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ON THE SPECTRAL MOMENT OF GRAPHS
WITH GIVEN CLIQUE NUMBER

SHUCHAO LI AND SHUNA HU

ABSTRACT. Let Ln,t be the set of all n-vertex con-
nected graphs with clique number t (2 ≤ t ≤ n). For n-
vertex connected graphs with given clique number, lexico-
graphic ordering by spectral moments (S-order) is discussed

in this paper. The first
∑⌊(n−t−1)/3⌋

i=1 (n − t − 3i) + 1 graphs
with 3 ≤ t ≤ n − 4, and the last few graphs, in the S-
order, among Ln,t are characterized. In addition, all graphs
in Ln,n

∪
Ln,n−1 have an S-order; for the cases t = n − 2

and t = n− 3, the first three and the first seven graphs in the
set Ln,t are characterized, respectively.

1. Introduction. All graphs considered here are finite, simple and
connected. For undefined terminology and notation, refer to [1]. Let
G = (VG, EG) be a simple undirected graph with n vertices. G− v and
G − uv denote the graph obtained from G by deleting vertex v ∈ VG,
or edge uv ∈ EG, respectively (this notation is naturally extended if
more than one vertex or edge is deleted). Similarly, G+uv is obtained
from G by adding an edge uv ̸∈ EG. For v ∈ VG, let NG(v) (or N(v)
for short) denote the set of all the adjacent vertices of v in G and
dG(v) = |NG(v)|. A pendant vertex of G is a vertex of degree 1.

Let G be a simple graph. A clique of G is a subset of vertices such
that it induces a complete subgraph of G. We denote the maximum
clique size of G by t which is called the clique number of G. A vertex
coloring of a graph G = (V,E) is a map c : V → S such that c(v) ̸= c(u)
if v and u are adjacent. The elements of the set S are called the available
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colors. We call χ(G) := min{k : G has a k-coloring, a vertex coloring
c : V → {1, 2, . . . , k}} the chromatic number of G.

Let A(G) be the adjacency matrix of a graph G with λ1(G), λ2(G),
. . . , λn(G) being its eigenvalues in non-increasing order. The number∑n

i=1 λ
k
i (G) (k = 0, 1, . . . , n − 1) is called the kth spectral moment of

G, denoted by Sk(G). Let S(G) = (S0(G), S1(G), . . . , Sn−1(G)) be the
sequence of spectral moments of G. For two graphs G1, G2, we shall
write G1 =s G2 if Si(G1) = Si(G2) for i = 0, 1, . . . , n − 1. Similarly,
we have G1 ≺s G2 (G1 comes before G2 in the S-order) if for some
k (1 ≤ k ≤ n− 1), we have Si(G1) = Si(G2) (i = 0, 1, . . . , k − 1)
and Sk(G1) < Sk(G2). We shall also write G1 ≼s G2 if G1 ≺s G2 or
G1 =s G2. The S-order has been used in producing graph catalogs (see
[6]), and for a more general setting of spectral moments one may refer
to [4].

Recently, investigation on S-order of graphs has received increasing
attention. For example, Cvetković and Rowlinson [7] studied the S-
order of trees and unicyclic graphs and characterized the first and the
last graphs, in the S-order, of all trees and all unicyclic graph with
given girth, respectively. Wu and Fan [22] determined the first and
the last graphs, in the S-order, of all unicyclic graphs and bicyclic
graphs, respectively. Pan, et al., [19] gave the first

⌊(n−t−1)/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
graphs apart from an n-vertex path, in the S-order, of all trees with n
vertices. Wu and Liu [23] determined the last ⌊d/2⌋+1 graphs, in the
S-order, among all n-vertex trees of diameter d (4 ≤ d ≤ n − 3).
Pan, et al., [20] identified the last and the second last graphs, in
the S-order, of quasi-trees. Cheng, Liu and Liu identified the last
d+⌊d/2⌋−2 graphs, in the S-order, among all n-vertex unicyclic graphs
of diameter d. Cheng and Liu [2] determined the last few graphs, in
the S-order, among all trees with n vertices and k pendant vertices.
Li and Song [10] identified the last n-vertex tree with a given degree
sequence in the S-order. Consequently, the last trees in the S-order
among the sets of all trees of order n with the largest degree, the leaves
number, the independence number and the matching number was also
determined, respectively. Li, Zhang and Zhang [12] determined the
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first, the second, the last and the second last graphs in the S-order
among the set of all graphs with given number of cut edges. Li and
Zhang [11] also considered this problem on the n-vertex trees with
given bipartition.

On the other hand, there are many Turán-type extremal problems,
i.e., given a forbidden graph F , determine the maximal number of edges
in a graph on n vertices that does not contain a copy of F . It states that,
among n-vertex graphs not containing a clique of size t+1, the complete
t-partite graph Tn,t with (almost) equal parts, which is called the Turán
graph, has the maximum number of edges. Spectral graph theory
has similar Turán extremal problems which determine the largest (or
smallest) eigenvalue of a graph not containing a subgraph F . Nikiforov
explicitly proposed studying general Turán problems in [12, 16]. For
example, he [16] determined the maximum spectral radius of graphs
without paths of given length and presented a comprehensive survey
on these topics, see [18]. In addition, Sudakov, et al., [21] presented
a generalization of Turán theorem in terms of Laplacian eigenvalues,
whereas He, et al., [8] gave a generalization of the Turán theorem in
terms of signless Laplacian eigenvalues.

Motivated by Turán-type extremal problems, we investigate in this
paper the spectral moments of n-vertex graphs with given clique num-
ber, which may be regarded as a part of spectral extremal theory. For
2 ≤ t ≤ n, let Ln,t be the set of all n-vertex connected graphs with

clique number t. We give the first
∑⌊(n−t−1)/3⌋

i=1 (n− t− 3i) + 1 graphs
with 3 ≤ t ≤ n − 4, and the last few graphs, in the S-order, among
Ln,t. In addition, all graphs in Ln,n

∪
Ln,n−1 have an S-order; for the

cases t = n− 2 and t = n− 3, the first three and the first seven graphs
in the set Ln,t are characterized, respectively. We prove these results
in Section 3. According to the relationship between the clique number
and the chromatic number of graphs, we study the S-order of graphs
with given chromatic number in Section 4. In Section 2, we give some
preliminaries which are useful for the proofs of our main results.

2. Preliminaries. Throughout, we denote by Pn, Sn, Cn and Kn a
path, a star, a cycle and a complete graph on n vertices, respectively.
An F -subgraph ofG is a subgraph ofG, which is isomorphic to the graph
F . Let ϕG(F ) (or ϕ(F ) for short) be the number of all F -subgraphs
of G. The notation G + F means that G does not contain F as its
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subgraph.

Further on, we will need the following lemmas.

Lemma 2.1 ([20]). The kth spectral moment of G is equal to the
number of closed walks of length k.

H10 H11 H12 H13 H14 H15 H16

H17 H18 H19 H21 H22 H23H20

Figure 1. Graphs H1, H2, . . . , H22 and H23.

Lemma 2.2 ([5]). Given a connected graph G, S0(G) = n, S1(G) = l,
S2(G) = 2m, S3(G) = 6t, where n, l, m and t denote the number
of vertices, number of loops, number of edges and number of triangles
contained in G, respectively.

Let H1,H2, . . . , H23 be the graphs as depicted in Figure 1, which
will be used in Lemma 2.3.

Lemma 2.3. For every graph G, we have

(i) S4(G) = 2ϕ(P2) + 4ϕ(P3) + 8ϕ(C4) ([4]).
(ii) S5(G) = 30ϕ(C3) + 10ϕ(H1) + 10ϕ(C5) ([4]).
(iii) S6(G) = 2ϕ(P2) + 12ϕ(P3) + 6ϕ(P4) + 12ϕ(K1,3) + 12ϕ(H2) +

36ϕ(H3) + 24ϕ(H4) + 24ϕ(C3) + 48ϕ(C4) + 12ϕ(C6) ([23]).
(iv) S7(G) = 126ϕ(C3) + 84ϕ(H1) + 28ϕ(H7) + 14ϕ(H5) + 14ϕ(H6) +

112ϕ(H3)+42ϕ(H15)+28ϕ(H8)+70ϕ(C5)+14ϕ(H18)+14ϕ(C7).
(v) S8(G) = 2ϕ(P2) + 28ϕ(P3) + 32ϕ(P4) + 8ϕ(P5) + 72ϕ(K1,3) +

16ϕ(H17)+48ϕ(K1,4)+168ϕ(C3)+64ϕ(H1)+464ϕ(H3)+384ϕ(H4)+
96ϕ(H15)+96ϕ(H10)+48ϕ(H11)+80ϕ(H12)+32ϕ(H16)+264ϕ(C4)+
24ϕ(H9)+112ϕ(H2)+16ϕ(H23)+16ϕ(H20)+16ϕ(H21)+32ϕ(H22)+
32ϕ(H13)+32ϕ(H14)+528ϕ(K4)+96ϕ(C6)+16ϕ(H19)+16ϕ(C8).
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Proof.

(iv) By Lemma 2.1, we note that vertices that belong to a closed
walk of length 7 induce in G a subgraph isomorphic to
C3, H1, H7, H5, H6, H3, H15, H8, C5, H18, C7. By using
matlab, we can obtain the number of closed walks of length 7
which span these subgraphs is 126, 84, 28, 14, 14, 112, 42, 28,
70, 14 and 14, respectively, then (iv) follows.

(v) By Lemma 2.1, we note that vertices that belong to a closed
walk of length 8 induce in G a subgraph isomorphic to
P2, P3, P4, P5, K1,3, H17, K1,4, C3, H1, H3, H4, H15, H10,
H11, H12, H16, C4, H9, H2, H23, H20, H21, H22, H13, H14,
K4, C6, H19, C8. By using matlab, we can obtain that the
number of closed walks of length 8 which span these subgraphs
is 2, 28, 32, 8, 72, 16, 48, 168, 64, 464, 384, 96, 96, 48, 80,
32, 264, 24, 112, 16, 16, 16, 32, 32, 32, 528, 96, 16 and 16,
respectively. Then (v) follows immediately. �

A connected subgraph H of G is called a tree-subgraph (or cycle-
subgraph) if H is a tree (or contains at least one cycle). Let H be
a proper subgraph of G; we call H an effective graph for Sk(G) if
H contains a closed walk of length k. Set Tk(G) = {T : T is a tree-
subgraph of G with |ET | ≤ k/2}; T ′

k (G) = {W : W is a cycle-subgraph
of G with |EW | ≤ k}; Ak(G) = {T : T is a tree-subgraph of G, and it
is an effective graph for Sk(G)}; A ′

k(G) = {W : W is a cycle-subgraph
of G and it is an effective graph for Sk(G)}. It is easy to see that
Ak(G) ∩ A ′

k(G) = ∅. By Lemma 2.1, we have:

Proposition 2.4. Given a graph G, the set of all effective graphs for
Sk(G) is Ak(G) ∪ A ′

k(G). In particular, if k is odd, then Ak(G) = ∅.

Lemma 2.5 ([23]). Let G be a non-trivial connected graph with
u ∈ VG. Suppose that two paths of lengths a, b (a ≥ b ≥ 1) are
attached to G by their end vertices at u, respectively, to form G∗

a,b.
Then G∗

a+1,b−1 ≺s G
∗
a,b.

Let G and H be two graphs with u ∈ VG and v ∈ VH . We shall
denote by Gu · vH the graph obtained from G and H by identifying u
and v.
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Lemma 2.6 ([23]). Let G and H be two non-trivial connected graphs
with u and v ∈ VG and w ∈ VH . If dG(u) < dG(v), then Gu · wH ≺s

Gv · wH.

3. On the S-order among Ln,t. In this section, we study the S-
order among Ln,t (2 ≤ t ≤ n). In view of Lemma 2.2, the first few
graphs in the S-order among Ln,2 must be n-vertex trees. Fortunately,
on the other hand, Pan, et al., [19] identified the first

⌊n−1/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
+ 1

graphs, in the S-order, of all trees with n vertices; these

⌊n−1/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
+ 1

trees are also the first

⌊n−1/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
+ 1

graphs in the S-order among Ln,2. We will not repeat it here.

A graph G ̸⊇ F on n vertices with the largest possible number of
edges is called extremal for n and F ; its number of edges is denoted by
ex(n, F ). The following theorem tells us the Turán graph Tn,t is indeed
extremal for n and Kt+1, and as such unique.

Theorem 3.1 (Turán 1941). For all integers t, n with t > 1, every
graph G ̸⊇ Kt+1 with n vertices and ex (n,Kt+1) edges is a Tn,t.

Theorem 3.2. For all integers t, n with t > 1, every graph G ∈
Ln,t\{Tn,t}, one has G ≺s Tn,t.

Proof. Note that, for graph G ∈ Ln,t \ {Tn,t}, one has

Si(G) = Si(Tn,t), i = 0, 1.

By Lemma 2.2 and Theorem 3.1, we have

S2(G) = 2|EG| < 2|ETn,t | = S2(Tn,t).
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Hence, G ≺s Tn,t. �

Now assume that (V1, V2, . . . , Vt) is a partition of Tn,t with n = kt+r
(0 ≤ r < t), where |Vi| = k if i = 1, 2, . . . , t − r and |Vi| = k + 1
otherwise. For u, v ∈ VTn,t , let

• T 1
n,t be the graph obtained by deleting the edge uv from Tn,t, where

u ∈ Vi, v ∈ Vj , 1 ≤ i ̸= j ≤ t− r;

• T 2
n,t be the graph obtained by deleting the edge uv from Tn,t, where

u ∈ Vi, v ∈ Vj , 1 ≤ i ≤ t− r and t− r + 1 ≤ j ≤ t;

• T 3
n,t be the graph obtained by deleting the edge uv from Tn,t, where

u ∈ Vi, v ∈ Vj , t− r + 1 ≤ i ̸= j ≤ t.

In particular, if t = n − 1 then |V1| = |V2| = · · · = |Vn−2| = 1 and
|Vn−1| = 2. In this case, for convenience, we assume that Vi = {vi} for
i = 1, 2, . . . , n− 2 and Vn−1 = {vn−1, u}. Let

Ti := Tn,n−1 − {uv1, uv2, . . . , uvi−1, uvi},

where i = 1, 2, . . . , n− 3. It is straightforward to check that Ln,n−1 =
{Tn,n−1, T1, T2, . . . , Tn−3}.

Theorem 3.3. Among the set of graphs Ln,t with 3 ≤ t ≤ n− 1.

(i) If n = t+1, then all graphs in the set Ln,n−1 have the following S-
order : Tn−3 ≺s Tn−4 ≺s · · · ≺s Ti ≺s · · · ≺s T2 ≺s T1 ≺s Tn,n−1.

(ii) If n = kt with 3 ≤ t ≤ n/2, then for all G ∈ Ln,t\{Tn,t, T
1
n,t} one

has G ≺s T
1
n,t ≺s Tn,t.

(iii) If n = kt+1 with 3 ≤ t ≤ n/2, then for all G∈Ln,t\{Tn,t, T
1
n,t, T

2
n,t}

one has G ≺s T
1
n,t ≺s T

2
n,t ≺s Tn,t.

(iv) If n = kt+r with 3 ≤ t ≤ n/2, r = t−1 or (n+ 1)/2 ≤ t ≤ n−2,
then for all G ∈ Ln,t\{Tn,t, T

2
n,t, T

3
n,t} one has G ≺s T 2

n,t ≺s

T 3
n,t ≺s Tn,t.

(v) If n = kt + r with 4 ≤ t ≤ n/2, 2 ≤ r ≤ t − 2, then for all
G ∈ Ln,t\{Tn,t, T

1
n,t, T

2
n,t, T

3
n,t} one has G ≺s T 1

n,t ≺s T 2
n,t ≺s

T 3
n,t ≺s Tn,t.

Proof.

(i) It follows directly by Lemma 2.2.
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(ii) For all G ∈ Ln,t\{Tn,t, T
1
n,t}, by Lemma 2.2, Si(G) = Si(T

1
n,t) =

Si(T
2
n,t) for i = 0, 1. Note that n = kt with 3 ≤ t ≤ n/2;

hence, by the definition of T 1
n,t, it is the unique graph in Ln,t

satisfying the number of its edges equals to |ETn,t | − 1 which

implies that, for all G ∈ Ln,t\{Tn,t, T
1
n,t}, we have |EG| < |ET 1

n,t
|,

i.e., S2(G) < S2(T
1
n,t) < S2(Tn,t). Hence, (ii) holds.

(iii) For any G ∈ Ln,t\{Tn,t, T
1
n,t, T

2
n,t}, one has Si(G) = Si(T

1
n,t) =

Si(T
2
n,t) for i = 0, 1. By the definition of T 1

n,t, T
2
n,t, we know they

are just the two graphs in Ln,t satisfying |ET 1
n,t

| = |ET 2
n,t

| =

|ETn,t | − 1, which implies that, for all G ∈ Ln,t\{Tn,t, T
1
n,t, T

2
n,t},

we have |EG| < |ET 1
n,t

| = |ET 2
n,t

|, i.e., S2(G) < S2(T
1
n,t) =

S2(T
2
n,t) < S2(Tn,t). In order to complete the proof, it suffices

to show S3(T
1
n,t) < S3(T

2
n,t). In fact,

S3(T
1
n,t)− S3(T

2
n,t) = 6(ϕT 1

n,t
(C3)− ϕT 2

n,t
(C3)) = −6 < 0.

Hence, (iii) holds.
(iv) and (v) can be proved by a similar discussion as in the

proof of (iii). We omit the procedure here.

�

In the following, we are to determine the first few graphs, in the S-
order, among Ln,t (3 ≤ t ≤ n− 1). Let J1, J2, . . . , J10 be the n-vertex
graphs as depicted in Figure 2.

Kn−2Kn−2Kn−2

Kn−3Kn−3

Kn−3Kn−3

Kn−3Kn−3Kn−3

J1 J2 J3 J4 J5

J6 J7 J8 J9 J10

Figure 2. n-vertex graphs J1, J2, . . . , J10.
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Theorem 3.4. Among the set of all graphs Ln,t.

(i) If t = n − 2 ≥ 3, the first three graphs, in the S-order, among
Ln,n−2 are J1 ≺s J2 ≺s J3.

(ii) If t = n − 3 ≥ 3, the first seven graphs, in the S-order, among
Ln,n−3 are J4 ≺s J5 ≺s J6 ≺s J7 ≺s J8 ≺s J9 ≺s J10.

Proof.

(i) For all G ∈ Ln,n−2 \ {J1, J2, J3}, one has not only Sk(G) =
Sk(J1) = Sk(J2) = Sk(J3) for k = 0, 1 but also |EG| > |EJ1 | =
|EJ2 | = |EJ3 |; hence, S2(J1) = S2(J2) = S2(J3) < S2(G), i.e.,
Ji ≺s G for i = 1, 2, 3. By Lemma 2.6, we have J1 ≺s J2 ≺s J3,
Therefore, (i) holds.

(ii) For all G ∈ Ln,n−3 \ {J4, J5, J6, J7, J8, J9, J10}, one has Sk(G) =
Sk(J4) = · · · = Sk(J10) for k = 0, 1 and |EG| > |EJ4 | = · · · =
|EJ10 |. Hence, S2(J4) = S2(J5) = · · · = S2(J10) < S2(G), i.e.,
Ji ≺s G for i = 4, 5, . . . , 10. It is easy to see that S3(J4) =
S3(J5) = · · · = S3(J10).

Further on, by Lemma 2.3 (i)–(ii), we have

S4(J4) = 2|EJ4 |+ 8ϕJ4(C4)(3.1)

+ 4

[
(n− 4)

(
n− 4

2

)
+

(
n− 3

2

)
+ 2

(
2

2

)]
,

S4(J5) = 2|EJ5 |+ 8ϕJ5(C4)(3.2)

+ 4

[
(n− 4)

(
n− 4

2

)
+

(
n− 3

2

)
+

(
3

2

)]
,

S4(J6) = 2|EJ6 |+ 8ϕJ6(C4)(3.3)

+ 4

[
(n− 5)

(
n− 4

2

)
+ 2

(
n− 3

2

)
+

(
2

2

)]
.

By (3.1) and (3.2), we have S4(J4) − S4(J5) = −4 < 0; hence,
J4 ≺s J5. Similarly, we can show that J6 ≺s J7, J8 ≺s J9 ≺s J10.

By (3.2) and (3.3), we have S4(J5) − S4(J6) = −4(n − 6). If
n > 6, obviously we have S4(J5) − S4(J6) < 0, i.e., J5 ≺s J6 for
n > 6. If n = 6, S4(J5) − S4(J6) = 0, whereas S5(J5) − S5(J6) =
10(ϕJ5(H1) − ϕJ6(H1)) = −10 < 0, i.e., J5 ≺s J6 for n = 6, we hence
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obtain that J5 ≺s J6 for n ≥ 6. Similarly, we can also show that
J7 ≺s J8 for n ≥ 6.

Therefore, we obtain J4 ≺s J5 ≺s J6 ≺s J7 ≺s J8 ≺s J9 ≺s J10 ≺s

G for G ∈ Ln,n−3 \ {J4, J5, J6, J7, J8, J9, J10}, as desired. �

.
. . . . . .

.
. . . . . .

.
. . . . . .

. . .
. . .uuu

KtKtKt

Kn−t−i
t Kn−t−i

t vj · w0Pi+1 Kn−t−i
t u · w0Pi+1

v0 v0v0 v1 v1v1

w0 w1
w1

w0

w2
w2 wi

wi

vjvj vj vn−t−i vn−t−ivn−t−i

Figure 3. Graphs Kn−t−i
t ,Kn−t−i

t vj ·w0Pi+1 and Kn−t−i
t u ·w0Pi+1 with

some vertices labeled.

Given a path Pi+1 = w0w1w2 . . . wi, set Gi
j := Kn−t−i

t vj · w0Pi+1

and Hi := Kn−t−i
t u · w0Pi+1 (see Figure 3), where 3 ≤ t ≤ n − 2,

0 ≤ j ≤ n− t− 2i and 1 ≤ i ≤ ⌊(n− t)/2⌋.

Theorem 3.5. Among the set of all graphs Ln,t with 3 ≤ t ≤ n − 4,
the first

⌊(n−t−1)/3⌋∑
i=1

(n− t− 3i) + 1

graphs, in the S-order, are

Kn−t
t ≺s G

1
n−t−2 ≺s G

1
n−t−3 ≺s · · ·

≺s G
1
3 ≺s G

1
2 ≺s G

2
n−t−4 ≺s G

2
n−t−5 ≺s · · · ≺s G

2
3 ≺s · · ·

≺s G
i
n−t−2i ≺s G

i
n−t−2i−1 ≺s · · ·

≺s G
i
i+1 ≺s G

i+1
n−t−2(i+1) ≺s · · · ≺s G

⌊n−t−1/3⌋
⌊n−t−1/3⌋+1.

Proof. Note that, for any connected graph G, one has G ≺s G + e,
where e /∈ EG. Hence, for 3 ≤ t ≤ n− 4, the first graph in the S-order
among Ln,t is obtained from Kt by attaching some trees to the vertices
of Kt; in view of Lemma 2.6, the first few graphs in the S-order among
Ln,t is just the kite graph Kn−t

t . Furthermore, it suffices for us to
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consider the set of graphs

A = {G : G is an n-vertex graph obtained by attaching

some trees to Kt such that G contains just two pendant vertices}.

It is easy to see that A is a subset of Ln,t and

A =

{
Gi

j : 0 ≤ j ≤ n− t− 2i, 1 ≤ i ≤
⌊
n− t

2

⌋}
∪{

Hi : 1 ≤ i ≤
⌊
n− t

2

⌋}
. �

We first show the following claims.

Claim 3.6. Gi
j ≺s Hi′ ≺s Gi′′

0 , where 1 ≤ j ≤ n − t − 2i, 1 ≤ i ≤
⌊(n− t− 1)/2⌋, 1 ≤ i′, i′′ ≤ ⌊(n− t)/2⌋.

Proof of Claim 3.6. Note that 1 ≤ j ≤ n − t − 2i, 1 ≤ i ≤
⌊(n− t− 1)/2⌋, 1 ≤ i′, i′′ ≤ ⌊(n− t)/2⌋, Sk(H

i′) = Sk(G
i
j) = Sk(G

i′′

0 )
for k = 0, 1, 2, 3. By Lemma 2.3 (i), we have

S4(H
i′) = 2m(Hi′) + 8ϕHi′ (C4)(3.4)

+ 4

[
(t− 2)

(
t− 1

2

)
+ 2

(
t

2

)
+ n− t− 2

]
,

S4(G
i
j) = 2m(Gi

j) + 8ϕGi
j
(C4)(3.5)

+ 4

[
(t− 1)

(
t− 1

2

)
+

(
t

2

)
+

(
3

2

)
+ n− t− 3

]
,

S4(G
i′′

0 ) = 2m(Gi′′

0 ) + 8ϕGi′′
0
(C4)(3.6)

+ 4

[
(t− 1)

(
t− 1

2

)
+

(
t+ 1

2

)
+ n− t− 2

]
.

Note that ϕHi′ (C4) = ϕGi
j
(C4) = ϕGi′′

0
(C4); hence, (3.4)–(3.6) give

(3.7) S4(G
i′′

0 )− S4(H
i′) = 4, S4(H

i′)− S4(G
i
j) = 4(t− 3).

In view of (3.7), if 3 < t ≤ n − 4, we obtain Gi
j ≺s Hi′ ≺s Gi′′

0 ; if

t = 3, then S4(H
i′) = S4(G

i
j) < S4(G

i′′

0 ) and S5(H
i′) − S5(G

i
j) =
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10ϕHi′ (U4)− 10ϕGi
j
(U4) = 10 > 0. Hence, Gi

j ≺s H
i′ ≺s G

i′′

0 for t = 3.

Therefore, Gi
j ≺s H

i′ ≺s G
i′′

0 for 3 ≤ t ≤ n− 4, as desired. �

Claim 3.7. Gi
j+1 ≺s Gi

j, where 1 ≤ i ≤ ⌊(n− t− 1)/2⌋, 1 ≤ j <
n− t− 2i.

Proof of Claim 3.7. Note that, for 1 ≤ i ≤ ⌊(n− t− 1)/2⌋, 1 ≤ j <
j + 1 ≤ n − t − 2i, it is routine to check that Sk(G

i
j) = Sk(G

i
j+1),

k ∈ {0, 1, 2, 3, 4}. In what follows, we consider k ≥ 5. On the one
hand, for 5 ≤ k ≤ 2j + 3, it is easy to see that, for any W ∈ A ′

k(G
i
j),

there exists W ′ ∈ A ′
k(G

i
j+1) such that W ∼= W ′, and vice versa. Hence,

(3.8) A ′
k(G

i
j) = A ′

k(G
i
j+1), k = 5, 6, . . . , 2j + 3.

In what follows, we distinguish our discussion in the following two
possible cases.

Case 1. 1 ≤ j ≤ (n− t− i− 1)/2. In this case, if 5 ≤ k ≤ 2j + 2,
then for any T ∈ Ak(G

i
j), there exists T

′ ∈ Ak(G
i
j+1) such that T ∼= T ′

for 5 ≤ k ≤ 2j + 2, and vice versa. Note that, if k is odd, then
Ak(G) = ∅; hence, A2j+3(G

i
j) = A2j+3(G

i
j+1) = ∅. Therefore,

(3.9) Ak(G
i
j) = Ak(G

i
j+1), k = 5, 6, . . . , 2j + 3.

By (3.8), (3.9) and Proposition 2.4, we obtain

Sk(G
i
j) = Sk(G

i
j+1), k = 5, 6, . . . , 2j + 3.

If 1 ≤ j < (n− t− i− 1)/2, note that k = 2j + 4. Then, for any
W ∈ A ′

2j+4(G
i
j), there exists W ′ ∈ A ′

2j+4(G
i
j+1) such that W ∼= W ′,

and vice versa. Hence, A ′
2j+4(G

i
j) = A ′

2j+4(G
i
j+1). Notice that, for

any T ∈ A2j+4(G
i
j), T

′ ∈ A2j+4(G
i
j+1), it is routine to check

• if |ET ∩ EKt | = 0, then ϕGi
j
(T ) − ϕGi

j+1
(T ′) = ϕGi

j
(Pj+3) −

ϕGi
j+1

(Pj+3) = −1;

• if |ET ∩ EKt | = 1, then ϕGi
j
(T ) − ϕGi

j+1
(T ′) = ϕGi

j
(Pj+3) −

ϕGi
j+1

(Pj+3) = t− 1;

• if |ET ∩ EKt | ≥ 2, then ϕGi
j
(T )− ϕGi

j+1
(T ′) = 0.
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Hence,

|A2j+4(G
i
j)| − |A2j+4(G

i
j+1)| = ϕGi

j
(T )− ϕGi

j+1
(T ′)

= ϕGi
j
(Pj+3)− ϕGi

j+1
(Pj+3)

= t− 2 ≥ 1 > 0.

By Proposition 2.4, we have

S2j+4(G
i
j)− S2j+4(G

i
j+1) = (2j + 4)(ϕGi

j
(Pj+3)− ϕGi

j+1
(Pj+3))

= (2j + 4)(t− 2) > 0,

which implies that Gi
j+1 ≺s G

i
j for 1 ≤ j < (n− t− i− 1)/2.

If j = (n− t− i− 1)/2, by a similar way as above we can obtain
that

|A ′
2j+4(G

i
j)| − |A ′

2j+4(G
i
j+1)| = 0,

|A2j+4(G
i
j)| − |A2j+4(G

i
j+1)| = (t− 1) > 0.

By Proposition 2.4, we get S2j+4(G
i
j) > S2j+4(G

i
j+1), i.e., G

i
j+1 ≺s G

i
j

holds for j = (n− t− i− 1)/2.

Case 2. (n− t− i− 1)/2 < j ≤ n − t − 2i. Note that j >
(n− t− i− 1)/2, hence 2(n − t − i − j) + 1 < 2j + 3. In view of
(3.8), we have

A ′
k(G

i
j) = A ′

k(G
i
j+1), k = 5, 6, . . . , 2(n− t− i− j) + 1.

Furthermore, for 5 ≤ k ≤ 2(n−t−i−j)+1, we have for all T ∈ Ak(G
i
j),

there exists T ′ ∈ Ak(G
i
j+1) such that T ∼= T ′ and vice versa. Hence,

Ak(G
i
j) = Ak(G

i
j+1), k = 5, 6, . . . , 2(n− t− i− j) + 1.

By Proposition 2.4, Sk(G
i
j) = Sk(G

i
j+1) holds for 5 ≤ k ≤ 2(n− t− i−

j) + 1. For k = 2(n − t − i − j + 1), by a similar discussion as in the
proof of Case 1, we can obtain that

|A ′
2(n−t−i−j+1)(G

i
j)|−|A ′

2(n−t−i−j+1)(G
i
j+1)|=0,

|A2(n−t−i−j+1)(G
i
j)|−|A2(n−t−i−j+1)(G

i
j+1)|=ϕGi

j
(T )−ϕGi

j+1
(T ′)=1.

By Proposition 2.4, S2(n−t−i−j+1)(G
i
j)−S2(n−t−i−j+1)(G

i
j+1) = 2(n−

t− i− j + 1) · 1 > 0. Hence, Gi
j+1 ≺s G

i
j holds for (n− t− i− 1)/2 <

j ≤ n− t− 2i.
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By Cases 1 and 2, Claim 3.7 holds. This completes the proof. �

Claim 3.8. Gi
i+1 ≺s G

i+1
n−t−2(i+1), where 1 ≤ i < ⌊(n− t− 1)/3⌋.

Proof of Claim 3.8. By a similar discussion as in the proof of Claims
3.6 and 3.7, we can show that Sk(G

i
i+1) = Sk(G

i+1
n−t−2(i+1)) for 0 ≤ k ≤

2i + 3 and S2i+4(G
i+1
n−t−2(i+1)) − S2i+4(G

i
i+1) = 2i + 4 > 0. Hence,

Gi
i+1 ≺s G

i+1
n−t−2(i+1). �

By Claims 3.6–3.8, we have the following fact.

Fact 3.9. The set B := {Kn−t
t , G1

n−t−2, G
1
n−t−3, . . . , G

1
3, G

1
2, G

2
n−t−4,

G2
n−t−5, . . . , G

2
3, . . . , G

i
n−t−2i, Gi

n−t−2i−1, . . . , G
i
i+1, Gi+1

n−t−2(i+1), . . . ,

G
⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1} consists of

∑⌊(n−t−1)/3⌋
i=1 (n − t − 3i) + 1 graphs, and

they are in the following S-order:

Kn−t
t ≺s G

1
n−t−2 ≺s G

1
n−t−3 ≺s · · ·

≺s G
1
3 ≺s G

1
2 ≺s G

2
n−t−4 ≺s G

2
n−t−5 ≺s · · · ≺s G

2
3 ≺s · · ·

≺s G
i
n−t−2i ≺s G

i
n−t−2i−1 ≺s · · ·

≺s G
i
i+1 ≺s G

i+1
n−t−2(i+1) ≺s · · · ≺s G

⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1,

where 3 ≤ t ≤ n− 4.

Claim 3.10. Among A \B, one has G
⌊(n−t)/3⌋
⌊(n−t)/3⌋ ≼s G

i
j, where 1 ≤ j ≤

n− t− 2i, j ≤ i ≤ ⌊(n− t− 1)/2⌋.

Proof of Claim 3.10. For a fixed j in {1, 2, . . . , n−t−2i}, there does
not exist Gi

j satisfying i ≥ j > ⌊(n− t)/3⌋. By Lemma 2.2, we know

Gj
j ≺s Gi

j for all 1 ≤ j ≤ ⌊(n− t)/3⌋, j < i ≤ ⌊(n− t− 1)/2⌋. Hence,

according to the S-order, the first graph in {Gj
j : 1 ≤ j ≤ ⌊(n− t)/3⌋} is

just the first graph in {Gi
j : 1 ≤ j ≤ n−t−2i, j ≤ i ≤ ⌊(n− t− 1)/2⌋}.

In what follows, we are to determine the first graph in the S-order
among {Gj

j : 1 ≤ j ≤ ⌊(n− t)/3⌋}.
Note that 1 ≤ i + 1 ≤ ⌊(n− t)/3⌋ − 1; hence, 1 ≤ i + 1 ≤

(n− t− 3)/3. By a similar discussion as in the proof of Claim 3.6,
we have Sk(G

i
i) = Sk(G

i+1
i+1) for 0 ≤ k ≤ 2i + 3 and S2i+4(G

i
i) −
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S2i+4(G
i+1
i+1) = (2i + 4)(t − 3). Hence, if t > 3, we obtain that

S2i+4(G
i
i) > S2i+4(G

i+1
i+1); if t = 3, then S2i+4(G

i
i) = S2i+4(G

i+1
i+1).

Furthermore, if t = 3, A2i+5(G
i
i) = A2i+5(G

i+1
i+1) = ∅ and, for all W ∈

A ′
2i+5(G

i
i), W

′ ∈ A ′
2i+5(G

i+1
i+1), we have ϕGi

i
(W ) − ϕGi+1

i+1
(W ′) = 1.

By Proposition 2.4, S2i+5(G
i
i)−S2i+5(G

i+1
i+1) ≥ 1 > 0. Hence, we obtain

Gi+1
i+1 ≺s G

i
i, 1 ≤ i <

⌊
n− t

3

⌋
,

which implies that G
⌊(n−t)/3⌋
⌊(n−t)/3⌋ ≼s Gi

j for all 1 ≤ j ≤ n − t − 2i,

j ≤ i ≤ ⌊(n− t− 1)/2⌋, as desired. �

Claim 3.11.
G

⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1 ≺s G

⌊(n−t)/3⌋
⌊(n−t)/3⌋.

Proof of Claim 3.11. Note that⌊
n− t− 1

3

⌋
=

⌊
n− t

3

⌋
or ⌊

n− t− 1

3

⌋
=

⌊
n− t

3

⌋
− 1,

and, for the latter case, ⌊(n− t)/3⌋ = (n− t)/3. Hence, if⌊
n− t− 1

3

⌋
=

⌊
n− t

3

⌋
,

then let

i = j =

⌊
n− t− 1

3

⌋
.

By Claim 3.7,

G
⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1 ≺s G

⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋,

i.e.,

G
⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1 ≺s G

⌊(n−t)/3⌋
⌊(n−t)/3⌋.

If ⌊
n− t− 1

3

⌋
=

n− t

3
− 1,
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by Lemma 2.5,

G
(n−t/3)−1
n−t/3 ≺s G

n−t/3
n−t/3,

i.e.,

G
⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1 ≺s G

⌊(n−t)/3⌋
⌊(n−t)/3⌋,

as desired.

By Fact 3.9, Claims 3.10 and 3.11, Theorem 3.5 holds. �

4. Further results. In this section, we shall study the spectral
moments of graphs with given chromatic number. This parameter has
a close relationship with the clique number of graphs. Let Mn,χ be the
set of all n-vertex connected graphs with chromatic number χ. Note
that Mn,n = {Kn}; hence, we will only consider 2 ≤ χ < n.

We say that a graph G is color critical if χ(H) < χ(G) for every
proper subgraph H of G. Here, for simplicity, we abbreviate the term
“color critical” to “critical.” A t-critical graph is one that is t-chromatic
and critical.

Lemma 4.1 ([9]). Suppose the chromatic number χ(G) = t ≥ 4, and
let G be a t-critical graph on more than t vertices (so G ̸= Kt). Then

|EG| ≥
(
t− 1

2
+

t− 3

2(t2 − 2t− 1)

)
|VG|.

Lemma 4.2. For any G ∈ Mn,t (4 ≤ t < n),

|EG| ≥
t(t− 1)

2
+ n− t,

and the equality holds if and only if G is an n-vertex graph which is
obtained from Kt by attaching some trees to Kt.

Proof. In order to determine the lower bound on the size of G in
Mn,t (4 ≤ t < n), it suffices to consider that G is obtained from a
t-critical graph G′ by attaching some trees to it. If G′ ∼= Kt, our result
holds by direct computing; otherwise, consider the function

f(x) =

(
t− 1

2
+

t− 3

2(t2 − 2t− 1)

)
x+ n− x,
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where t is a fixed positive integer with 4 ≤ t < x. It is easy to see that

f ′(x) =
t− 1

2
+

t− 3

2(t2 − 2t− 1)
− 1 =

t(t− 3)(t− 2)

2(t2 − 2t− 1)
> 0

for t ≥ 4. Hence, f(x) is a strict increasing function in x, where
4 ≤ t < x < n. Together with Lemma 4.1, we have

|EG| = |EG′ |+ (n− |VG′ |)

≥
(
t− 1

2
+

t− 3

2(t2 − 2t− 1)

)
|VG′ |+ (n− |VG′ |)

>

(
t− 1

2
+

t− 3

2(t2 − 2t− 1)

)
t+ (n− t)

>
t(t− 1)

2
+ (n− t).

This completes the proof. �

In order to determine the first few graphs in Mn,2, by Lemma 2.2
these graphs must be n-vertex trees. Note that Pan, et al., [19]
identified the first

⌊(n−1)/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
+ 1

graphs, in the S-order, of all trees with n vertices; these

⌊(n−1)/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
+ 1

trees are also the first

⌊(n−1)/3⌋∑
k=1

(⌊
n− k − 1

2

⌋
− k + 1

)
+ 1

graphs in the S-order among Mn,2. We will not repeat them here.

For convenience, let Ct
n := Cnu · vPt+1, where u ∈ VCn and v is an

end-vertex of path Pt+1.



278 SHUCHAO LI AND SHUNA HU

Theorem 4.3. Among the set of graphs Mn,3 with n ≥ 5, the first
two graphs in the S-order are Cn, C2

n−2 if n is odd and C1
n−1, C3

n−3

otherwise.

Proof. In order to determine the first two graphs in Mn,3 with n ≥ 5,
based on Lemma 2.2 it suffices to consider the n-vertex connected
graphs each of which contains a unique odd cycle. Denote the set
of such graphs by Un.

Choose G ∈ Un such that it is as small as possible according to the
S-order. On the one hand, G contains a unique odd cycle, say Ct, that
is to say, G is obtained by planting some trees to Ct if t < n. On the
other hand, in view of Lemma 2.6, G is obtained from Ct by attaching
a path Pn−t+1 to it, i.e., G ∈ {Cn−t

t : t = 3, 5, . . .}.
If n is odd, then it suffices for us to compare Cn with Cn−t

t , where
3 ≤ t ≤ n − 2. In fact, Si(C

n−t
t ) − Si(Cn) = 0 for i = 0, 1, 2, 3. By

Lemma 2.3 (i), we have

S4(C
n−t
t )− S4(Cn) = 4(ϕCn−t

t
(P3)− ϕCn(P3))

= 4(n+ 1− n) = 4 > 0.

Hence, Cn ≺s Cn−t
t . Furthermore, for any Cn−t

t with 3 ≤ t ≤ n − 4,
it is routine to check that Si(C

n−t
t ) = Si(C

2
n−2) = 0 for i = 0, 1, 2, 3, 4.

By direct computing (based on Lemma 2.3), we have

S5(C
n−t
t )− S5(C

2
n−2) > 0 if t = 3, n ≥ 7;

S5(C
n−t
t )− S5(C

2
n−2) > 0 if t = 5, n ≥ 9;

S5(C
n−t
t )− S5(C

2
n−2) = 0 if t ≥ 7, n ≥ 11;

S6(C
n−t
t )− S6(C

2
n−2) = 0 if t ≥ 7, n ≥ 11;

S7(C
n−t
t )− S7(C

2
n−2) > 0 if t = 7, n ≥ 11;

S7(C
n−t
t )− S7(C

2
n−2) = 0 if t ≥ 9, n ≥ 13;

S8(C
n−t
t )− S8(C

2
n−2) > 0 if t ≥ 9, n ≥ 13.

This gives C2
n−2 ≺s C

n−t
t . Therefore, Cn, C

2
n−2 are the first two graphs

in the S-order among Mn,3 for odd n.

If n is even, it suffices to consider the graphs Cn−t
t with 3 ≤ t ≤ n−1.

In fact, for any Cn−t
t with 3 ≤ t ≤ n − 3, Si(C

n−t
t ) = Si(C

1
n−1) for
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i = 0, 1, 2, 3, 4. By Lemma 2.3, we have

S5(C
n−t
t )− S5(C

1
n−1) > 0 if t = 3, n ≥ 6;

S5(C
n−t
t )− S5(C

1
n−1) > 0 if t = 5, n ≥ 8;

S5(C
n−t
t )− S5(C

1
n−1) = 0 if t ≥ 7, n ≥ 10;

S6(C
n−t
t )− S6(C

1
n−1) > 0 if t ≥ 7, n ≥ 10.

Hence, we have C1
n−1 ≺s C

n−t
t for 3 ≤ t ≤ n− 1.

Next, we compare C3
n−3 with Cn−t

t , where 3 ≤ t ≤ n−5. Obviously,

Si(C
n−t
t ) = Si(C

3
n−3) for i = 0, 1, 2, 3, 4. By Lemma 2.3, we have

S5(C
n−t
t )− S5(C

3
n−3) > 0 if t = 3, n ≥ 8;

S5(C
n−t
t )− S5(C

3
n−3) > 0 if t = 5, n ≥ 10;

S5(C
n−t
t )− S5(C

3
n−3) = 0 if t ≥ 7, n ≥ 12;

S6(C
n−t
t )− S6(C

3
n−3) = 0 if t ≥ 7, n ≥ 12;

S7(C
n−t
t )− S7(C

3
n−3) > 0 if t = 7, n ≥ 12;

S7(C
n−t
t )− S7(C

3
n−3) = 0 if t ≥ 9, n ≥ 14;

S8(C
n−t
t )− S8(C

3
n−3) = 0 if t ≥ 9, n ≥ 14.

Hence, in what follows we need compare S9(C
3
n−3) with S9(C

n−t
t )

for t ≥ 9, n ≥ 14. Note that, by Proposition 2.4, we have A ′
9(C

n−t
t ) =

{C9}, A ′
9(C

3
n−3) = ∅, A9(C

n−t
t ) = A9(C

3
n−3) = ∅ if t = 9, n ≥ 14.

Hence, S9(C
n−t
t ) − S9(C

3
n−3) = 18(ϕCn−t

t
(C9) − 0) = 18 > 0 if t = 9,

n ≥ 14, i.e., C3
n−3 ≺s C

n−t
t in this case.

If t ≥ 11, n ≥ 16, then A ′
9(C

n−t
t ) = A ′

9(C
3
n−3) = ∅, A9(C

n−t
t ) =

A9(C
3
n−3) = ∅. Hence, S9(C

n−t
t ) = S9(C

3
n−3) for t ≥ 11, n ≥ 16. Note

that A ′
10(C

n−t
t ) = A ′

10(C
3
n−3) = ∅,

|A10(C
n−t
t )|−|A10(C

3
n−3)| = ϕCn−t

t
(P6)−ϕC3

n−3
(P6) = n+4−(n+3) = 1

for t ≥ 11, n ≥ 16, hence

S10(C
n−t
t )− S10(C

3
n−3) = 10(ϕCn−t

t
(P6)− ϕC3

n−3
(P6)) = 10 > 0,

which implies C3
n−3 ≺s C

n−t
t for 3 ≤ t ≤ n− 5.

This completes the proof. �
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Note that, for Turán graph Tn,t, χ(Tn,t) = t and its size attains the
maximum among Mn,t. Combining with Lemmas 2.2 and 4.2, we have

Theorem 4.4.

(i) For any graph G ∈ Mn,t \ {Kn−t
t } with 4 ≤ t < n, one has

Kn−t
t ≺s G.

(ii) For any graph G ∈ Mn,t \ {Tn,t}, where 2 ≤ t < n, one has
G ≺s Tn,t.

By Theorem 4.3, the Turán graph Tn,t is the last graph in the S-
order among Mn,t. In view of Lemma 2.2 and Theorem 3.3, the next
result follows immediately.

Theorem 4.5. Among the set of graphs Mn,t with 2 ≤ t ≤ n− 1,

(i) If n = t+1, then all graphs in the set Mn,n−1 have the following S-
order : Tn−3 ≺s Tn−4 ≺s · · · ≺s Ti ≺s · · · ≺s T2 ≺s T1 ≺s Tn,n−1.

(ii) If n = kt with 3 ≤ t ≤ n/2, then for all G ∈ Mn,t\{Tn,t, T 1
n,t}

one has G ≺s T
1
n,t ≺s Tn,t.

(iii) If n = kt+1 with 3 ≤ t ≤ n/2, then for all G ∈ Mn,t\{Tn,t, T 1
n,t,

T 2
n,t} one has G ≺s T

1
n,t ≺s T

2
n,t ≺s Tn,t.

(iv) If n = kt+r with 3 ≤ t ≤ n/2, r = t−1 or (n+ 1)/2 ≤ t ≤ n−2,
then for all G ∈ Mn,t\{Tn,t, T 2

n,t, T 3
n,t} one has G ≺s T 2

n,t ≺s

T 3
n,t ≺s Tn,t.

(v) If n = kt + r with 4 ≤ t ≤ n/2, 2 ≤ r ≤ t − 2, then for all
G ∈ Mn,t\{Tn,t, T 1

n,t, T 2
n,t, T 3

n,t} one has G ≺s T 1
n,t ≺s T 2

n,t ≺s

T 3
n,t ≺s Tn,t.

By Theorems 3.4–3.5 and Lemma 4.2, we have

Theorem 4.6.

(i) For t = n− 2 ≥ 4, the first three graphs in the S-order in the set
Mn,n−2 are as follows: J1 ≺s J2 ≺s J3.

(ii) For t = n−3 ≥ 4, the first seven graphs in the S-order among the
set of graphs Mn,n−3 are as follows: J4 ≺s J5 ≺s J6 ≺s J7 ≺s

J8 ≺s J9 ≺s J10.
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(iii) For 4 ≤ t ≤ n − 4, the first 1 +
∑⌊(n−t−1)/3⌋

i=1 (n − t − 3i) graphs,
in the S-order, among the set of graphs Mn,t are as follows:

Kn−t
t ≺s G

1
n−t−2 ≺s G

1
n−t−3 ≺s · · ·

≺s G
1
3 ≺s G

1
2 ≺s G

2
n−t−4 ≺s G

2
n−t−5 ≺s · · · ≺s G

2
3 ≺s · · ·

≺s G
i
n−t−2i ≺s G

i
n−t−2i−1 ≺s · · ·

≺s G
i
i+1 ≺s G

i+1
n−t−2(i+1) ≺s · · · ≺s G

⌊(n−t−1)/3⌋
⌊(n−t−1)/3⌋+1.
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