence, the diffeomorphism

(4.3) π2 ⊕K : T 2M −→ TM ⊕ TM,

gives the structure of a vector bundle to T 2M . Since T 2M is isomorphic
to TM ⊕ TM , it can be considered as a vector bundle with group
structure Aut(F × F ). �
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The proof of the following theorem is the same as the usual proof
given for Banach manifolds (see [4, Theorem 2.4]). We simply provide
the scheme of the proof.

Theorem 4.3. If T 2M admits a vector bundle structure isomorphic
to TM ⊕ TM , then there exists a linear connection on M .

Proof. Let {(Π−1(Uα),Ωα)}α∈A be a trivializing atlas of T 2M . By
hypothesis Ωα,p = Ω1

α,p × Ω2
α,p, where

Ωi
α,p : π−1

M (p) −→ F, i = 1, 2.

Let (U,Ω) be an arbitrary chart such that U ⊆ Uα. Define Ωα =
Ω ◦ (Ω1

α,p ◦ (Dx Ω)−1). Then define the Christoffel symbols as follows:

Γα(y)(u, u) = Ω2
α,p(j

2
pf )− (Ωα ◦ f )′′(0), y ∈ Ωα(Uα),

where f is the representative of the vector u. The remaining values of
Γα(y) on elements of the form (u, v) with u ̸= v are automatically de-
fined if we require Γα(y) to be symmetric and bilinear. They satisfy the
compatibility condition since the trivializations

{
(Π−1(Uα),Ωα)

}
α∈A

coincide on all common areas of their domains, and hence, give rise to
a linear connection on M . �

Proposition 4.4. Each linear connection of the trivial vector bundle
(M×F,M, pr1) corresponds bijectively to an ordinary differential equa-
tion

dx

dt
= A(t) · x,

where
[A(t)](u) = Γ1(t)(u, 1M ),

for every u ∈ F and t ∈ M .

Proof. Keep the above formalism for connections. Suppose that
a linear connection K on (M × F,M, pr1) is given. We want to
associate K with a unique ordinary differential equation on the Fréchet
space F . With respect to the atlas {(Uα, φα)}α∈A of M , we consider
the Christoffel symbols of K, that is, the smooth maps

Γα(p) : φα(Uα) −→ L(F × F ;F ).
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In particular, we denote the Christoffel symbol defined over the chart
(M, idM ) by Γ1. Let (Uα, φα) and (Uβ , φβ) be charts in M . Then, we
define the following map for any t ∈ φα(Uα),

(4.4) Aα : φα(Uα) −→ Ld(F ), t 7−→ Γα(t)(·, 1M ),

where 1M is the unit of M . The map Aβ , defined as above, corresponds
to (Uβ , φβ). In particular, we set A ≡ A1 : M → Ld(F ) when the chart
is (M, idM ). If Uα ∩ Uβ ̸= 0, then the compatibility condition (4.1)
imposes the following

(4.5) Aβ(t) = (φα ◦ φ−1
β )′(t) ·Aα((φα ◦ φ−1

β )(t)),

for every t ∈ φβ(Uα ∩ Uβ). Letting α = 1 in (4.5) yields

(4.6) Aβ(t) = (φ−1
β )′(t) ·A(φ−1

β (t)), for all t ∈ φβ(Uβ).

Now we can define

dx

dt
= A(t) · x; [A(t)](u) = Γ1(t)(u, 1M ),

for all u ∈ F, for all t ∈ M.

Conversely, for a given equation with coefficient A : M → Ld(F ),
we define the smooth maps Aβ(t) : φβ(Uβ) → Ld(F ) by (4.6). The
same equality proves that Aα and Aβ satisfy (4.5). We then define
the Christoffel symbols {Γα}α∈A by Γα(t)(u, s) = s · [Aα(t)](u), for
every t ∈ φα(Uα), s ∈ M and u ∈ F . By virtue of (4.5), the above
Christoffel symbols satisfy the compatibility condition over overlapping
charts, thereby defining a linear connection K, on (M ×F,M, pr1). �

5. Vector fields on TM . Having introduced the tangent bundle
over a manifold M , we now consider sections of these bundles. A
vector field on M is a section ξ : M → TM of its tangent bundle, i.e.,

πM ◦ξ = idM . For a vector field ξ and a chart U ⊂ M
φ−→ φ(U) ⊂ F , the

principal part ξφ : φ(U) → F of ξ is defined by ξφ(φ(p)) = pr2 ◦Tφ(ξp).
Let I be an open interval in R, and let ℓ : I → M be a curve passing
through p0. If ξ is a vector field on M , and if ξφ denotes the main part
of its local representative in a chart φ, then ℓ(t) is called an integral
curve of ξ when (φ ◦ ℓ)′(t) = ξφ(φ ◦ ℓ(t)) for each t, where φ ◦ ℓ is the
local representative of the curve ℓ. Note that, if the base manifold M
is a Fréchet space F with differential structure induced by the chart
(F, idF ), then the above condition reduces to ℓ′(t) = D ℓ(t)(1R), that is,
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our definition is a natural generalization of the notion of a derivative
on a manifold M .

Proposition 5.1. Let U ⊆ F be open, and let ξ : U → F be MCk,
k ≥ 1. Then, for p0 ∈ U , there is an integral curve ℓ : I → F at p0.
Furthermore, any two such curves are equal on the intersection of their
domains.

Proof. Since ξ is MCk, it is bounded, say by R. Let L be a positive
real number. Pick a positive real number r such that Br(p0) ⊆ U and

∥ξ(p)∥d ≤ L for all p ∈ Br(p0). Let m = min{1/R, r/L}, and let t0 be
a real number. We shall show that there is a unique MC1-curve ℓ(t),

t ∈ [t0 −m, t0 +m], whose image lies in Br(p0) and that satisfies

(5.1) ℓ′(t) = ξ(ℓ(t)), ℓ(t0) = p0.

The conditions ℓ′(t) = ξ(ℓ(t)) and ℓ(t0) = p0 are equivalent to the
integral equation,

ℓ(t) = p0 +

∫ t

t0

ξ(ℓ(u)) du.

Now, define ℓn(t) by induction:

ℓ0(t) = p0, ℓn+1(t) = p0 +

∫ t

t0

ξ(ℓn(u)) du.

The estimation on the size of the integral (see [10, Lemma 1.10]) yields

ℓn(t) ∈ Br(p0), for all n and t ∈ [t0 −m, t0 +m]. Furthermore,

∥ℓn+1(t)− ℓn(t)∥d ≤ LRn

(n+ 1)!
| t− t0 |n+1 .

Therefore, ℓn converges uniformly to a continuous curve ℓ(t) satisfy-
ing (5.1). Now, let ȷ(t) be another solution. By induction, we obtain

∥ℓn(t)− ȷ(t)∥d ≤ LRn

(n+ 1)!
| t− t0 |n+1 .

Therefore, letting n → ∞ gives ℓ(t) = ȷ(t). �

Corollary 5.2. Suppose the hypotheses of Proposition 5.1 hold. Let
It(p0) be the solution of ℓ′(t) = ξ(ℓ(t)), ℓ(t0) = p0. Then, there is an
open neighborhood U0 of p0, and a positive real number α such that, for
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every q ∈ U0, there exists a unique integral curve ℓ(t) = It(q) satisfying
ℓ(0) = q and ℓ′(t) = ξ(ℓ(t)) for all t ∈ (−α, α).

Proof. Suppose

U0 = Br/2(p0) and α = min{1/R, r/2L}.

Fix an arbitrary point q0 in U0. Then, Br/2(q0) ⊂ Br(p0), thereby

∥ξ(z)∥d < L, for all z ∈ Br/2(q0). By Proposition 5.1, with p0 replaced
by q, r replaced by r/2 and t0 by 0, there exists a unique integral curve
ℓ(t) for all t ∈ (−α, α) such that ℓ(0) = q. �

The proof of the following theorem is the same as the standard proof
given for Banach manifolds (see [14, Theorem 2.1]).

Theorem 5.3. Let ξ : M → TM be a vector field. Then, there exists
an integral curve for ξ at p ∈ M . Furthermore, any two such curves
are equal on the intersection of their domains.

Proof. The existence follows from Proposition 5.1, by means of
local representation. However, that is not applicable for the proof
of uniqueness since these curves may lie in different charts. Let
ρi(t) : Ii → M , i = 1, 2, be two integral curves. Let I = I1 ∩ I2
and J = {t ∈ I | ρ1(t) = ρ2(t)}. J is closed, since M is Hausdorff.
From Proposition 5.1, J contains some neighborhood of 0. Now define
δ1(u) = ρ1(u+ t) and δ2(u) = ρ2(u+ t), for t ∈ J .

They are integral curves with initial conditions ρ1(t) and ρ2(t),
respectively. By Proposition 5.1, they coincide on some neighborhood
of 0. Therefore, J contains an open neighborhood of t, so J is open.
Since I is connected, it follows that J = I. �

Remark 5.4. Let ξ be an MCk-vector field on M , k ≥ 1. The
existence of a flow of class MCk for ξ depends on the solution of the
appropriate time-dependent linear differential equation on the model
space F . But, on the Fréchet space F , an ordinary differential equation
may admit no, one or multiple solutions for the same initial condition.
Therefore, there may not exist an MCk-flow for ξ in general.
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