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NON-PERIODIC GEODESIC BALL PACKINGS
GENERATED BY INFINITE REGULAR

PRISM TILINGS IN S̃L2R SPACE

JENŐ SZIRMAI

ABSTRACT. In [14] we defined and described the regular

infinite or bounded p-gonal prism tilings in S̃L2R space.
We proved that there exist infinitely many regular infinite
p-gonal face-to-face prism tilings T i

p (q) and infinitely many

regular bounded p-gonal non-face-to-face prism tilings Tp(q)
for integer parameters p, q, 3 ≤ p, 2p/(p− 2) < q. Moreover,
in [5, 7] we have determined the symmetry group of Tp(q)
via its index 2 rotational subgroup, denoted by pq21 and
investigated the corresponding geodesic and translation ball
packings.

In this paper, we study the structure of the regular
infinite or bounded p-gonal prism tilings and we prove that
the side curves of their base figures are arcs of Euclidean
circles for each parameter. Furthermore, we examine the
non-periodic geodesic ball packings of congruent regular non-
periodic prism tilings derived from the regular infinite p-

gonal face-to-face prism tilings T i
p (q) in S̃L2R geometry. We

develop a procedure to determine the densities of the above
non-periodic optimal geodesic ball packings and apply this
algorithm to them. We search for values of parameters p and
q that provide the largest packing density. In this paper, we
obtain greater density 0.626606 . . . for (p, q) = (29, 3) than
the maximum density of the corresponding periodic geodesic
ball packings under the groups pq21.

In our work we use the projective model of S̃L2R
introduced by Molnár in [2].

1. Basic notions. The real 2× 2 matrices ( d b
c a ) with unit determi-

nant ad − bc = 1 constitute a Lie transformation group by the usual
product operation, taken to act on row matrices as on point coordinates
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on the right as follows:

(1.1)

(z0, z1)

(
d b
c a

)
= (z0d+ z1c, z0b+ z1a) = (w0, w1)

with w =
w1

w0
=
b+ (z1/z0)a

d+ (z1/z0)c
=
b+ za

d+ zc
,

as action on the complex projective line C∞ (see [2, 3]). This group
is a three-dimensional manifold, because of its three independent real
coordinates and with its usual neighborhood topology ([8, 9, 16]). In
order to model the above structure in the projective sphere PS3 and
in the projective space P3 (see [2]), we introduce the new projective
coordinates (x0, x1, x2, x3) where

a := x0 + x3, b := x1 + x2, c := −x1 + x2, d := x0 − x3,

with the positive, then the non-zero multiplicative equivalence as pro-
jective freedom in PS3 and in P3, respectively. Then it follows that
0 > bc− ad = −x0x0 −x1x1 +x2x2 +x3x3 describes the interior of the
above one-sheeted hyperboloid solid H in the usual Euclidean coordi-
nate simplex with the origin E0(1; 0; 0; 0) and the ideal points of the
axes

E∞
1 (0; 1; 0; 0), E∞

2 (0; 0; 1; 0), E∞
3 (0; 0; 0; 1).

We consider the collineation group G∗ that acts on the projective
sphere SP3 and preserves a polarity, i.e., a scalar product of signature
(− − ++), this group leaves the one sheeted hyperboloid solid H
invariant. We have to choose an appropriate subgroup G of G∗ as

an isometry group. Then the universal covering group and space H̃ of

H will be the hyperboloid model of S̃L2R, [2].

The specific isometries S(ϕ), ϕ ∈ R, constitute a one parameter
group given by the matrices:

(1.2) S(ϕ) : (sji (ϕ)) =


cosϕ sinϕ 0 0
− sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ

 .

The elements of S(ϕ) are the so-called fibre translations. We obtain a

unique fibre line to each X(x0;x1;x2;x3) ∈ H̃ as the orbit under the
right action of S(ϕ) on X. The coordinates of points lying on the fibre
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line through X can be expressed as the images of X by S(ϕ):

(1.3)
(x0;x1;x2;x3)

S(ϕ)−→ (x0 cosϕ− x1 sinϕ;x0 sinϕ+ x1 cosϕ;

x2 cosϕ+ x3 sinϕ;−x2 sinϕ+ x3 cosϕ).

The points of a fibre line through X by usual inhomogeneous Euclidean
coordinates

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
, x0 ̸= 0

are given by

(1.4) (1;x; y; z)
S(ϕ)−→

(
1;

x+ tanϕ

1− x tanϕ
;
y + z tanϕ

1− x tanϕ
;
z − y tanϕ

1− x tanϕ

)
for the projective space P3, where ideal points (at infinity) convention-
ally occur.

In (1.3) and (1.4) we can see the 2π periodicity of ϕ, moreover the
(logical) extension to ϕ ∈ R, as a real parameter, to have the universal

covers H̃ and S̃L2R, respectively, through the projective sphere PS3.
The elements of the isometry group of SL2R (and so by the above

extension the isometries of S̃L2R) can be described by the matrix (aji ),
see [2, 3]. Moreover, we have the projective proportionality, of course.
We define the translation groupGT as a subgroup of the isometry group
of SL2R, the isometries acting transitively on the points of H and by

the above extension on the points of S̃L2R and H̃. GT maps the
origin E0(1; 0; 0; 0) onto X(x0;x1;x2;x3). These isometries and their
inverses (up to a positive determinant factor) are given by the following
matrices:

(1.5) T : (tji ) =


x0 x1 x2 x3

−x1 x0 x3 −x2
x2 x3 x0 x1

x3 −x2 −x1 x0

 .

The rotation about the fibre line through the origin E0(1; 0; 0; 0) by
angle ω (−π < ω ≤ π) can be expressed by the following matrix,



1058 JENŐ SZIRMAI

see [2],

(1.6) RE0(ω) : (r
j
i (E0, ω)) =


1 0 0 0
0 1 0 0
0 0 cosω sinω
0 0 − sinω cosω

 ,

and the rotation RX(ω) about the fibre line through X(x0;x1;x2;x3)
by angle ω can be derived by formulas (1.5) and (1.6):

(1.7) RX(ω) = T−1RE0(ω)T : (rji (X,ω)).

Horizontal intersection of the hyperboloid solid H with the plane

E0E
∞
2 E∞

3 provides the hyperbolic H2 base plane of the model H̃ =

S̃L2R. The fibre through X intersects the base plane z1 = x = 0 in
the foot point
(1.8)
Z(z0 = x0x0 + x1x1; z1 = 0; z2 = x0x2 − x1x3; z3 = x0x3 + x1x2).

After [2], we introduce the so-called hyperboloid parametrization as
follows:

(1.9)
x0 = cosh r cosϕ, x1 = cosh r sinϕ,

x2 = sinh r cos (θ − ϕ), x3 = sinh r sin (θ − ϕ),

where (r, θ) are polar coordinates of the base plane and ϕ is just the
fibre coordinate. We note that

−x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1 < 0.

The inhomogeneous coordinates corresponding to (1.9), that play an
important role in the later visualization of prism tilings in E3, are given
by

(1.10)

x =
x1

x0
= tanϕ, y =

x2

x0
= tanh r

cos (θ − ϕ)

cosϕ
,

z =
x3

x0
= tanh r

sin (θ − ϕ)

cosϕ
.
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1.1. Geodesic balls in S̃L2R.

Definition 1.1. The distance d(P1, P2) between the points P1 and P2

is defined by the arc length of the geodesic curve from P1 to P2.

Definition 1.2. The geodesic sphere of radius ρ (denoted by SP1(ρ))
with the center at P1 is defined as the set of all points P2 satisfying
d(P1, P2) = ρ. Moreover, we require that the geodesic sphere is a simply
connected surface without self-intersection.

Definition 1.3. The body of the geodesic sphere of center P1 and with
radius ρ is called geodesic ball, denoted by BP1(ρ), i.e., Q ∈ BP1(ρ) if
and only if 0 ≤ d(P1, Q) ≤ ρ.

From the results [5] it follows that if ρ ∈ [0, π2 ) then S(ρ) is a simply

connected surface in E3 and S̃L2R, respectively. If ρ ≥ π
2 then the

universal cover should be discussed. Therefore, we consider geodesic
spheres and balls only with radii ρ ∈ [0, π2 ) in what follows.

1.2. The volume of a geodesic ball. The volume formula of the
geodesic ball B(ρ) follows from the metric tensor gij , see [5]. We
obtain the connection between the hyperboloid coordinates (r, θ, ϕ) and
the geographical coordinates (s, λ, α) in a standard way. Therefore,
the volume of the geodesic ball of radius ρ can be computed by the
following:

Theorem 1.4.

(1.11)

Vol (B(ρ)) =

∫
B

1

2
sinh(2r) dr dθ dϕ

= 4π

∫ ρ

0

∫ π/4

0

1

2
sinh(2r(s, α))|̇J1| dα ds

+ 4π

∫ ρ

0

∫ π/2

π/4

1

2
sinh(2r(s, α))|̇J2| dα ds,

where |J1| =
∣∣∣ ∂r/∂s ∂r/∂α
∂ϕ/∂s ∂ϕ/∂α

∣∣∣ and similarly |J2| (by Table 1 and ∂θ/∂λ = 1)

are the corresponding Jacobians.
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1.3. Regular bounded periodic prism tilings and their space
groups pq21. In [14], we defined and described the regular prisms

and prism tilings with a space group class Γ = pq21 of S̃L2R. These
will be summarized in this section.

Definition 1.5. Let Pi be an infinite solid that is bounded by certain
surfaces determined (as in [14]) by “side fibre lines” passing through
the vertices of a regular p-gon Pb lying in the base plane. The images of

solids Pi by S̃L2R isometries are called infinite regular p-sided prisms.
Here, regular means that the side surfaces are congruent to each other
under rotations about a fiber line (e.g., through the origin).

The common part of Pi, with the base plane is the base figure of Pi

that is denoted by P and its vertices coincide with the vertices of Pb,
but P is not assumed to be a polygon.

Definition 1.6. A bounded regular p-sided prism is an isometric image
of a solid which is bounded by the side surfaces of a regular p-sided
infinite prism Pi, its base figure P and the translated copy Pt of P by
a fibre translation, given by (1.2). The faces P and Pt are called cover
faces.

We consider regular prism tilings Tp(q) by prisms Pp(q) where q
pieces regularly meet at each side edge by q-rotation.

The following theorem has been proved in [14].

Theorem 1.7. There exist regular, bounded prism tilings Tp(q) in

S̃L2R that are not face-to-face for all integers p and q such that 3 ≤ p
and 2p/(p− 2) < q.

We assume that the prism Pp(q) is a topological polyhedron having
at each vertex one p-gonal cover face (it is not a polygon at all) and
two skew quadrangles which lie on certain side surfaces in the model.
Let Pp(q) be one of the tiles of Tp(q); Pb is centered in the origin with
vertices A1A2A3 · · ·Ap in the base plane (Figures 1 and 2). It is clear
that the side curves, cAiAi+1 , i = 1, . . . , p, Ap+1 ≡ A1, of the base
figure are derived from each other by 2π/p rotation about the vertical
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x axis, so they are congruent in the S̃L2R sense. The corresponding
vertices B1B2B3 · · ·Bp are generated by a fibre translation τ given by
(1.3) with real parameter Φ > 0. The fibre lines through the vertices
AiBi are denoted by fi, i = 1, . . . , p, and the fibre line through the
“midpoint” H of the curve cA1Ap is denoted by f0. This f0 will be a
half-screw axis as follows below.

p=3;q=7

2
B

H

H

B
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1

1

B
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2

O
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3
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-1
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Figure 1. The regular prism Pp(q) and the fundamental domain of the
space group pq21

The tiling Tp(q) is generated by a discrete isometry group Γp(q) =

pq21 ⊂ Isom (S̃L2R) given by its fundamental domain A1A2OA
s
1A

s
2O

s

a topological polyhedron and the group presentation (see Figures 1 and
4 for p = 3 and [14] for details):

(1.12)
pq21 = {a,b, s : ap = bq = asa−1s−1 = babs−1 = 1}

= {a,b : ap = bq = ababa−1b−1a−1b−1 = 1}.

Here a is a p-rotation about the fibre line through the origin (x axis),
b is a q-rotation about the fibre line trough A1 and s = bab is a
screw motion s : OA1A2 → OsBpB1. All these can be obtained by
formulas (1.5) and (1.6). Then we get that abab = baba =: τ is a
fibre translation. Then ab is a 21 half-screw motion about f0 = HHτ

(see Figure 1) that also determines the fibre translation τ above. This
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group in (3.1) surprisingly occurred in [6, Section 6] at double links
Kp,q. The coordinates of the vertices A1A2A3 · · ·Ap of the base figure
and the corresponding vertices B1B2B3 · · ·Bp of the cover face can be
computed for all given parameters p, q by

(1.13) tanh(OA1) = b :=

√
1− tanπ/p tanπ/q

1 + tanπ/q tanπ/q
.

1.4. The volume of the bounded regular prisms. The volume
formula of a sector-like three dimensional domain Vol (D(Ψ)) can be
computed routinely by the metric tensor gij , see [5], in the hyperboloid
coordinates. This is defined by the base figure D lying in the base plane
and by fibre translation τ given by (1.3) with the height parameter Ψ.

Theorem 1.8. Suppose we are given a sector-like region D, a con-
tinuous function r = r(θ), where the radius r depends upon the polar
angle θ. The volume of the domain D(Ψ)) is derived by the following
integral :

(1.14)

Vol (D(Ψ)) =

∫
D

1

2
sinh(2r(θ))/, dr dθ dψ

=

∫ Ψ

0

∫ θ2

θ1

∫ r(θ)

0

1

2
sinh(2r(θ)) dr dθ dψ

= Ψ

∫ θ2

θ1

1

4
(cosh(2r(θ))− 1) dθ.

Letting Pp(q) be an arbitrary bounded regular prism, we get the
following.

Theorem 1.9. The volume of the bounded regular prism Pp(q) (3 ≤
p ∈ N, 2p/(p− 2) < q ∈ N) is given by the following simple formula:

(1.15) Vol (Pp(q)) = Vol (D(p, q,Ψ)) · p,

where Vol (D(p, q,Ψ)) is the volume of the sector-like three dimensional
domain given by the sector region OA1A2 ⊂ P (see Figures 1 and 3)

and by Ψ, the S̃L2R height of the prism, depending on p, q.
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Figure 2. Regular infinite 4-gonal prism Pi
4(6) of the infinite regular prism

tiling T i
4 (6).

2. Regular infinite prism tilings and non-periodic ball pack-
ings.

2.1. Infinite regular prism tilings. In this subsection, we study
the regular infinite prism tilings T i

p (q). Let Tp(q) be a regular prism
tiling, and let Pp(q) be one of its tiles given by its base figure P,
centered at the origin K with vertices G1G2G3 · · ·Gp in the base
plane of the model and the corresponding vertices A1A2 A3 · · ·Ap and
B1B2B3 · · ·Bp generated by fibre translations −τ and τ given by (1.3)
with parameter Ψ = π/2 − π/p − π/q. The images of the topological
polyhedron Pp(q) by the translations ⟨τ⟩ form an infinite prism Pi

p(q)
(see Definitions 1.5 and 1.6).

By the construction of the bounded prism tilings it follows that
the rotation through ω = 2π/q about the fibre lines fi maps the
corresponding side face onto the neighboring one. Therefore, we obtain
the following (see [14]):

Theorem 2.1. There exist regular infinite face-to-face prism tilings
T i
p (q) for integer parameters p ≥ 3 and q > 2p/(p− 2).
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Figure 3. The maximum radius ρopt(K) and the optimal half-prism
A1A2A3G1G2G3 with the optimal half-sphere for parameters p = 3, q = 7
with the maximum radius

For example, we have described Pi
4(6) with its base polygon in

Figure 2, with b = (
√
6−

√
2)/2.

2.2. Non-periodic geodesic ball packings. We consider an infinite
regular prism tiling T i

p (q) and let Pi
p(q) be one of its tiles with base

figure P centered at the origin with vertices G1G2 · · ·Gp in the base

plane of the model. Let Bopt
K be the geodesic ball with center at the

origin K that touches the side surfaces of the infinite regular prism
Pi
p(q). The radius of the ball B

opt
K is denoted by ρopt(K). Moreover, we

define the regular prism Popt
p (q) = A1A2 · · ·ApB1B2 · · ·Bp with base

figure P and with cover faces A1A2 · · ·Ap and B1B2 · · ·Bp touching

Bopt
K . It is clear that the height hoptp (q) of Popt

p (q) is 2ρopt(K).

The images of Popt
p (q) by the fibre translations ⟨τ⟩ where hoptp (q) =

|τ | = 2ρopt(K) covers the infinite regular prism Pi
p(q) and by the

structure of the infinite prism tilings follows the rotations through
ω = 2π/q about the fibre lines. fi maps the corresponding side face

onto the neighboring one and thus the images of Popt
p (q) fill the S̃L2R

space without overlap. These tilings are denoted by T n
p (q).
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The height hoptp (q) of the prism Popt
p (q) is not equal to π−2π/p−2π/q

so the corresponding regular prism tiling is non-periodic. We note here
that there are infinitely many non-periodic prism tilings derived from
T n
p (q).

For the density of the packing it is sufficient to relate the volume of
the optimal ball to that of the solid Popt

p (q). The density of the optimal
ball packing of the prism tiling T n

p (q) (with integer parameters p ≥ 3
and q > 2p/(p− 2)) can be computed by the formula:

δoptp (q) :=
Vol (Bopt

K )

Vol (Popt
p (q))

.

B

B
G

G

G

A

A

A

3

3

2

1

1

1 B
3

2

2

Figure 4. The optimal prism A1A2A3B1B2B3 with optimal sphere for
parameters p = 3, q = 7, of maximum radius ρopt(K)

In order to determine the optimal radius ρopt(K) we will use the
following lemmas.

Lemma 2.2. The parametric equation of the side curve cG1G2 of the
base figure P is

cqp(t) =

(
0,

√
sin

(
2π

p
+

2π

q

)(
t cos

(
2π

p

)
sin2

(
π

p
+
π

q

)



1066 JENŐ SZIRMAI

− t

2
sin

(
2π

p

)
sin

(
2π

p
+

2π

q

)
+ sin2

(
π

p
+
π

q

)
(1− t)

+ t2 cos

(
π

p
+
π

q

)
cos

(
π

p
− π

q

))/
·
(√(

sin

(
2π

p

)
+ sin

(
2π

q

))
(2.1)

·
(
sin2

(
π

p
+
π

q

)
+ t2 cos2

(
π

p
+
π

q

)))
,

t

√
sin

(
2π

p
+

2π

q

)(
sin

(
2π

p

)
sin2

(
π

p
+
π

q

)
+

1

2
cos

(
2π

p

)
sin

(
2π

p
+

2π

q

)
(1− t)

+ cos

(
π

p
+
π

q

)(
t sin

(
2π

p

)
cos

(
π

p
+
π

q

)
+ sin

(
π

p
+
π

q

)
(t− 1)

))/
·
(√(

sin

(
2π

p

)
+ sin

(
2π

q

))
·
(
sin2

(
π

p
+
π

q

)
+ t2 cos2

(
π

p
+
π

q

)))
, t ∈ [0, 1].

The equation of the side curve cG1G2 is derived by formulas (1.3) and
(1.8). Therefore, they are congruent and their curvatures are equal in

the S̃L2R sense. Moreover, the side curves are also congruent in the
Euclidean sense; therefore, their curvatures are equal in the Euclidean
sense as well. Our next lemma is obtained by applying some routine
techniques commonly used in differential geometry.

Lemma 2.3. The curvature Cp(q) of the side curves cGiGi+1 , i =
1, . . . , p, Gp+1 ≡ G1, in the Euclidean sense is

(2.2) Cp(q) =

√
cos (π/p+ π/q) (sin (2π/p) + sin (2π/q))

sin (π/p+ π/q) (1− cos (2π/p))
;
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therefore, the side curves cGiGi+1 (i = 1, . . . , p, Gp+1 ≡ G1) are
Euclidean circular arcs of radius rqp = 1/Cp(q).

Remark 2.4.

(i) It is easy to see that the asymptotic behavior of Cp(q) is as follows:

lim
q→∞

(Cp(q)) = cot

(
π

p

)
, lim

p→∞
(Cp(q)) = ∞.

(ii) Given a line and a point not on it, let x be the distance from the
point to the line along the perpendicular segment dropped from
the point to the line. Let ϕ = Π(x) be the least angle, such that
the line drawn through the point at that angle does not intersect
the given line. This angle is called the angle of parallelism. By
the famous formula of J. Bolyai it follows that log(cot(ϕ)) = x.
Therefore, if we denote the distance of parallelism of the angle ϕ
by Λ(ϕ), then

log
(

lim
q →∞

(Cp(q))
)
= log

(
cot

(
π

p

))
= Λ

(
π

p

)
.

Table 1 lists the radii of curvature rq3 of the side curve cG1G2 of the
base figure P.

Table 1

(p, q) (3, 7) (3, 8) (3, 10) (3, 1000)
Cp(q) 0.286926 0.371579 0.453885 0.577339
rqp 3.485219 2.691215 2.203203 1.732085

The maximum radius ρopt(K) of the balls Bopt
K can be determined

by applying the above lemmas for all possible parameters as the
distance between the origin and cG1G2 . The volumes Vol (Bopt

K ) can
be computed by Theorem 1.8, and the volumes of the prisms Popt

p (q)
can be determined by Theorem 1.9.

The above locally dense geodesic ball packings can be determined
for all regular prism tilings T n

p (q) (p, q as above); our results are
summarized in Tables 2 and 3.
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Remark 2.5.

(i) The best density that we found is approximately 0.626606, at-
tained at parameters p = 29, q = 3, that is greater than the maxi-
mum density of the corresponding periodic geodesic ball packings
under the groups pq21.

(ii) The problems of finding the densest geodesic and translation ball
packings are timely and intensively investigated in other Thurston
geometries, as well (see e.g., [4, 10, 11, 12, 13]).

Table 2.

(p, q) ρopt(K) Vol (Bopt
K ) Vol (Popt

p (q)) δoptp (q)

(3,7) 0.141564 0.011963 0.031767 0.376592

(3,8) 0.181760 0.025431 0.071377 0.356287

(3,10) 0.219795 0.045198 0.138101 0.327281

(3,1000) 0.274648 0.088981 0.428828 0.207499
...

...
...

...
...

(4,5) 0.265319 0.080085 0.166705 0.480397

(4,6) 0.329239 0.154965 0.344779 0.449464

(4,10) 0.404230 0.292043 0.761956 0.383280

(4,1000) 0.440683 0.382228 1.378910 0.277196
...

...
...

...
...

(5,4) 0.313435 0.133256 0.246171 0.541312

(5,5) 0.421241 0.332010 0.661684 0.501765

(5,10) 0.530638 0.686600 1.667047 0.411866

(5,1000) 0.562086 0.825191 2.639937 0.312580
...

...
...

...
...

(6,4) 0.440687 0.382237 0.692229 0.552183

(6,5) 0.530638 0.686600 1.333638 0.514833

(6,10) 0.629251 1.188024 2.767592 0.429263

(6,1000) 0.658476 1.377893 4.124915 0.334042
...

...
...

...
...

(7,3) 0.272637 0.087010 0.142753 0.609513

(7,4) 0.535202 0.705586 1.261041 0.559527

(7,5) 0.617496 1.117400 2.133913 0.523639

(7,10) 0.710652 1.772033 4.018646 0.440953
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Table 2 (Continued).

(p, q) ρopt(K) Vol (Bopt
K ) Vol (Popt

p (q)) δoptp (q)

(7,1000) 0.738668 2.015812 5.785244 0.348440
...

...
...

...
...

(8,3) 0.382143 0.245334 0.400179 0.613062

(8,4) 0.612113 1.086117 1.923010 0.564800

(8,5) 0.690221 1.608804 3.035751 0.529953

(8,10) 0.780165 2.422804 5.392115 0.449324

(8,1000) 0.807443 2.722797 7.589676 0.358750
...

...
...

...
...

Table 3.

(p, q) ρopt(K) Vol (Bopt
K ) Vol (Popt

p (q)) δoptp (q)

(10, 3) 0.530638 0.686600 1.111365 0.617799
...

...
...

...
...

(20, 3) 0.914848 4.195479 6.706186 0.625613

(20, 4) 1.094612 8.023914 13.755306 0.583332

(20, 5) 1.163424 10.092704 18.275027 0.552268

(20, 10) 1.245625 13.132701 27.392724 0.479423

(20, 1000) 1.271043 14.216772 35.858024 0.396474
...

...
...

...
...

(28, 3) 1.088398 7.855861 12.537440 0.626592

(29,3) 1.106311 8.348310 13.323054 0.626606

(30, 3) 1.123593 8.847342 14.119487 0.626605
...

...
...

...
...

(35, 3) 1.201914 11.432334 18.250297 0.626419
...

...
...

...
...

(40, 3) 1.269482 14.148085 22.599777 0.626028
...

...
...

...
...

(52, 3) 1.401728 21.089811 33.761388 0.624673
...

...
...

...
...

(72, 3) 1.565173 33.642710 54.088487 0.621994
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