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SOME FIFTH ROOTS THAT ARE CONSTRUCTIBLE
BY MARKED RULER AND COMPASS

ELLIOT BENJAMIN AND C. SNYDER

ABSTRACT. We show that there are cubic irrationals
whose real fifth roots can be constructed by marked ruler
and compass.

1. Introduction. In [2], we examined points that can be con-
structed by compass and marked ruler and, using the results developed
there, we proved that the regular hendecagon (11-gon) is constructible
by these tools. This was our first result in a program to try to character-
ize all points that can be constructed with marked ruler and compass.

Related to this program, we observe that Baragar [1] has shown that
there are quintic irrationalities which are constructible numbers, i.e.,
the coordinates of points constructible using a compass and marked
ruler. But, as far as we know, no one has shown that the fifth root
of any constructible number (which is not already a fifth power of a
constructible number) can be constructed. For example, at present, it

is still an open question as to whether or not 5
√
2 is constructible.

In our present work, we use the machinery developed in [2] to show
that there are cubic irrationals whose real fifth roots are constructible
by marked ruler and compass. The proof is somewhat more complicated
than that of showing that the regular hendecagon is constructible and
raises the question of why the proof was so “miraculously” simple in
the latter case.

The search for constructible fifth roots was also motivated by the
fact that all real fifth roots of rational numbers are “q-constructible,”
an analog of constructibility by compass and marked ruler. See [5] for
the details.
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2. Preliminaries. For a detailed description of classical straight-
edge and compass constructions, as well as marked ruler constructions,
see, for example, Martin’s text [4, Chapters 2, 9].

Now, for convenience, we review our so-called restricted marked ruler
and compass constructions, cf. [1, 2].

We consider a straightedge on which there are two marks, one unit
apart, and which allow for what is called verging, cf. [4, pages 124,
125]. By verging through a point V , between two curves (lines and
circles), we determine two points Q1 and Q2, obtained by drawing a
line through the point V which intersects the two curves at pointsQ1 on
one curve and Q2 on the other such that Q1 and Q2 are one unit apart.
This can be done by a marked ruler once we are given a verging point
and a pair of curves. The points Qi are thus said to be constructed by
verging.

With a marked ruler and compass, we may construct lines and circles
which allows us to verge between a pair of lines, a line and a circle, and
a pair of circles. In the classical case of straightedge and compass, we
allow intersections of two lines, a line and a circle, and two circles.
However, nothing is lost by restricting to the first two cases (with an
appropriate initial set of constructible points). In a similar manner,
as in [2], we restrict to verging between pairs of lines and between a
line and a circle, but not between two circles. Hence, we use the term
restricted marked ruler and compass constructions. Here is a formal
definition as given in [2].

A point is restricted marked ruler and compass constructible or an
RMC point, for short, if it is the terminal point in a finite sequence of
points in R2 such that each point is in the “starter set” {(0, 0), (1, 0)}
or is obtained in one of the following ways:

(i) as the intersection of two distinct lines, each passing through a
pair of points earlier in the sequence;

(ii) as the intersection of two distinct circles, each passing through
points earlier in the sequence and with earlier points as their centers;

(iii) as the intersection of a line and a circle, as determined in (i)
and (ii), respectively;

(iv) as one of two points obtained by verging through an earlier point
between two distinct lines as given in (i);
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(v) as one of two points obtained by verging through an earlier point
between a line and a circle as given in (i) and (ii), respectively. We call
the point on the circle the primary point.

For convenience, we call a sequence of points as given in the definition
an RMC sequence.

A restricted marked ruler and compass number or RMC number,
again for brevity, is defined as the x-coordinate of an RMC point on
the x-axis.

Now let
C = {x ∈ R : x is an RMC number}.

C is a subfield of R containing all real 2-3 towers of Q, since C contains
all marked ruler numbers, and marked ruler numbers are characterized
as those lying in real 2-3 towers of Q, again see [4, Chapter 9], for
example. By [1], we know that an RMC number in C lies in a real
tower {Kj} of Q with [Kj+1 : Kj ] ≤ 6. As noted above, Baragar has
even shown that there are real quintic irrationalities over Q which are
in C. In fact, when adjoining one of these quintic irrationalities to Q,
its Galois closure over Q has absolute Galois group isomorphic to S5,
the symmetric group on five objects, cf. [3, page 282]. This should
not be a surprise, as chances are “excellent” that such a Galois group
would be S5.

In contrast to this, we will show that there are real cubic irrationals
r over Q, and thus RMC numbers, such that 5

√
r ∈ C and

[Q( 5
√
r) : Q(r)] = 5.

From this it follows that

Gal(Q(ζ5,
5
√
r)/Q(r)) ≃ F20,

the Frobenius group of order 20, where ζ5 = exp 2πi/5, is one of the
primitive fifth roots of unity, cf. [3, subsection 13.2]. Notice, too, that
5
√
r is solvable over Q.

3. Characterization of RMC numbers. As we have done in our
previous paper, [2], we make use of the intersection of a conchoid and
a circle. It is known, cf. [1], that determining one point of the pair of
points obtained by verging between a line and some other curve can be
given as a point of intersection of a conchoid associated with the line
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(and the verging point) and the curve. Here is how it works. Let V be
a (verging) point and L a line not passing through V . For any point
P on L consider the line through V and P . Let Q and Q′ be the two
points on this line that are of distance 1 to P . The conchoid ConL,V

associated with the verging point V and axis L is the set of all points
Q,Q′ as given above as P varies over all points of L.

In particular, when V = (0, 0) and L, the line with equation
x = a, where a > 0, the conchoid Conx=a,(0,0) satisfies the relation

(x− a)2(x2 + y2) = x2, cf. [1].

We now consider the coordinates of the points of the intersection of
the conchoid

Con : (x− a)2(x2 + y2) = x2,

associated with the origin and the vertical line x = a, and the circle
C = C(b,c),s

C : (x− b)2 + (y − c)2 = s2.

Instead of dealing directly with the coordinates x and y of a point
P of an intersection, we found it more convenient to work with z =
x/(x − a), the so-called signed distance from the origin to P (as |z| is
this distance).

Let

a1 = −2,

(∗∗)

a2 = 1− 2(s2 − b2 + c2 + 2ab),

a3 = 4(s2 − b2 + c2 + ab),

a4 = (s2 − b2 + c2 + 2ab)2 − 2(s2 − b2 + c2)− 4c2
(
s2 − (a− b)2

)
,

a5 = 2 (ab)2 − 2(s2 − b2 − c2 + ab)2,

a6 = (s2 − b2 − c2)2,

and define

f(X) = fa,b,c,s(X)

= X6 + a1X
5 + a2X

4 + a3X
3 + a4X

2 + a5X + a6,

as the verging polynomial with parameters a, b, c, s.

Then we have the following result from [2].
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Theorem 3.1 (Verging theorem).

(i) Let L be the vertical line in R2, with equation x = a, a > 0, and
C the circle centered at (b, c), c > 0, with radius s. If P = (x, y)
is a point of intersection of the conchoid ConL,(0,0) and the circle
C, then the signed distance,

z =
x

x− a
,

is a root of the polynomial,

f(X) = X6 + a1X
5 + a2X

4 + a3X
3 + a4X

2 + a5X + a6,

satisfying conditions (∗∗) above.
(ii) Now suppose

f(X) = X6 + a1X
5 + a2X

4 + a3X
3 + a4X

2 + a5X + a6 ∈ R[X],

and let

m = 2− 2a2 − a3,

B = 2a4 + a5 − 3 + 4a2 − a22 +
5

2
a3 −

a2a3
2

.

Moreover, suppose that the following conditions are satisfied :

(0) a1 = −2,

(1) (2a6 + a5)
2 = a6 m

2,

(2ε) a3 > −ε
√
m2 − 8a5 (ε = 1, or − 1),

in which case,

c = cε =

√
1

8

(
a3 + ε

√
m2 − 8a5

)
,

(3ε) m > − B

2c2ε

in which case,

a = aε =

√
m

4
+

B

8c2ε
,
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and whence,

b = bε =
m

4aε
,

(4ε)
m2

a2ε
> 16c2ε + 8(1− a2 − a3),

and then,

s = sε =

√
m2

16a2ε
− 1

2
(1− a2 − a3)− c2ε.

Finally,

(5ε) (s2ε − b2ε − c2ε)
2 = a6.

Then f(X) is a verging polynomial with verging parameters aε, bε, cε
and sε given above.

In [2], we defined a real RMC tower of Q to be a tower of fields
{Kj}nj=0 for some nonnegative integer n, such that

Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R,

where the degree [Kj+1 : Kj ] ≤ 6, and such that, if [Kj+1 : Kj ] = 5 or
6, then Kj+1 = Kj(zj+1) for some root zj+1 of a verging polynomial
f(X) ∈ Kj [X].

Given this, we then proved, see [2], the following characterization
theorem of RMC numbers.

Theorem 3.2 (Characterization theorem). A real number α is an
RMC number, i.e., α ∈ C, if and only if there is a real RMC tower
{Kj}nj=0 of Q such that α ∈ Kn.

4. Exhibiting some RMC numbers that are fifth roots. We
now examine the question of whether or not there are RMC numbers
whose (real) fifth roots are also RMC. We start with a proposition. As
a convention, for any real number r, 5

√
r will always denote the real

fifth root of r.

Proposition 4.1 (Separation theorem). Let r be a number con-
structible by a marked ruler and such that 5

√
r /∈ Q(r). Now suppose
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further that 5
√
r ∈ C. Then there exists a real RMC tower K0, . . . ,Kn

of Q with n > 0, such that [Kn : Kn−1] = 5, with r ∈ Kn−1 and
5
√
r ∈ Kn −Kn−1, i.e., Kn = Kn−1( 5

√
r).

In other words, we can find an RMC tower that separates r from
5
√
r.

Proof. Since r is assumed to be a marked ruler number, we know
that there is a real 2-3 tower L0, . . . , Lℓ of Q such that r ∈ Lℓ and thus
[Lj : Lj−1] = 1, 2 or 3 for each j = 1, . . . , ℓ.

Now since 5
√
r is assumed to be in C, the Characterization theorem

implies that there is a real RMC tower N0, N1, . . . , Nm of Q with
5
√
r ∈ Nm. If we combine the two towers, then we get

L0 ⊆ · · · ⊆ Lℓ ⊆ LℓN1 ⊆ · · · ⊆ LℓNm,

which is an RMC tower, too, as is easily seen. Since 5
√
r /∈ Q(r),

the prime radical theorem, cf. [3, subsection 4.2 D], implies that
[Q( 5

√
r) : Q(r)] = 5. Moreover, since 5 - [Lℓ : Q], we see that

[Lℓ( 5
√
r) : Lℓ] = 5, by shifting from Q( 5

√
r)/Q(r) to Lℓ( 5

√
r)/Lℓ. Thus,

there is a positive integer t ≤ m such that 5
√
r ∈ LℓNt−LℓNt−1. Again,

by the prime radical theorem, we see that

[LℓNt−1(
5
√
r) : LℓNt−1] = 5.

This implies that
5 | [LℓNt : LℓNt−1].

But then, by the definition of an RMC tower,

[LℓNt : LℓNt−1] ≤ 6,

and thus,
[LℓNt : LℓNt−1] = 5,

and so,
LℓNt = LℓNt−1(

5
√
r).

Therefore,
L0, . . . , Lℓ, LℓN1, . . . , LℓNt

is the desired RMC tower. �
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Here is how we will use this result.

Corollary 4.2. Suppose that r is a marked ruler number such that
5
√
r /∈ Q(r). Then 5

√
r is an RMC number if and only if there exists a

subfield K of C, such that r ∈ K but 5
√
r /∈ K, numbers a, b, c, s ∈ K,

where a, c, s > 0, and a point

(x, y) = P ∈ Conx=a,(0,0) ∩ C(b,c),s,

such that the signed distance z = x/(x−a) from the origin to P satisfies

K( 5
√
r) = K(z).

Notice that when K( 5
√
r) = K(z), we have

z = u0 + u1
5
√
r + u2

5
√
r2 + u3

5
√
r3 + u4

5
√
r4,

for uniquely determined uj ∈ K.

Proof. The proof is an immediate consequence of the definition of
RMC numbers, Theorem 3.2 and Proposition 4.1, in which we take
K = Kn−1. �

From now on, we assume that z is the signed distance as given in
Corollary 4.2. By the Verging theorem, this signed distance, z, is a root
of a verging polynomial f(X) = X6 + a1X

5 + · · ·+ a6, where aj ∈ K.
But notice that z is of degree 5 over K. Let

p(X) = X5 + b1X
4 + b2X

3 + b3X
2 + b4X + b5

be the minimal polynomial of z over K. Thus, p(X) | f(X) in K[X],
and consequently, there is an element η of K, such that

f(X) = (X − η)p(X).

Multiplying out the right side and comparing coefficients yield the
following relations:

−2 = a1 = b1 − η,

a2 = b2 − ηb1,

a3 = b3 − ηb2,

a4 = b4 − ηb3,
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a5 = b5 − ηb4,

a6 = − ηb5.

Now, since

z =
4∑

j=0

uj
5
√
rj ,

we have

p(X) =

4∏
i=0

(X − zi) ,

where

zi =
4∑

j=0

ujζ
ij
5

5
√
rj .

We thus see in particular that

b1 = −
4∑

i=0

zi = −
∑
i

∑
j

ujζ
ij
5

5
√
rj = −

∑
j

uj
5
√
rj

∑
i

ζij5 = −5u0,

since
4∑

i=0

ζij5 =

{
5, if 5 | j,
0, otherwise,

and consequently,
η = 2− 5u0.

To get the bj and then aj in terms of the uj , one may use Newton’s
identities that relate coefficients of a polynomial with the “power sums”
of the roots. Use

p(X) = X5 + b1X
4 + · · ·+ b5 =

4∏
j=0

(X − zj),

for zj as above and the power sums, given as

sm =
4∑

i=0

zmi ,
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for any positive integer m. In this particular case, Newton’s identities
can be given as

sm + b1sm−1 + · · ·+ bm−1s1 +mbm = 0 for all m ∈ N,

where we define bm = 0 for m > 5. Now, solving for the bj yields

b1 = −s1,

b2 =
1

2

(
s21 − s2

)
,

b3 =
1

6

(
−s31 + 3s1s2 − 2s3

)
,

b4 =
1

24

(
s41 − 6s21s2 + 8s1s3 + 3s22 − 6s4

)
,

b5 =
1

120

(
−s51 + 10s31s2 − 20s21s3 − 15s1s

2
2 + 30s1s4 + 20s2s3 − 24s5

)
,

cf. [6, Section 46].

Now we need to get the power sums sj in terms of the uj . We have

sm =
4∑

i=0

zmi =
4∑

i=0

( 4∑
j=0

uj ζ
ij
5

5
√
rj
)m

.

By multiplying out and switching the order of the summations, one
obtains (with some effort, but verified by machine) the following rela-
tions:

s1 = 5u0,

s2 = 10r(u1u4 + u2u3) + 5u2
0,

s3 = 15r2(u2u
2
4+u2

3u4)+15r(2u0u1u4+2u0u2u3+u2
1u3+u1u

2
2)+5u3

0,

s4 = 20r3u3u
3
4 + 10r2(6u0u2u

2
4 + 6u0u

2
3u4 + 3u2

1u
2
4

+ 12u1u2u3u4 + 2u1u
3
3 + 2u3

2u4 + 3u2
2u

2
3)

+ 20r(3u2
0u1u4 + 3u2

0u2u3 + 3u0u
2
1u3 + 3u0u1u

2
2 + u3

1u2)

+ 5u4
0,

s5 = 5r4u5
4 + 5r3(20u0u3u

3
4 + 20u1u2u

3
4 + 30u1u

2
3u

2
4

+ 30u2
2u3u

2
4 + 20u2u

3
3u4 + u5

3)

+ 5r2(30u2
0u2u

2
4 + 30u2

0u
2
3u4 + 30u0u

2
1u

2
4 + 120u0u1u2u3u4
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+ 20u0u1u
3
3 + 20u0u

3
2u4

+ 30u0u
2
2u

2
3 + 20u3

1u3u4 + 30u2
1u

2
2u4

+ 30u2
1u2u

2
3 + 20u1u

3
2u3 + u5

2)

+ 5r(20u3
0u1u4 + 20u3

0u2u3 + 30u2
0u

2
1u3

+ 30u2
0u1u

2
2 + 20u0u

3
1u2 + u5

1) + 5u5
0.

Notice that the sm are given as

sm = 5
m−1∑
k=0

rk
∑

µ0,...,µ4≥0∑
j µj=m∑

j jµj=5k

m!

µ0!µ1!µ2!µ3!µ4!
uµ0

0 uµ1

1 uµ2

2 uµ3

3 uµ4

4 .

From this, we combine the two sets of expressions to obtain the bj
in terms of uj and r:

b1 = −5u0,

b2 = 5[−r(u1u4 + u2u3) + 2u2
0],

b3 = 5[−r2(u2u
2
4+u2

3u4)+r(3u0u1u4+3u0u2u3−u2
1u3−u1u

2
2)−2u3

0],

b4 = 5[−r3u3u
3
4 + r2(2u0u2u

2
4 + 2u0u

2
3u4 + u2

1u
2
4 − u1u2u3u4 − u1u

3
3

− u3
2u4 + u2

2u
2
3)

+ r(−3u2
0u1u4 − 3u2

0u2u3 + 2u0u
2
1u3 + 2u0u1u

2
2 − u3

1u2) + u4
0],

b5 = −r4u5
4 + r3(5u0u3u

3
4 + 5u1u2u

3
4 − 5u1u

2
3u

2
4 − 5u2

2u3u
2
4 + 5u2u

3
3u4

− u5
3)

+ r2(−5u2
0u2u

2
4−5u2

0u
2
3u4−5u0u

2
1u

2
4+5u0u1u2u3u4+5u0u1u

3
3

+ 5u0u
3
2u4 − 5u0u

2
2u

2
3 + 5u3

1u3u4 − 5u2
1u

2
2u4

− 5u2
1u2u

2
3 + 5u1u

3
2u3 − u5

2)

+ r(5u3
0u1u4 + 5u3

0u2u3 − 5u2
0u

2
1u3 − 5u2

0u1u
2
2 + 5u0u

3
1u2 − u5

1)

− u5
0.

Hence, the bm have the same form as the sm, but with different
coefficients:
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bm =
m−1∑
k=0

rk
∑

µ0,...,µ4≥0∑
j µj=m∑

j jµj=5k

Aµ0,...,µ4 u
µ0

0 uµ1

1 uµ2

2 uµ3

3 uµ4

4 ,

where Aµ0,...,µ4 are the integers determined above.

Now we can write down the aj in terms of the uj and r:

η = 2− 5u0,

a2 = −5r(u1u4 + u2u3)− 15u2
0 + 10u0,

a3 = −5r2(u2u
2
4 + u2

3u4)

+ r(−10u0u1u4−10u0u2u3−5u2
1u3+10u1u4−5u1u

2
2+10u2u3)

+ 40u3
0 − 20u2

0,

a4 = −5r3u3u
3
4

+ r2(−15u0u2u
2
4 − 15u0u

2
3u4 + 5u2

1u
2
4 − 5u1u2u3u4 − 5u1u

3
3

− 5u3
2u4 + 5u2

2u
2
3 + 10u2u

2
4 + 10u2

3u4)

+ r(60u2
0u1u4 + 60u2

0u2u3 − 15u0u
2
1u3 − 15u0u1u

2
2 − 30u0u1u4

− 30u0u2u3−5u3
1u2+10u2

1u3+10u1u
2
2)−45u4

0+20u3
0,

a5 = −r4u5
4 + r3(−20u0u3u

3
4 + 5u1u2u

3
4 − 5u1u

2
3u

2
4 − 5u2

2u3u
2
4

+ 5u2u
3
3u4 − u5

3 + 10u3u
3
4)

+ r2(45u2
0u2u

2
4 + 45u2

0u
2
3u4 + 20u0u

2
1u

2
4 − 20u0u1u2u3u4

− 20u0u1u
3
3 − 20u0u

3
2u4 + 20u0u

2
2u

2
3 − 20u0u2u

2
4

− 20u0u
2
3u4 + 5u3

1u3u4 − 5u2
1u

2
2u4 − 5u2

1u2u
2
3

− 10u2
1u

2
4 + 5u1u

3
2u3 + 10u1u2u3u4 + 10u1u

3
3 − u5

2

+ 10u3
2u4 − 10u2

2u
2
3)

+ r(−70u3
0u1u4 − 70u3

0u2u3 + 45u2
0u

2
1u3 + 45u2

0u1u
2
2 + 30u2

0u1u4

+ 30u2
0u2u3 − 20u0u

3
1u2 − 20u0u

2
1u3 − 20u0u1u

2
2

− u5
1 + 10u3

1u2)

+ 24u5
0 − 10u4

0,

a6 = r4u5
4(2− 5u0) + r3(5u0 − 2)(5u0u3u

3
4 + 5u1u2u

3
4 − 5u1u

2
3u

2
4
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− 5u2
2u3u

2
4 + 5u2u

3
3u4 − u5

3)

+ r2(5u0 − 2)(−5u2
0u2u

2
4 − 5u2

0u
2
3u4 − 5u0u

2
1u

2
4

+ 5u0u1u2u3u4 + 5u0u1u
3
3 + 5u0u

3
2u4 − 5u0u

2
2u

2
3 + 5u3

1u3u4

− 5u2
1u

2
2u4 − 5u2

1u2u
2
3 + 5u1u

3
2u3 − u5

2)

+ r(5u0 − 2)(5u3
0u1u4 + 5u3

0u2u3 − 5u2
0u

2
1u3

− 5u2
0u1u

2
2 + 5u0u

3
1u2 − u5

1)

+ (2− 5u0)u
5
0.

Example 4.3. As a simple example, we show a negative result. Sup-
pose we verge through a point V between a line L and a circle C,
where V has coordinates which are marked ruler numbers and L and
C have equations whose coefficients are marked ruler numbers. For all
marked ruler numbers r such that 5

√
r /∈ Q(r), the distance from V to

the primary point P is never 5
√
r.

Suppose otherwise. Then, by applying an appropriate rigid motion,
we may assume V, L,C and P are as given in Corollary 4.2, and the
signed distance z from V to P is 5

√
r for some marked ruler number r

such that 5
√
r /∈ Q(r).

Now let K be the field of marked ruler numbers. By the characteri-
zation of marked ruler numbers in terms of 2-3 towers we see that, for
any subfield F of K of finite degree over Q, [F : Q] = 2α3β , for some
nonnegative integers α and β.

Now notice thatK satisfies the conditions in Corollary 4.2, for clearly
all the verging parameters are in K; r is in K, since r is a marked ruler
number. But, 5

√
r /∈ K, since otherwise 5 = [Q( 5

√
r) : Q(r)] (by the

prime radical theorem) would be a divisor of [Q( 5
√
r) : Q] = 2k3ℓ by

the comment above. Thus, by Corollary 4.2, we have

z = 5
√
r = u0 + u1

5
√
r + u2

5
√
r2 + u3

5
√
r3 + u4

5
√
r4,

and so, by the uniqueness of the uj , u1 = 1 and u0 = u2 = u3 = u4 = 0.
Also we see that z = 5

√
r is a root of the verging polynomial,

f(X) = X6 + a1X
5 + · · ·+ a6,

associated with the verging parameters above. By our previous calcu-
lations, we see that
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η = 2, b1 = b2 = b3 = b4 = 0, b5 = −r,

as can be verified independently, sinceX5−r is the minimal polynomial
of 5

√
r over Q(r). Also notice that

a1 = −2, a2 = a3 = a4 = 0, a5 = −r, a6 = 2r,

which again can be verified directly.

Now, by condition (i) in the verging theorem, we have 9r2 = 8r and

thus r = 8/9. Hence 5
√
8/9 is the only candidate for a signed distance

as described above. In this case, notice that a5 = −8/9 and a6 = 16/9.

With respect to condition (2ε), we must have 0 > −ε ·10/3, in which

case we see that ε = +1, and thus c+ =
√

5/12.

Next, notice that m = 2 and B = −35/9.

Finally, we check condition (3+). This condition does not hold, since
2 ̸> 14/3. Thus, 5

√
r is not a signed distance.

The reason this example is computationally easy is that condition
(i) is simple to work with in this case. This is what happened in
constructing a hendecagon, too, which made the computations fairly
simple, cf. [2]. Clearly, however, if more of the uj do not vanish, then
(i) becomes seemingly unmanageable.

Example 4.4. Our next example involves determining signed distances
of the form z = 5

√
r+u

5
√
r2 (cf. Corollary 4.2), where again r is a marked

ruler number with 5
√
r /∈ Q(r), and u ∈ K with K is again the field of

marked ruler numbers. Hence, we assume that u1 = 1, without loss of
generality, u2 = u, and that the rest of the uj vanish. Notice that, if z
is an RMC number (implying that K(z) ⊆ C), then so is 5

√
r, since

K ( K(z) ⊆ K( 5
√
r),

which implies that K(z) = K( 5
√
r), since [K( 5

√
r) : K] = 5 by the prime

radical theorem. We now plug these values into the above expressions
for the aj and find that η = 2,

a1 = −2,

a2 = 0,
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a3 = −5u2r,

a4 = 5(2u2 − u)r,

a5 = −u5r2 + (10u− 1)r,

a6 = 2u5r2 + 2r.

Hence, if z is a signed distance and a root of the verging polynomial
f(X), then by the verging theorem, condition (i) must be satisfied, i.e.,

(2a6 + a5)
2 = a6m

2,

where in our present case m = 2 + 5u2r. Therefore, condition (i)
becomes

A0r
4 +A1r

3 +A2r
2 +A3r = 0,

where the Aj = Aj(u) are given by

A0 = u9(9u− 50),

A1 = −2u4(20u3 − 30u2 − 9u+ 25),

A2 = −8u5 + 60u2 + 60u+ 9,(4.1)

A3 = −8.

Since r ̸= 0, equation (4.1) thus becomes the cubic equation in r and
tenth degree in u,

g(u, r) = 0,

where
g(u, r) = A0r

3 +A1r
2 +A2r +A3.

If we are given some specific marked ruler number r, say 2, for
example, for which 5

√
r /∈ Q(r), then we would need to solve a tenth

degree polynomial equation in u, check to see if u is a marked ruler
number, and then check the other conditions of the verging theorem to
see if z is an RMC number. Needless to say, this seems like a daunting
task.

The trick for us is to consider a convenient value for u, say some
integer or even a rational number, and then to solve for r which will
be of degree at most 3 over Q and thus a marked ruler number. We
then would like to check the conditions of the verging theorem to see if
5
√
r + u

5
√
r2 is an RMC number.
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One obvious choice of u is 50/9, which yields a quadratic equation in
r, since we then have A0 = 0. Unfortunately, the zeros of this equation
do not satisfy (3ε) of the verging theorem.

After some trial and error, which we will say more about below, we
chose u = 7. For u = 7, the cubic equation becomes

(79 · 13)r3 − (2 · 74 · 5352)r2 − 131087r − 8 = 0,

or equivalently,

524596891r3 − 25700304r2 − 131087r − 8 = 0.

The rational root theorem, for example, shows that this equation is
irreducible over Q. A quick check yields three real solutions for r, one
positive and the other two negative. Their approximate values are

r
.
= 0.05365 . . . − 0.00006 . . . − 0.00460 . . . .

We consider the unique positive value for r (the other two values do
not satisfy all the conditions of the verging theorem). For convenience,
we estimate the values of the aj , m and B.

a1 = −2,

a2 = 0,

a3
.
= −13.14503 . . .

a4
.
= 24.41221 . . .

a5
.
= −44.67969 . . .

a6
.
= 96.87083 . . .

m
.
= 15.14503 . . .

B
.
= −31.71786 . . . .

By construction, (0) and (1) of the verging theorem are certainly
satisfied. For (2ε), we must have ε = +1, since a3 < 0. In this case, we
get

c = c+
.
= 1.17681 . . . .

But then (3+) is satisfied and yields

a = a+
.
= 0.96094 . . .
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in which case
b = b+

.
= 3.94015 . . . .

Now, (4+) is also satisfied and gives

s = s+
.
= 2.65846 . . . .

Finally, to double check (5+), notice that

(s2 − b2 − c2)2
.
= 96.87083 . . .

.
= a6.

The other possible solution of (1), above, would give a value for a6
between 5 and 6. Thus, by the verging theorem, z = 5

√
r + 7

5
√
r2 is

an RMC number and therefore so is 5
√
r. This example provides a

nontrivial case of a fifth root of a marked ruler number r which is
constructible by marked ruler and compass.

We now summarize this result as a theorem.

Theorem 4.5. Let r be the unique positive real root of the irreducible
polynomial

524596891X3 − 25700304X2 − 131087X − 8.

Hence, r is constructible by marked ruler. Then the real fifth root, 5
√
r,

is constructible by marked ruler and compass.

By numerical experimentation, it appears that, for any real number
u in the interval [6.5, 34], the cubic equation g(u, r) = 0 above has
exactly one positive solution r = ru, and the corresponding value of
z satisfies the conditions of the verging theorem. We found that, for
every integer in the interval [7, 34], the number 5

√
ru is an RMC number

by arguing as we did above for u = 7. Moreover, as u increases over
all real numbers from 6.5 to 34, ru appears to decrease from about
1/11.033 to 1/4329. With this in mind and with the goal of finding
rational numbers whose real fifth roots are RMC numbers, we tried
to pick rational numbers in this range for r in the hope of finding a
solution of g(u, r) = 0 with u ∈ [6.5, 34] such that u would be a marked
ruler number. Given this observation, we tried taking r = 1/64 and
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solving for u in the equation:

g

(
u,

1

64

)
= 0.

The strategy was that perhaps g(u, 1/64) has a splitting field whose
Galois group could show that u is marked ruler constructible, in which
case, 5

√
1/64 and thus also 5

√
2 would be shown to be constructible by

marked ruler and compass. Using Mathematica we found that g factors
into the linear factor u + 2 and a ninth degree irreducible polynomial
over Q, namely,

g

(
x,

1

64

)
=

1

218
(x+ 2)h(x),

where

h(x) = 32 x9 − 22 · 17x8 + 23 · 17x7 − 24 · 3
· 59x6 + 25 · 33 · 11x5 − 26 · 7 · 113x4 + 28

· 383x3 − 29 · 383x2 + 210 · 7 · 89x− 211 · 503.

Now let y = x/2 and k(y) = 29h(x). Then

k(y) = 9 y9 − 34 y8 − 34 y7 − 354 y6 + 594 y5

− 1582 y4 + 1532 y3 − 1532 y2 + 2492 y − 2012,

which is irreducible over Z.
Moreover, modulo 5,

k(y) ≡ 4(y2 + 2y + 3)(y7 + 2y6 + 2y5 + 4y4 + 2y3 + y2 + 4) mod 5Z[y],

where the two factors are irreducible in F5[y], again by using Mathe-

matica. Now, by a theorem of Dedekind, cf. [3, page 398], we see that
if we embed the Galois group, G, of the splitting field of k(y) over Q
into S9, then G contains an element σ such that

σ = (a1 a2)(b1 b2, . . . , b7),

where
{a1, a2} ∪ {b1, . . . , b7} = {1, 2, . . . , 9}.

Thus, G contains an element of order 14, implying that the order of G
is a multiple of 7. Now, by this, we see that u cannot be a marked ruler
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number, since otherwise, G would have order 2a3b, cf. [3, Theorems
10.3.6, 10.3.11].

5. Conclusion. As we have shown above there are nontrivial exam-
ples of real fifth roots of cubic irrationals which are constructible by
marked ruler and compass. However, this still leaves open the question
of whether or not fifth roots of all rational numbers are constructible
by marked ruler and compass.

We leave the reader with a specific question. Is 5
√
2, for example,

constructible by marked ruler and compass? It may be possible to
answer this question with some further analysis of the results given in
this paper–at least that is our hope.
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