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ON ALGEBRAS OF BANACH ALGEBRA-VALUED
BOUNDED CONTINUOUS FUNCTIONS
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ABSTRACT. Let X be a completely regular Hausdorff
space. We denote by C(X,A) the algebra of all continuous
functions on X with values in a complex commutative unital
Banach algebra A. Let Cb(X,A) be its subalgebra consisting
of all bounded continuous functions and endowed with the
uniform norm. In this paper, we give conditions equivalent
to the density of a natural continuous image of X ×M(A) in
the maximal ideal space of Cb(X,A).

1. Introduction. Throughout this paper, X will denote a com-
pletely regular Hausdorff space, A a complex commutative unital Ba-
nach algebra with norm ∥ · ∥ and unit element e and G(A) the set of
invertible elements of A. We may assume that ∥e∥ = 1. We shall use
the following notation for various function spaces:

C(X,A) is the unital algebra of all continuous functions on X with
values in A, with pointwise operations and unit element the function
on X identically equal to e and which will be denoted simply by e.

Cb(X,A) is the subalgebra of C(X,A) of all bounded continuous
functions, provided with the uniform norm ∥ · ∥∞ given by ∥f∥∞ =
supx∈X ∥f(x)∥.

When A is the complex field C, then we shall write C(X) and Cb(X)
instead of C(X,C) and Cb(X,C), respectively.

Cp(X,A) is the subalgebra of Cb(X,A) of all continuous functions
f such that the closure of its range in A, namely cl (f(X)), is compact
in A.
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It is easy to see that Cb(X,A) and Cp(X,A) are Banach algebras.
In general, Cp(X,A) is a proper subalgebra of Cb(X,A) as the next
example shows. Take X = N endowed with the discrete topology and
A = C([0, 1]) with the uniform norm. Let f : X → A be the function
given by f(n)(0) = f(n)(1) = 1, f(n)(1−1/n) = 1/n and f(n) is linear
elsewhere in [0, 1]. Then f ∈ Cb(X,A)�Cp(X,A), since the sequence
(f(n)) has no uniformly convergent subsequence in C([0, 1]).

Necessary and sufficient conditions for the equality of the latter
algebras are given in the next easily proven result.

Proposition 1.1. The following assertions are equivalent :

(i) Cb(X,A) = Cp(X,A).
(ii) If f ∈ Cb(X,A) and f(X) ⊂ G(A), then cl(f(X)) is compact.
(iii) For every f ∈ Cb(X,A), there exist λ1, λ2 ∈ C, with λ1 ̸= 0, such

that λ1f + λ2e ∈ Cp(X,A).

For every f ∈ Cp(X,A), there exists a unique extension f β of f to

the Stone-Čech compactification βX of X.

Let B be any complex commutative unital algebra. We denote by
M#(B) the set of all non-zero multiplicative linear functionals on B,
provided with the weak star topology w∗. When B is a topological
algebra, M(B) denotes the topological subspace of M#(B) consisting
of all non-zero multiplicative continuous linear functionals on B. For

b ∈ B, its Gelfand transform b̂ is given by b̂(φ) = φ(b), for φ ∈ M#(B).
The set M(B) is called the maximal ideal space of B and it coincides
with M#(B) if B is a Banach algebra.

There are several papers in which M#(B) or M(B) is characterized
when B is a function algebra. Well-known results are: M#(C(X)) =
X if X is a realcompact space ([5, page 3609, Theorem 1]) and
M(Cb(X)) = β(X) if X is a completely regular Hausdorff space ([11,
page 123, Theorem (3.2.11)]).

Along these lines, Dierolf, Schröder and Wengenroth proved in [3,
page 54, Theorem 1], the formula M#(C(X,E)) = X ×M#(E) for a
(completely regular Hausdorff) realcompact space X and a metrizable
topological algebra E. Under the same assumption on X this formula
was previously proved in [8, page 371, Theorem 5 (a)] by Hery
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supposing that E is a unital commutative topological Q-algebra with
continuous inversion and either M(E) is locally equicontinuous or X is
discrete.

Concerning the maximal ideal spaces of functions algebras, Hausner
in [7, page 248, Theorem], Dietrich in [4, page 207, Theorem 4] and
Kahn in ([9, page 89, Theorem 5.2.4]) proved that M(C(X,E)) =
X ×M(E). In the first of these works X is a compact Hausdorff space
and E is a unital complex commutative Banach algebra. In the second
one, X is any completely regular k-space and E is a unital complete
locally convex algebra such that M(E) is locally equicontinuous. In
Kahn’s, X is a completely regular space of finite covering dimension and
E is a unital topological algebra with non-trivial dual and such that
M(E) is locally equicontinuous. In all these papers C(X,E) carries
the compact-open topology. Using any of these results or [1, page
314, Corollary 6], the equality M(Cp(X,A)) = βX × M(A), which is
a particular case of [8, page 369, Corollary 2 (a)], is easily obtained in
Proposition 2.1 under our general hypothesis on X and A.

In contrast, little is known in general about the maximal ideal space
of Cb(X,A). Govaerts showed in [6, page 156, Counterexample 1] that
M(Cb(X,A)) = βX × M(A) is false in general, and Kahn proved in
[9, page 89, Corollary 5.2.3] that M(Cb(X,E)) = X × M(E), where
Cb(X,E) is endowed with the strict topology for any completely regular
space X of finite covering dimension and a unital topological algebra
E with non-trivial dual for which M(E) is locally equicontinuous. The
notion of the strict topology on Cb(X,E) was first introduced by Buck
in [2, page 97, Definition] in the case of X locally compact and E
locally convex.

Here we study M(Cb(X,A)). We define a natural continuous
transformation T from X × M(A), with the product topology, into
M(Cb(X,A)). Therefore, each function f ∈ Cb(X,A) has its proper

Gelfand transform f̂ ∈ C(M(Cb(X,A))) and also another Gelfand

transform f̃ = f̂ ◦ T belonging to Cb(X × M(A)). We prove that

the transformation f → f̃ is a continuous homomorphism.

Let A be a complex completely symmetric algebra, i.e., a complex
commutative unital Banach algebra with involution ∗ satisfying ∥a∥ =

∥a∗∥ and F (a∗) = F (a) (the complex conjugate of F (a)) for all a ∈ A
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and F ∈ M(A). We show that property “f ∈ Cb(X,A) is invertible if f̃
is invertible” is equivalent to “T (X×M(A)) is dense in M(Cb(X,A)).”

We do not know if these two properties are still equivalent if A is
not assumed as above, but we exhibit an example, orally proposed
by V. Müller, in which A is a complex completely symmetric algebra

and nevertheless there exists f ∈ Cb(X,A) such that f̃ is invertible
and f is not. Therefore even for completely symmetric algebras, the
set M(Cb(X,A)) is in general larger than the w∗-closure clw∗(T (X ×
M(A))) of T (X ×M(A)).

Any C∗-algebra is an example of a completely symmetric algebra
([10, page 233, Corollary 4]), but here we are not going to assume
that the involution on A satisfies ∥aa∗∥ = ∥a∥2, not even the weaker
condition ∥aa∗∥ = ∥a∥∥a∗∥, for a ∈ A.

2. Results. In this section, we define a natural continuous transfor-
mation T fromX×M(A), with the product topology, intoM(Cb(X,A))

and through it and the classical Gelfand transform f̂ for f ∈ Cb(X,A),

we introduce the Gelfand transform f̃ with respect to X×M(A). Using

T and f̃ , we shall state and prove almost all the results. In order to
avoid confusion on the scope of these, we recall that we are assuming
that X is a completely regular Hausdorff space and A is a complex com-
mutative unital Banach algebra. From Lemma 2.5 on, A is a complex
completely symmetric algebra with continuous involution.

Proposition 2.1. The function H : Cp(X,A) → C(βX,A), with
H(f) = fβ is an isometric isomorphism of algebra and M(Cp(X,A)) =
βX ×M(A).

Proof. It is readily seen that H is a bijective homomorphism of
algebras. We also have that ∥f∥∞ = ∥fβ∥∞, since X is dense in βX
and thenH is an isometry. Thus, M(Cp(X,A)) = M(C(βX,A)). Since
M(C(βX,A)) = βX ×M(A), the result follows. �

Proposition 2.2. There exists a continuous mapping T from X ×
M(A) into M(Cb(X,A)), given by T (x, F ) = T(x,F ), where

T(x,F ) (f) = F (f (x)) = f̂ (x) (F ) ,
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for every f ∈ Cb(X,A) and f̂(x) is the Gelfand transform of f(x). This
mapping T has a continuous extension Tβ to β(X ×M(A)).

Proof. It is clear that T(x,F ) ∈ M(Cb(X,A)). Given the w∗-neigh-
borhood U = V (T(x,F ), f1, . . . , fn, ϵ) of T(x,F ) take the w∗- neighbor-
hood W = V (F, f1(x), . . . , fn(x), ϵ/2) of F and a neighborhood V (x)
of x satisfying ∥fi(x)− fi(y)∥ < ϵ/2 if y ∈ V (x) and 1 ≤ i ≤ n. Then,
for (y,G) ∈ V (x)×W , we have that T(y,G) ∈ U .

Since M(Cb(X,A)) is compact, then T has a continuous extension
Tβ to β(X ×M(A)). �

Corollary 2.3. Tβ(β(X ×M(A))) = clw∗(T (X ×M(A))).

Proof. Since Tβ is continuous and X × M(A) is dense in β(X ×
M(A)), we get that Tβ(β(X × M(A))) ⊂ clw∗(T (X × M(A))). But
Tβ(β(X ×M(A))), being weak∗- compact, contains the weak∗-closure
of T (X ×M(A)). �

Taking f ∈ Cb(X,A), we define its Gelfand’s transform f̃ with

respect to X ×M(A) as f̃ = f̂ ◦ T , i.e.,

f̃ (x, F ) = F (f (x)) ,

for (x, F ) ∈ X × M(A). Therefore, f̃ ∈ Cb(X × M(A)) and ∥f̃∥∞ ≤
∥f∥∞.

The mapping f → f̃ is a continuous homomorphism from Cb(X,A)

into Cb(X × M(A)). Thus, if f is invertible in Cb(X,A), then f̃ is
invertible in Cb(X ×M(A)).

The function f̃ is invertible in the algebra Cb(X×M(A)) if and only

if f̃ is bounded away from zero, i.e., |F (f(x))| > ϵ for some ϵ > 0 and

all (x, F ) ∈ X ×M(A). In particular, f is invertible in C(X,A) if f̃ is
invertible.

Theorem 2.4. For the following four assertions we have that : (i)
implies (ii); (ii) implies (iv); and (ii) and (iii) are equivalent to each
other.
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(i) If f1, . . . , fn ∈ Cb(X,A) and ϵ > 0 are such that, for every

(x, F ) ∈ X×M(A), there exist 1 ≤ i ≤ n for which |f̃i(x, F )| > ϵ,
then there exist g1, . . . , gn ∈ Cb(X,A) satisfying f1g1 + · · · +
fngn = e.

(ii) If f ∈ Cb(X,A) and f̃ is invertible, then f is invertible.
(iii) If f ∈ Cb(X,A) and there exists ϵ > 0 such that ∥f(x) − y∥ > ϵ

for all x ∈ X and y ∈ A�G(A), then f is invertible.
(iv) If f ∈ Cb(X,A) and

sup
{∣∣∣f̃ (x, F )

∣∣∣ : (x, F ) ∈ X ×M (A)
}
< 1,

then e− f is invertible.

Proof. Obviously, (i) implies (ii) and (ii) implies (iv).

(ii) ⇒ (iii). Assume that there exists ϵ > 0 such that ∥f(x)− y∥ > ϵ
for all x ∈ X and y ∈ A�G(A). Put y = f(x) − F (f(x))e for x ∈ X

and F ∈ M(A). We have that y /∈ G(A) and |f̃(x, F )| = |F (f(x))| =
∥f(x)− y∥ > ϵ, then f̃ is invertible and, by (ii), f is invertible.

(iii) ⇒ (ii). Take f ∈ Cb(X,A), and suppose f̃ is invertible. There

exists an ϵ > 0 such that |f̃(x, F )| > ϵ for all (x, F ) ∈ X × M(A).
Given x ∈ X and y ∈ A�G(A), choose F ∈ M(A) such that F (y) = 0

and put y = f(x)−F (f(x))e. Then, ∥f(x)− y∥ = |f̃(x, F )| > ϵ; hence
by (iii), f is invertible. �

In the rest of this section we shall assume that A is a complex
completely symmetric algebra with continuous involution ∗.

Lemma 2.5. For every f ∈ Cb(X,A), there exists a g ∈ Cb(X,A)

such that g̃(x, F ) is the complex conjugate f̃(x, F ) of f̃(x, F ) for each

(x, F ) ∈ X ×M(A). Furthermore, we have |f̃ |2 = f̃g.

Proof. If f ∈ Cb(X,A), then the function g defined by g(x) = f(x)∗

belongs to Cb(X,A) because the involution is a continuous function.
Then, we have

g̃ (x, F ) = F
(
f (x)

∗)
= f̃ (x, F )
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and

f̃g (x, F ) = F
(
f (x) f (x)

∗)
=

∣∣∣f̃ (x, F )
∣∣∣2 ,

for all (x, F ) ∈ X ×M(A). �

Theorem 2.6. Assertions (i)–(iv) in Theorem 2.4 are all equivalent.

Proof.

(iv) ⇒ (ii). Take f ∈ Cb(X,A), and suppose that f̃ is invertible.

Then, f̃ is bounded away from zero. Take g as in Lemma 2.5, and

set M = sup |f̃(x, F )|2 and N = sup | ˜e− (1/M)fg(x, F )|, where
the suprema are taken over all points (x, F ) in X × M(A). Since

N = sup |1 − (1/M)|f̃(x, F )|2| < 1, we have by (iv) that (1/M)fg
is invertible and then (ii) holds.

(ii) ⇒ (i). Suppose f1, . . . , fn ∈ Cb(X,A) and ϵ > 0 are as in (i).

Let gi ∈ Cb(X,A) be such that |f̃i|2 = f̃igi for every i = 1, 2, . . . , n. For

(x, F ) ∈ X ×M(A) we have that
∑n

i=1 |f̃i(x, F )|2 =
∑n

i=1 f̃igi(x, F ) =

˜∑n
i=1 figi(x, F ) > ϵ. Thus, ˜∑n

i=1 figi is invertible in Cb(X × M(A)).
By (ii),

∑n
i=1 figi is invertible; therefore, there exists h ∈ Cb(X,A)

such that
∑n

i=1 figih = e, that is, (i) holds. �

Proposition 2.7. If T (X×M(A)) is not dense in M(Cb(X,A)), then

there exists an f ∈ Cb(X,A) such that f̃ is invertible and f is not.

Proof. Let us assume that T (X×M(A)) is not dense inM(Cb(X,A)),
and take G ∈ M(Cb(X,A))\clw∗(T (X × M(A))). Then, there exist
f1, . . . , fn ∈ Cb(X,A) and ϵ > 0 such that, for each (x, F ) ∈ X×M(A),
there is a 1 ≤ i ≤ n such that |G(fi) − F (fi(x))| > ϵ. Put gi =

fi − G(fi)e, and take hi ∈ Cb(X,A) such that h̃i(x, F ) = g̃i(x, F ) for
1 ≤ i ≤ n and (x, F ) ∈ X ×M(A). Then, for each (x, F ) ∈ X ×M(A),
|g̃i(x, F )| > ϵ for some 1 ≤ i ≤ n and G(gi) = 0 for all 1 ≤ i ≤ n.

Take

f =

n∑
i=1

gihi.
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Then G(f) = 0 and ∣∣∣f̃ (x, F )
∣∣∣ = n∑

i=1

|g̃i (x, F )|2 > ϵ

for all (X,F ) ∈ X × M(A). Therefore, f is not invertible and f̃ is
invertible. �

Theorem 2.8. Assertions (i)–(iv) of Theorem 2.4 are all equivalent to
the following :

(v) T (X ×M(A)) is dense in M(Cb(X,A)).

Proof. From Proposition 2.7, (ii) implies (v). On the other hand,
let us assume that T (X × M(A)) is dense in M(Cb(X,A)) and take

f ∈ Cb(X,A) such that f̃ is invertible. Then there exists an ϵ > 0 such

that |f̃(x, F )| > ϵ for every (x, F ) ∈ X × M(A); hence, f̂(G) ̸= 0 for
all G ∈ M(Cb(X,A)). Therefore, f is invertible. �

Corollary 2.9. If X is a pseudocompact space, then T (X ×M(A)) is
dense in M(Cb(X,A)).

Proof. Suppose f ∈ Cb(X,A) and f̃ is invertible. Then, f is
invertible in C(X,A). Since the function x → ∥f(x)−1∥ is continuous
in X, then it is bounded. Therefore, f is invertible in Cb(X,A). �

3. The example. We thank Vladimir Müller who orally communi-
cated the next example to us that enables us to show that there is a
completely symmetric algebra A for which T (N ×M(A)) is not dense
in M(Cb(N, A)).

Let S be the free commutative group with countably many genera-
tors a1, a2, . . . . Define a function p : S → (0,∞) by p(akj ) = 1 for k ≥ 0,

p(akj ) = j for k < 0 and p(ak1
1 ak2

2 · · · akn
n ) = p(ak1

1 )p(ak2
2 ) · · · p(akn

n ).
Then, p is a positive multiplicative function.

Let A be the weighted group algebra over S, i.e., A is the set of
functions x : S → C satisfying that

∥x∥ =
∑
s∈S

|x (s)| p (s) < ∞,
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provided with the usual linear structure and the convolution product

(xy) (s) =
∑
t∈S

x (t) y
(
t−1s

)
.

For each s ∈ S, let χs be the characteristic function of the singleton
{s}. Then, x =

∑
s∈S αsχs, with αs = x(s), for x ∈ A. Identifying χs

with s in this expansion, we have

x =
∑
s∈S

αss,

∥x∥ =
∑
s∈S

|αs| p (s) ,

xy =
∑
s∈S

∑
t∈S

αtβt−1ss,

if
x =

∑
s∈S

αss and y =
∑
s∈S

βss,

and
F (x) =

∑
s∈S

αsF (s) for every F ∈ M (A).

The algebra A under the involution defined by(∑
s∈S

αss

)∗

=
∑
s∈S

αts

becomes a completely symmetric algebra.

If B = {a1, a2, . . .}, then clearly B ⊂ G(A) and B is a bounded
set, keeping in mind that ∥an∥ = 1 for each n. Since A is a unital
commutative Banach algebra, we have that σ(x) = {F (x) : F ∈ M(A)}
for each x ∈ A. From this and applying the spectral radius formula
to an and a−1

n , we have |F (an)| = 1 for each n ∈ N and F ∈ M(A).
Therefore, we have that M(A) = SN

1 , associating each F ∈ M(A) with
the unique sequence (eiθ1 , eiθ2 , . . .) in the complex unit sphere S1 such
that F (aj) = eiθj for each j = 1, 2, . . . .

Let us consider the algebra Cb(N, A) and the function f ∈ Cb(N, A)

defined by f(n) = an for all n ≥ 1. Since |f̃(n, F )| = 1 for every

(n, F ) ∈ N×M(A), the function f̃ is invertible. Nevertheless, f is not
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invertible because (f(N))−1 = B−1 is not bounded. Therefore, we have
that T (N×M(A)) is not dense in M(Cb(N, A)). We point out that it
can be shown that σ(f) = {z : |z| ≤ 1}.
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Email address: alexgg577@hotmail.com


