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GENERALIZED U-FACTORIZATION IN
COMMUTATIVE RINGS WITH ZERO-DIVISORS

CHRISTOPHER PARK MOONEY

ABSTRACT. Recently, substantial progress has been
made on generalized factorization techniques in integral do-
mains, in particular, τ -factorization. There have also been
advances made in investigating factorization in commutative
rings with zero-divisors. One approach which has been found
to be very successful is that of U-factorization introduced by
Fletcher. We seek to synthesize work done in these two areas
by generalizing τ -factorization to rings with zero-divisors by
using the notion of U-factorization.

1. Introduction. Much work has been done on generalized factor-
ization techniques in integral domains. There is an excellent overview
in [6], where particular attention is paid to τ -factorization. Several
authors have investigated ways to extend factorization to commutative
rings with zero-divisors, for instance, Anderson, Valdez-Leon, Aǧargün,
Chun [5, 8, 1]. One particular method was that of U-factorization in-
troduced by Fletcher in [11, 12]. This method of factorization has been
studied extensively by Axtell and others in [2, 9, 10]. We synthesize
the work done into a single study of what we will call τ -U-factorization.

In this paper, we will assume R is a commutative ring with 1. Let
R∗ = R−{0}, let U(R) be the set of units of R, and let R# = R∗−U(R)
be the non-zero, non-units of R. As in [10], we define U-factorization
as follows. Let a ∈ R be a non-unit. If a = λa1 · · · anb1 · · · bm
is a factorization with λ ∈ U(R), ai, bi ∈ R#, then we will call
a = λa1a2 · · · an ⌈b1b2 · · · bm⌉ a U-factorization of a if (1) ai(b1 · · · bm) =

(b1 · · · bm) for all 1 ≤ i ≤ n and (2) bj(b1 · · · b̂j · · · bm) ̸= (b1 · · · b̂j · · · bm)

for 1 ≤ j ≤ m where b̂j means bj is omitted from the product. Here
(b1 · · · bm) is the principal ideal generated by b1 · · · bm. The bi’s in this
particular U-factorization above will be referred to as essential divisors.
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The ai’s in this particular U-factorization above will be referred to as
inessential divisors. A U-factorization is said to be trivial if there is
only one essential divisor.

Note. We have added a single unit factor in front with the inessential
divisors which was not in Axtell’s original paper. This is added for
consistency with the τ -factorization definitions, and it is evident that
a unit is always inessential. We allow only one unit factor, so it will
not affect any of the finite factorization properties.

Remark. If a = λa1 · · · an ⌈b1 · · · bm⌉ is a U-factorization, then for

any 1 ≤ i0 ≤ m, we have (a) = (b1 · · · bm) ( (b1 · · · b̂i0 · · · bm). This is
immediate from the definition of U-factorization.

In [9], Axtell defines a non-unit a and b to be associate if (a) = (b)
and a non-zero non-unit a is said to be irreducible if a = bc implies a
is associate to b or c. R is commutative ring R to be U-atomic if every
non zero non-unit has a U-factorization in which every essential divisor
is irreducible. R is said to be a U-finite factorization ring if every non
zero non-unit has a finite number of distinct U-factorizations. R is said
to be a U-bounded factorization ring if every non zero non-unit has a
bound on the number of essential divisors in any U-factorization. R is
said to be a U-weak finite factorization ring if every non zero non-unit
has a finite number of non-associate essential divisors. R is said to be
a U-atomic idf-ring if every non zero non-unit has a finite number of
non-associate irreducible essential divisors. R is said to be a U-half
factorization ring if R is U-atomic and every U-atomic factorization
has the same number of irreducible essential divisors. R is said to
be a U-unique factorization ring if it is a U-HFR and, in addition,
each U-atomic factorization can be arranged so the essential divisors
correspond up to associate. In [10, Theorem 2.1], it is shown that
this definition of U-UFR is equivalent to the one given by Fletcher in
[11, 12].

In Section 2, we begin with some preliminary definitions and results
about τ -factorization in integral domains as well as factorization in
rings with zero-divisors. In Section 3, we state definitions for τ -U-
irreducible elements and τ -U-finite factorization properties. We also
prove some preliminary results using these new definitions. In Section 4,
we demonstrate the relationship between rings satisfying the various
τ -U finite factorization properties. Furthermore, we compare these
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properties with the rings satisfying τ -finite factorization properties
studied in [13]. In the final section, we investigate direct products
of rings. We introduce a relation τ× which carries many τ -U-finite
factorization properties of the component rings through the direct
product.

2. Preliminary definitions and results. As in [8], we let a ∼ b if
(a) = (b), a ≈ b if there exists λ ∈ U(R) such that a = λb, and a ∼= b if
(1) a ∼ b and (2) a = b = 0 or if a = rb for some r ∈ R then r ∈ U(R).
We say a and b are associates (respectively, strong associates, very
strong associates) if a ∼ b (respectively, a ≈ b, a ∼= b). As in [4],
a ring R is said to be a strongly associate (respectively, very strongly
associate) ring if for any a, b ∈ R, a ∼ b implies a ≈ b (respectively,
a ∼= b).

Let τ be a relation on R#, that is, τ ⊆ R# × R#. We will always
assume further that τ is symmetric. Let a be a non-unit, ai ∈ R# and
λ ∈ U(R). Then a = λa1 · · · an is said to be a τ -factorization if aiτaj
for all i ̸= j. If n = 1, then this is said to be a trivial τ -factorization.
Each ai is said to be a τ -factor, or that ai τ -divides a, written ai |τ a.

We say that τ is multiplicative (respectively, divisive) if, for a, b, c ∈
R# (respectively, a, b, b′ ∈ R#), aτb and aτc imply aτbc (respectively,
aτb and b′ | b imply aτb′). We say τ is associate (respectively strongly
associate, very strongly associate) preserving if, for a, b, b′ ∈ R# with
b ∼ b′ (respectively, b ≈ b′, b ∼= b′) aτb implies aτb′. We define a
τ -refinement of a τ -factorization λa1 · · · an to be a factorization of the
form

(λλ1 · · ·λn) · b11 · · · b1m1 · b21 · · · b2m2 · · · bn1 · · · bnmn

where ai = λibi1 · · · bimi is a τ -factorization for each i. This is
slightly different from the original definition in [6] where no unit
factor was allowed, and one can see they are equivalent when τ is
associate preserving. We then say that τ is refinable if every τ -
refinement of a τ -factorization is a τ -factorization. We say τ is com-
binable if, whenever λa1 · · · an is a τ -factorization, then so is each
λa1 · · · ai−1(aiai+1)ai+2 · · · an.

We now summarize several of the definitions given in [13]. Let a ∈ R
be a non-unit. Then a is said to be τ -irreducible or τ -atomic if, for any
τ -factorization a = λa1 · · · an, we have a ∼ ai for some i. We will say a
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is τ -strongly irreducible or τ -strongly atomic if, for any τ -factorization
a = λa1 · · · an, we have a ≈ ai for some ai. We will say that a is τ -m-
irreducible or τ -m-atomic if, for any τ -factorization a = λa1 · · · an, we
have a ∼ ai for all i. Note that the m is for maximal since such an a
is maximal among principal ideals generated by elements which occur
as τ -factors of a. We will say that a is τ -very strongly irreducible or τ -
very strongly atomic if a ∼= a and a has no non-trivial τ -factorizations.
See [13] for more equivalent definitions of these various forms of τ -
irreducibility.

From [13, Theorem 3.9], we have the following relations where †
represents the implication requires a strongly associate ring:

τ -very strongly irred.

%-TT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TT

+3 τ -strongly irred. +3 τ -irred.

τ -m-irred.

†

KS 3;nnnnnnnnnnnn

nnnnnnnnnnnn

3. τ-U-irreducible elements. A τ -U-factorization of a non-unit
a ∈ R is a U-factorization a = λa1a2 · · · an ⌈b1b2 · · · bm⌉ for which
λa1 · · · anb1 · · · bm is also a τ -factorization.

Given a symmetric relation τ on R#, we say R is τ -U-refinable
if, for every τ -U-factorization of any non-unit a ∈ U(R), a =
λa1 · · · an ⌈b1 · · · bm⌉, any τ -U-factorization of an essential divisor, bi =
λ′c1 · · · cn′ ⌈d1 · · · dm′⌉ satisfies

a = λλ′a1 · · · anc1 · · · cn′ ⌈b1 · · · bi−1d1 · · · dm′bi+1 · · · bm⌉

is a τ -U-factorization.

Example 3.1. Let R = Z/20Z, and let τ = R# ×R#.

Certainly 0 = ⌈10 · 10⌉ is a τ -U-factorization. But 10 = ⌈2 · 5⌉ is
a τ -U-factorization; however, 0 = ⌈2 · 5 · 2 · 6⌉ is not a U-factorization
since 5 becomes inessential after a τ -U-refinement. It will sometimes be
important to ensure the essential divisors of a τ -U-refinement of a τ -U-
factorization’s essential divisors remain essential. We will see that, in a
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présimplifiable ring, there are no inessential divisors, so for τ -refinable,
R will be τ -U-refinable.

As stated in [9], the primary benefit of looking at U-factorizations
is the elimination of troublesome idempotent elements that ruin many
of the finite factorization properties. For instance, even Z6 is not a
BFR (a ring in which every non-unit has a bound on the number of
non-unit factors in any factorization) because we have 3 = 32. Thus,
3 is an idempotent, so 3 = 3n for all n ≥ 1 which yields arbitrarily
long factorizations. When we use U-factorization, we see any of these
factorizations can be rearranged to 3 = 3n−1 ⌈3⌉, which has only one
essential divisor.

Let α ∈ {irreducible, strongly irreducible, m-irreducible, very
strongly irreducible}. Let a be a non-unit. If

a = λa1a2 · · · an ⌈b1b2 · · · bm⌉

is a τ -U-factorization, then this factorization is said to be a τ -U-α-
factorization if it is a τ -U-factorization and the essential divisors bi are
τ -α for 1 ≤ i ≤ m.

One must be somewhat more careful with U-factorizations as there
is a loss of uniqueness in the factorizations. For instance, if we
let R = Z6 × Z8, then we can factor (3, 4) as (3, 1) ⌈(3, 3)(1, 4)⌉ or
(3, 3) ⌈(3, 1)(1, 4)⌉. On the bright side, we have [2, Proposition 4.1].

Theorem 3.2. Every factorization can be rearranged into a U-factori-
zation.

Corollary 3.3. Let R be a commutative ring with 1 and τ a sym-
metric relation on R#. Let α ∈ {irreducible, strongly irreducible, m-
irreducible, very strongly irreducible}. For every τ -α factorization of
a non-unit a ∈ R, a = λa1 · · · an, we can rearrange this factorization
into a τ -U-α-factorization.

Proof. Let a = λa1 · · · an be a τ -α-factorization. By Theorem 3.2,
we can rearrange this to form a U-factorization. This remains a τ -
factorization since τ is assumed to be symmetric. Lastly, each ai is
τ -α, so the essential divisors are τ -α. �

This leads us to another characterization of τ -irreducible.
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Theorem 3.4. Let a ∈ R be a non-unit. If any τ -U-factorization of a
has only one essential divisor, then a is τ -irreducible.

Proof. Suppose a = λa1 · · · an. Then this can be rearranged into a
U-factorization, and hence a τ -U-factorization. By hypothesis, there
can only be one essential divisor. Suppose it is an. We have a =
λa1 · · · an−1 ⌈an⌉ is a τ -U-factorization and a ∼ an as desired. �

We now define the finite factorization properties using the τ -U-
factorization approach. Let α ∈ {irreducible, strongly irreducible, m-
irreducible, very strongly irreducible }, and let β ∈ {associate, strongly
associate, very strongly associate}. R is said to be τ -U-α if, for all
non-units a ∈ R, there is a τ -U-α-factorization of a. R is said to
satisfy τ -U-ACCP (ascending chain condition on principal ideals) if
every properly ascending chain of principal ideals (a1) ( (a2) ( · · ·
such that ai+1 is an essential divisor in some τ -U-factorization of ai,
for each i terminates after finitely many principal ideals. R is said to be
a τ -U-BFR if, for all non-units a ∈ R, there is a bound on the number
of essential divisors in any τ -U-factorization of a.

R is said to be a τ -U-β-FFR if for all non-units a ∈ R, there are only
finitely many τ -U-factorizations up to rearrangement of the essential
divisors and β. R is said to be a τ -U-β-WFFR if, for all non-units
a ∈ R, there are only finitely many essential divisors among all τ -U-
factorizations of a up to β. R is said to be a τ -U-α-β-divisor finite (df)
ring if, for all non-units a ∈ R, there are only finitely many essential
τ -α divisors up to β in the τ -U-factorizations of a.

R is said to be a τ -U-α-HFR if R is τ -U-α and, for all non-units
a ∈ R, the number of essential divisors in any τ -U-α-factorization of a
is the same. R is said to be a τ -U-α-β-UFR if R is a τ -U-α-HFR, and
the essential divisors of any two τ -U-α-factorizations can be rearranged
to match up to β.

R is said to be présimplifiable if, for every x ∈ R, x = xy implies
x = 0 or y ∈ U(R). This is a condition which has been well studied
and is satisfied by any domain or local ring. We introduce two slight
modifications of this. R is said to be τ -présimplifiable if, for every
x ∈ R, the only τ -factorizations of x which contain x as a τ -factor are
of the form x = λx for a unit λ. R is said to be τ -U-présimplifiable
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if, for every non zero non-unit x ∈ R, all τ -U-factorizations have no
non-unit inessential divisors.

Theorem 3.5. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. We have the following :

(1) If R is présimplifiable, then R is τ -U-présimplifiable.
(2) If R is τ -U-présimplifiable, then R is τ -présimplifiable.

That is, présimplifiable ⇒ τ -U-présimplifiable ⇒ τ -présimplifiable. If
τ = R# ×R#, then all are equivalent.

Proof.

(1) Let R be présimplifiable, and let x ∈ R#. Suppose

x = λa1 · · · an ⌈b1 · · · bm⌉

is a τ -U-factorization. Then (x) = (b1 · · · bm). R présimplifiable
implies that all the associate relations coincide, so in fact x ∼=
b1 · · · bm implies that λa1 · · · an ∈ U(R), and hence all inessential
divisors are units.

(2) Let R be τ -U-présimplifiable, and let x ∈ R be such that x =
λxa1 · · · an is a τ -factorization. We claim that x = λa1 · · · an ⌈x⌉
is a τ -U-factorization. For any 1 ≤ i ≤ n, x | aix and
(aix)(λa1 · · · âi · · · an) = x shows aix | x, proving the claim. This
implies λa1 · · · an ∈ U(R) as desired.

Let τ = R# × R#, and suppose R is τ -présimplifiable. Suppose
x = xy; for x ̸= 0, we show y ∈ U(R). If x ∈ U(R), then multiplying
through by x−1 yields 1 = x−1x = x−1xy = y and y ∈ U(R) as desired.
We may now assume x ∈ R#. If y = 0, then x = 0, a contradiction. If
y ∈ U(R), we are already done, so we may assume y ∈ R#. Thus, xτy,
and x = xy is a τ -factorization, so y ∈ U(R), as desired. �

4. τ-U-finite factorization relations. We now would like to show
the relationship between rings with various τ -U-α-finite factorization
properties as well as compare these rings with the τ -α-finite factoriza-
tion properties of [13].

Theorem 4.1. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Consider the following statements.
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(1) R is a τ -BFR.
(2) R is τ -présimplifiable and, for every non-unit a1 ∈ R, there is a

fixed bound on the length of chains of principal ideals (ai) ascending
from a1 such that at each stage ai+1 |τ ai.

(3) R is τ -présimplifiable and a τ -U-BFR.
(4) For every non-unit a ∈ R, there are natural numbers N1(a) and

N2(a) such that, if a = λa1 · · · an ⌈b1 · · · bm⌉ is a τ -U-factorization,
then n ≤ N1(a) and m ≤ N2(a).

Then (4) ⇒ (1) and (2) ⇒ (3). For τ refinable, (1) ⇒ (2) and, for R
τ -U-présimplifiable, (3) ⇒ (4). Thus, all are equivalent if R is τ -U-
présimplifiable and τ is refinable.

Let ⋆ represent τ being refinable, and let † represent R being τ -U-
présimplifiable. Then the following diagram summarizes the theorem.

(1)
⋆ +3 (2)

��
(4)

KS

(3)
†

ks

Proof. (1) ⇒ (2). Let τ be refinable. Suppose there were a non-
trivial τ -factorization x = λxa1 · · · an with n ≥ 1. Since τ is assumed
to be refinable, we can continue to replace the τ -factor x with this
factorization.

x = λxa1 · · · an = (λλ)xa1 · · · ana1 · · · an
= · · · = (λλλ)xa1 · · · ana1 · · · ana1 · · · an
= · · ·

yields an unbounded series of τ -factorizations of increasing length.

Let a1 be a non-unit in R. Suppose N is the bound on the length
of any τ -factorization of a1. We claim that N satisfies the requirement
of (2). Let (a1) ( (a2) ( · · · be an ascending chain of principal
ideals generated by elements which satisfy ai+1 |τ ai for each i. Say
ai = λiai+1ai1 · · · aini for each i. Furthermore, we can assume ni ≥ 1
for each i or else the containment would not be proper. Then we can
write

a1 = λ1a2a11 · · · a1n1 = λ1λ2a3a21 · · · a2n2a11 · · · a1n1 = · · · .
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Each remains a τ -factorization since τ is refinable, and we have added
at least one factor at each step. If the chain were greater than length N ,
we would contradict R being a τ -BFR.

(2) ⇒ (3). Let a ∈ R be a non-unit. Let N be the bound on the
length of any properly ascending chain of principle ideals ascending
from a such that ai+1 |τ ai. If a = λa1 · · · an ⌈b1 · · · bm⌉ is a τ -U-
factorization, then we get an ascending chain with b1 · · · bi−1 |τ b1 · · · bi
for each i:

(a) = (b1 · · · bm) ( (b1 · · · bm−1) ( (b1 · · · bm−2) ( · · ·
( (b1b2) ( (b1).

Hence, m ≤ N , and we have found a bound on the number of essential
divisors in any τ -U-factorization of a, making R a τ -U-BFR.

(3) ⇒ (4). Let a ∈ R be a non-unit. Let Ne(a) be the bound on
the number of essential divisors in any τ -U-factorization of a. Since R
is τ -U-présimplifiable, there are no inessential τ -U-divisors of a. We
can set N1(a) = 0, and N2(a) = Ne(a) and see that this satisfies the
requirements of the theorem.

(4) ⇒ (1). Let a ∈ R be a non-unit. Then any τ -factorization
a = λa1 · · · an can be rearranged into a τ -U-factorization, say a =
λas1 · · · asi

⌈
asi+1 · · · asn

⌉
. But then n = i + (n − i) ≤ N1(a) + N2(a).

Hence, the length of any τ -factorization must be less thanN1(a)+N2(a)
proving R is a τ -BFR as desired. �

The way we have defined our finite factorization properties on only
the essential divisors causes a slight problem. Given a τ -U-factorization
a = λa1 · · · an ⌈b1 · · · bm⌉, we only know that a ∼ b1 · · · bm. This may
no longer be a τ -factorization of a, but rather only some associate of a.
This is easily remedied by insisting that our rings are strongly associate.

Lemma 4.2. Let R be a strongly associate ring with τ a symmetric
relation on R#, and let α ∈ {irreducible, strongly irreducible, m-
irreducible, very strongly irreducible}. Let a ∈ R be a non-unit. If
a = λa1a2 · · · an⌈b1b2 · · · bm⌉ is a τ -U-α-factorization, then there is a
unit µ ∈ U(R) such that a = µb1 · · · bm is a τ -α-factorization.

Proof. Let a = λa1a2 · · · an⌈b1b2 · · · bm⌉ be a τ -U-α-factorization.
By definition, (a) = (b1 · · · bm), and R strongly associate implies that
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a ≈ b1 · · · bm. Let µ ∈ U(R) be such that a = µb1 · · · bm. We still have
biτbj for all i ̸= j, and bi is τ -α for every i. Hence, a = µb1 · · · bm is
the desired τ -factorization, proving the lemma. �

Theorem 4.3. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let α ∈ {irreducible, strongly irreducible,
m-irreducible, very strongly irreducible}, and β ∈ {associate, strongly
associate, very strongly associate}. We have the following :

(1) If R is τ -α, then R is τ -U-α.
(2) If R satisfies τ -ACCP, then R satisfies τ -U-ACCP.
(3) If R is a τ -BFR, then R is a τ -U-BFR.
(4) If R is a τ -β-FFR, then R is a τ -U-β-FFR.
(5) Let R be a τ -β-WFFR. Then R is a τ -U-β-WFFR.
(6) Let R be a τ -α-β-divisor finite ring. Then R is a τ -U-α-β-divisor

finite ring.
(7) Let R be a strongly associate τ -α-HFR (respectively, τ -α-β-UFR).

Then R is τ -U-α-HFR (respectively, τ -U-α-β-UFR).

Proof. (1) This is immediate from Corollary 3.3.

(2) Suppose there were an infinite properly ascending chain of
principal ideals (a1) ( (a2) ( · · · such that ai+1 is an essential divisor
in some τ -U-factorization of ai, for each i. Every essential τ -U-divisor
is certainly a τ -divisor. This would contradict the fact that R satisfies
τ -ACCP.

(3) We suppose that there is a non-unit a ∈ R with τ -U-factorizations
having arbitrarily large numbers of essential τ -U-divisors. Each is cer-
tainly a τ -factorization, having at least as many τ -factors as there are
essential τ -divisors, so this would contradict the hypothesis.

(4) Every τ -U-factorization is certainly among the τ -factorizations.
If the latter is finite, then so is the former.

(5) For any given non-unit a ∈ R, every essential τ -U-divisor of a is
certainly a τ -factor of a which has only finitely many up to β. Hence,
there can be only finitely many essential τ -U-factors up to β.

(6) Let a ∈ R be a non-unit. Every essential τ -U-α-divisor of a is a
τ -α-factor of a. There are only finitely many τ -α-divisors up to β, so
then there can be only finitely many τ -U-α-divisors of a up to β.
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(7) We have already seen that R being τ -α implies R is τ -U-α. Let
a ∈ R be a non-unit. We suppose for a moment there are two τ -α-U-
factorizations:

a = λa1 · · · an ⌈b1 · · · bm⌉ = λ′a′1 · · · a′n′ ⌈b′1 · · · b′m′⌉

such that m ̸= m′ (respectively, m ̸= m′ or there is no rearrangement
such that bi and b′i are β for each i). Lemma 4.2 implies there
are µ, µ′ ∈ U(R) with a = µb1 · · · bm = µ′b′1 · · · b′m′ are two τ -α-
factorizations of a, so m = m′ (respectively, m = m′ and there is
a rearrangement so that bi and b′i are β for each 1 ≤ i ≤ m), a
contradiction, proving R is indeed a τ -U-α-HFR (respectively, -β-UFR)
as desired. �

Theorem 4.4. Let R be a commutative ring with 1 and τ a sym-
metric relation on R#. Let α ∈ {irreducible, strongly irreducible, m-
irreducible, very strongly irreducible}, and let β ∈ {associate, strongly
associate, very strongly associate}.

(1) If R is a τ -U-α-β-UFR, then R is a τ -α-U-HFR.
(2) If R is τ -U-refinable and R is a τ -U-α-β-UFR, then R is a τ -U-

β-FFR.
(3) If R is τ -U-refinable and R is a τ -U-α-HFR, then R is a τ -U-BFR.
(4) If R is a τ -U-β-FFR, then R is a τ -U-BFR.
(5) If R is a τ -U-β-FFR, then R is a τ -U-β-WFFR.
(6) If R is a τ -U-β-WFFR, then R is a τ -U-α-β-divisor finite ring.
(7) If R is τ -U-refinable and R is a τ -U-α-BFR, then R satisfies τ -U-

ACCP.
(8) If R is τ -U-refinable and R satisfies τ -U-ACCP, then R is τ -U-

atomic.

Proof. (1) This is immediate from the definitions.

(2) Let a ∈ R be a non-unit. Let a = λa1 · · · an ⌈b1 · · · bm⌉ be the
unique τ -α-U-factorization up to rearrangement and β. Given any
other τ -U-factorization, we can τ -U-refine each essential τ -U-divisor
into a τ -U-α-factorization of a. There is a rearrangement of the
essential divisors to match up to β with bi for each 1 ≤ i ≤ m.
Thus, the essential divisors in any τ -U-factorization come from some
combination of products of β of the m τ -U-α essential factors in our
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original factorization. Hence, there are at most 2m possible distinct
τ -U-factorizations up to β, making this a τ -U-β-FFR as desired.

(3) For a given non-unit a ∈ R, the number of essential divisors in
any τ -U-α-factorization is the same, sayN . We claim this is a bound on
the number of essential divisors of any τ -U-factorization. Suppose there
were a τ -U-factorization a = λa1 · · · an ⌈b1 · · · bm⌉ with m > N . For
every i, bi has a τ -U-α-factorization with at least one essential divisor.
Since R is τ -U-refinable, we can τ -U-refine the factorization yielding a
τ -U-α-factorization of a with at least m τ -U-α essential factors. This
contradicts the assumption that R is a τ -U-α-HFR.

(4) Let R be a τ -U-β-FFR. Let a ∈ R be a non-unit. There are only
finitely many τ -U-factorizations of a up to rearrangement and β of the
essential divisors. We can simply take the maximum of the number of
essential divisors among all of these factorizations. This is an upper
bound for the number of essential divisors in any τ -U-factorization.

(5) Let R be a τ -U-β-FFR. Then, for any non-unit a ∈ R, let S be
the collection of essential divisors in the finite number of representative
τ -U-factorizations of a up to β. This gives us a finite collection of
elements up to β. Every essential divisor up to β in a τ -U-factorization
of a must be among these, so this collection is finite as desired.

(6) If every non-unit a ∈ R has a finite number of proper essential
τ -U divisors, then certainly there are a finite number of essential τ -α-
U-divisors.

(7) Suppose R is a τ -U-BFR, but (a1) ( (a2) ( · · · is a properly
ascending chain of principal ideals such that ai+1 is an essential factor
in some τ -U-factorization of ai, say

ai = λiai1 · · · aini ⌈ai+1bi1 · · · bimi⌉

for each i. Furthermore, mi ≥ 1, for each i; otherwise, we would have
(ai+1) = (ai), contrary to our assumption that our chain is properly
increasing. Our assumption that R is τ -U refinable allows us to factor
a1 as follows:

a1 = λ1a11 · · · a1n1 ⌈a2b11 · · · b1m1⌉
= λ1λ2a11 · · · a1n1a21 · · · a2n2 ⌈a3b21 · · · b2m2b11 · · · b1m1⌉

and so on. At each iteration i, we have at least i + 1 essential factors
in our τ -U-factorization. This contradicts the assumption that a1
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should have a bound on the number of essential divisors in any τ -
U-factorization.

(8) Suppose R were not τ -U-atomic. Then there exists a1 ∈ R such
that there is no τ -U-atomic factorization of a1. If a1 were τ -atomic,
we would be done as a1 = 1⌈a1⌉ is a τ -U-atomic factorization. Thus,
there exists a τ -factorization a1 = λ1a2a21 · · · a2n2 such that a1 is not
associated with any factor. Moreover, this can be rearranged into a
U-factorization. If every essential factor were τ -atomic, we would be
done as we have found a τ -U-atomic factorization. Thus, at least one
essential divisor is not τ -atomic. Suppose this is a2 after reordering if
necessary. We know a1 ̸∼ a2, so (a1) ( (a2). We may now continue
this process with a2. The assumption of τ -U-refinability would allow
us to replace a2 with the essential factors of a2 in the τ -U-factorization
of a1. Again, at each stage there must be an essential divisor which is
not τ -atomic or else we would have found a τ -U-atomic factorization
of a1. Thus, we are able to produce an infinite properly ascending
chain of principal ideals such that each is generated by an essential τ -
divisor of the previous generator as desired. This is a contradiction of
the fact that R satisfies τ -U-ACCP. Thus, a1 must have a τ -U-atomic
factorization after finitely many steps, and R has been shown to be
τ -U-atomic as desired. �

The following diagram summarizes our results from Theorems 4.3
and 4.4 where ⋆ represents R being strongly associate, ∇ represents τ is
refinable and associate preserving, and † represents R is τ -U-refinable:

τ-α-β-UFR

⋆

��

τ-U-α-HFR

†

#+O
OOO

OOO
OOO

O

OOO
OOO

OOO
OO

τ-α-HFR
⋆ks

τ-U-α-β-UFR

2:nnnnnnnnnnnn

nnnnnnnnnnnn † +3 τ-U-β-FFR +3

��

τ-U-BFR

† +3 τ-U-ACCP

† +3 τ-U-atomic

τ-β-WFFR +3 τ-U-β-WFFR

��

τ-BFR

KS

τ-ACCP

KS

∇

��

τ-U-α

KS

τ-α-β df ring +3 τ-U-α-β df ring τ-β-FFR

[c>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>
τ-atomic τ-α

KS

ks

We have left off the relations which were proven in [13, Theorem 4.1]
and focused instead on the rings satisfying the U-finite factorization
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properties. Examples given in [4, 6, 9, 10] show that arrows can
neither be reversed nor added to the diagram with a few exceptions.

Question 4.5. Does U-atomic imply atomic?

Anderson and Valdez-Leon show in [8, Theorem 3.13] that if R has a
finite number of non-associate irreducibles, then U-atomic and atomic
are equivalent. This remains open in general.

Question 4.6. Does U-ACCP imply ACCP?

We can modify Axtell’s proof of [9, Theorem 2.9] to add a partial
converse to Theorem 4.4 (5) if τ is combinable and associate preserving.
The idea is the same, but slight adjustments are required to adapt it
to τ -factorizations and to allow uniqueness up to any type of associate.

Theorem 4.7. Let β ∈ {associate, strongly associate, very strongly
associate}. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R# which is both combinable and associate
preserving. R is a τ -U-β-FFR if and only if R is a τ -U-β-WFFR.

Proof. (⇒) was already shown, so we need only prove the converse.

(⇐). Suppose R is not a τ -U-β-FFR. Let a ∈ R be a non-unit which
has infinitely many τ -U-factorizations up to β. Let b1, b2, . . . , bm be a
complete list of essential τ -U-divisors of a up to β. Let

a = a1 · · · an ⌈c1 · · · ck⌉ = a′1 · · · a′n′ ⌈d1 · · · dn⌉

be two τ -U-factorizations of a, and assume we have re-ordered the
essential divisors in both factorizations above so that the β of b1
appear first, followed by β of b2, etc. Let A = ⟨(c1), (c2), . . . , (ck)⟩
and B = ⟨(d1), (d2), . . . , (dn)⟩ be sequences of ideals. We call the
factorizations comparable if A is a subsequence of B or vice versa.

Suppose A is a proper subsequence of B

B = ⟨(d1), . . . , (di1) = (c1), . . . , (di2) = (c2), . . . , (dik) = (ck), . . . , (dn)⟩
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with n > k. Because τ is combinable and symmetric,

a = a′1 · · · a′n′

⌈
di1di2 · · · dik(d1 · · · d̂i1 d̂i2 · · · d̂ik · · · dn)

⌉
remains a τ -factorization, and [9, Lemma 1.3] ensures that this remains
a U-factorization.

This yields

(a) = (d1 · · · d̂i1 d̂i2 · · · d̂ik · · · dn)(di1di2 · · · dik)
= (d1 · · · dn) = (c1 · · · ck)
= (c1) · · · (ck) = (di1) · · · (dik) = (di1 · · · dik).

But then, (d1 · · · d̂i1 d̂i2 · · · d̂ik · · · dn) cannot be an essential divisor, a
contradiction, unless n = k.

If n = k, then the sequences of ideals are identical, and we seek to
prove this means the τ -U-factorizations are the same up to β. It is
certainly true for β = associate as demonstrated in [9, Theorem 2.9].
So we have a pairing of the ci and di such that ci ∼ bj ∼ di for one of the
essential τ -U-divisors bj . We know further that ci and bj (respectively,
di and bj) are β since R is by assumption a τ -U-β-WFFR.

It is well established that β is transitive, so we can conclude that
this same pairing demonstrates that ci and di are β, not just associate.
Thus, the number of distinct τ -U-factorizations up to β is less than
or equal to the number of non-comparable finite sequences of elements
from the set {(b1), (b2), . . . , (bm)}.

From here, we direct the reader to the proof of the second claim in
[9, Theorem 2.9] where it is shown that this set is finite. �

5. Direct products. For each i, 1 ≤ i ≤ N , let Ri be commutative

rings with τi a symmetric relation on R#
i . We define a relation τ×

on R = R1 × · · · × RN which preserves many of the theorems about
direct products from [2] for τ -factorizations. Let (ai), (bi) ∈ R#. Then
(ai)τ×(bi) if and only if whenever ai and bi are both non-units in Ri,
then aiτibi.

For convenience, we will adopt the following notation. Suppose
x ∈ Ri. Then x(i) = (1R1 , . . . , 1Ri−1 , x, 1Ri+1 , . . . 1RN

), so x appears
in the ith coordinate, and all other entries are the identity. Thus, for
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any (ai) ∈ R, we have (ai) = a
(1)
1 a

(2)
2 · · · a(n)n is a τ×-factorization. We

will always move any τ×-factors which may become units in this process
to the front and collect them there.

Lemma 5.1. Let R = R1 × · · · × RN for N ∈ N. Then (ai) ∼ (bi)
(respectively, (ai) ≈ (bi)) if and only if ai ∼ bi (respectively, ai ≈ bi)
for every i. Furthermore, (ai) ∼= (bi) implies ai ∼= bi for all i, and for
ai, bi all non-zero, ai ∼= bi for all i ⇒ (ai) ∼= (bi).

Proof. See [8, Theorem 2.15]. �

Example 5.2. If ai0 = 0 for even one index 1 ≤ i0 ≤ N , then ai ∼= bi
for all i need not imply (ai) ∼= (bi).

Consider the ring R = Z × Z, with τi = Z# × Z# for i = 1, 2, the
usual factorization. We have 1 ∼= 1 and 0 ∼= 0 since Z is a domain;
however, (0, 1) = (0, 1)(0, 1) shows (0, 1) ̸∼= (0, 1).

Lemma 5.3. Let R = R1 × · · · × RN for N ∈ N with τi a symmetric

relation on R#
i for each i. Let α ∈ {irreducible, strongly irreducible, m-

irreducible, very strongly irreducible}. If (ai) ∈ R is τ -α, then precisely
one coordinate is not a unit.

Proof. Let a = (ai) ∈ R be a non-unit which is τ×-α. Certainly
not all coordinates can be units, or else a ∈ U(R). Suppose for
a moment there were at least two coordinates for which ai is not a
unit in Ri. After reordering, we may assume a1 and a2 are not units.

Then a = a
(1)
1 (1R1 , a2, . . . , aN ) is a τ×-factorization. But a is not even

associate to either τ×-factor, a contradiction. �

Theorem 5.4. Let R = R1 × · · ·×RN for N ∈ N with τi a symmetric

relation on R#
i for each i.

(1) A non-unit (ai) ∈ R is τ×-atomic (respectively, strongly atomic)
if and only if ai0 is τi0-atomic (respectively, strongly atomic) for
some 1 ≤ i0 ≤ n and ai ∈ U(Ri) for all i ̸= i0.

(2) A non-unit (ai) ∈ R is τ×-m-atomic if and only if ai0 is τi0-m-
atomic for some 1 ≤ i0 ≤ n and ai ∈ U(Ri) for all i ̸= i0.
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(3) A non-unit (ai) ∈ R is τ×-very strongly atomic if and only if ai0
is τi0-very strongly atomic and non-zero for some 1 ≤ i0 ≤ n and
ai ∈ U(Ri) for all i ̸= i0.

Proof. (1) (⇒). Let a = (ai) ∈ R be a non-unit which is τ×-atomic
(respectively, strongly atomic). By Lemma 5.3, there is only one non-
unit coordinate. Suppose after reordering if necessary that a1 is the
non-unit. If a1 were not τ1-atomic (respectively, strongly atomic),
then there is a τ1-factorization, λ11a11a12 · · · a1k for which a1 ̸∼ a1j
(respectively, a1 ̸≈ a1j ) for any 1 ≤ j ≤ k. But then

(ai) = (λ11 , a2, . . . , an)a
(1)
11

a
(1)
12

· · · a(1)1k

is a τ×-factorization. Furthermore, by Lemma 5.1, (ai) ̸∼ a
(1)
1j

(re-

spectively, (ai) ̸∼ a
(1)
1j

) for all 1 ≤ j ≤ k. This would contradict the

assumption that a was τ×-atomic (respectively, strongly atomic).

(⇐). Let a1 ∈ R1 be a non-unit with a1 being τ1-atomic (respec-
tively, strongly atomic). Let µi ∈ U(Ri) for 2 ≤ i ≤ N . We show a =
(a1, µ2, · · ·µN ) is τ×-atomic (respectively, strongly atomic). Suppose
a = (λ1, . . . , λN )(a11 , . . . , a1N ) · · · (ak1

, . . . , akN
) is a τ×-factorization

of a. We first note aij ∈ U(Rj) for all j ≥ 2. Furthermore, this
means ai1 is not a unit in R1 for 1 ≤ i ≤ k; otherwise, we would have
units as factors in a τ× factorization. This means a1 = λ1a11 · · · ak1

is a τ1 factorization of a τ1-atomic (respectively, strongly atomic) ele-
ment. Thus, we must have a1 ∼ aj1 (respectively, a1 ≈ aj1) for some
1 ≤ j ≤ k. Hence, by Lemma 5.1, we have a ∼ (aj1 , . . . , ajN ) (re-
spectively, a ≈ (aj1 , . . . , ajN ) for some 1 ≤ j ≤ k and a is τ× atomic
(respectively, strongly atomic) as desired.

(2) (⇒). Let a = (ai) ∈ R be a non-unit which is τ×-m-atomic.
By Lemma 5.3, there is only one non-unit coordinate, say a1 after
reordering if necessary. Let a1 = λ11a11a12 · · · a1k be a τ1 factorization
for which a1 ̸∼ a1j0 for at least one 1 ≤ j0 ≤ k. But then

(ai) = (λ11 , a2, . . . , an)a
(1)
11

a
(1)
12

· · · a(1)1k

is a τ×-factorization of a for which (by Lemma 5.1) a = (ai) ̸∼ a
(1)
1j0

.

This contradicts the hypothesis that a is τ×-m-atomic.
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(⇐). Let a1 ∈ R1 be a non-unit with a1 being τ1-m-atomic. Let
µi ∈ U(Ri) for 2 ≤ i ≤ N . We show a = (a1, µ2, . . . , µN ) is τ×-m-
atomic. Suppose

a = (λ1, . . . , λN )(a11 , . . . , a1N ) · · · (ak1 , . . . , akN )

is a τ×-factorization of a. We first note aij ∈ U(Rj) for all j ≥ 2. As
before, this means a1 = λ1a11 · · · ak1 is a τ1 factorization of a τ1-m-
atomic element. Hence, a1 ∼ aj1 for each 1 ≤ j ≤ k. By Lemma 5.1,
we have a ∼ (aj1 , . . . , ajN ) for all 1 ≤ j ≤ k and thus a is τ×-m-atomic
as desired.

(3) (⇒). Let a = (a1, . . . , aN ) be a non-unit which is τ×-very
strongly atomic. By Lemma 5.3, we may assume a1 is the non-unit,
and aj is a unit for j ≥ 2. We suppose for a moment that a1 = 01. But
then (0, a2, . . . , aN ) = (0, 1, . . . , 1) · (0, a2, . . . , aN ) shows that a ̸∼= a,
a contradiction. Lemma 5.1 shows that, if a ∼= a, then ai ∼= ai for
each 1 ≤ i ≤ N . Hence, if a1 were not τ1-very strongly atomic, then
there is a τ1-factorization, λ11a11a12 · · · a1k for which a1 ̸∼= a1j for any
1 ≤ j ≤ k. But then

(ai) = (λ11 , a2, . . . , an)a
(1)
11

a
(1)
12

· · · a(1)1k

is a τ×-factorization. Furthermore, since every coordinate is non-zero,

by Lemma 5.1, (ai) ̸∼= a
(1)
1j

for all 1 ≤ j ≤ k. This would contradict the

assumption that a was τ×-very strongly atomic.

(⇐). Let a1 ∈ R#
1 be τ1-very strongly atomic. Let µi ∈ U(Ri)

for 2 ≤ i ≤ N . We show a = (a1, µ2, · · ·µN ) is τ×-very strongly
atomic. We first check a ∼= a. By the definition of τ1-very strongly
atomic, a1 ∼= a1. Certainly as units, we have µi

∼= µi for each i ≥ 2.
Lastly, all of these are non-zero, so we may apply Lemma 5.1 to see
that a ∼= a. Suppose a = (λ1, . . . , λN )(a11 , . . . , a1N ) · · · (ak1 , . . . , akN

)
is a τ×-factorization of a. We first note aij ∈ U(Rj) for all j ≥ 2. As
before, this means a1 = λ1a11 · · · ak1 is a τ1 factorization of a τ1-very
strongly atomic element. Hence, a1 ∼= aj1 for some 1 ≤ j ≤ k. By
Lemma 5.1, we have a ∼= (aj1 , . . . , ajN ), and thus a is τ×-very strongly
atomic as desired. �

Lemma 5.5. Let R = R1×· · ·×RN for N ∈ N with τi a symmetric re-

lation on R#
i . Let α ∈ {irreducible, strongly irreducible, m-irreducible,

very strongly irreducible}. Then we have the following :
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(1) If a = λa1 · · · an⌈b1 · · · bm⌉ is a τi-U-α-factorization of some non-

unit a ∈ Ri, then a(i) = λ(i)a
(i)
1 · · · a(i)n ⌈b(i)1 · · · b(i)m ⌉ is a τ×-U-α-

factorization.
(2) Conversely, let ai0 ∈ Ri0 be a non-unit and µi ∈ U(Ri) for all

i ̸= i0. Let

(µ1, µ2, . . . , µi0−1, ai0 , µi0+1, . . . , µN )

= (λi)(a1i)(a2i) · · · (ani) ⌈(b1i)(b2i) · · · (bmi)⌉

be a τ×-U-α-factorization. Then

ai0 = λi0a1i0 · · · ani0

⌈
b1i0 · · · bi0

⌉
is a τi0-U-α-factorization.

Proof. (1) Let a = λa1 · · · an ⌈b1 · · · bm⌉ be a τi-U-α-factorization of
some non-unit a ∈ Ri. It is easy to see that

a(i) = λ(i)a
(i)
1 · · · a(i)n

⌈
b
(i)
1 · · · b(i)m

⌉
is a τ×-factorization. Furthermore, bj ̸= 0 for all 1 ≤ j ≤ m or else it

would not be a τi-factorization. Hence, by Theorem 5.4, b
(i)
j is τ×-α

for each 1 ≤ j ≤ m. Thus, it suffices to show that we actually have a
U-factorization.

Since a = λa1 · · · an ⌈b1 · · · bm⌉ is a U-factorization, we know
ak(b1 · · · bm) = (b1 · · · bm) for all 1 ≤ k ≤ n. In the other coordi-
nates, we have (1Rj ) = (1Rj ) for all j ̸= i. Hence, we apply Lemma 5.1

and see that this implies that a
(i)
k (b

(i)
1 · · · b(i)m ) = (b

(i)
1 · · · b(i)m ) for all

1 ≤ k ≤ n. Similarly, we have bj(b1 · · · b̂j · · · bm) ̸= (b1 · · · b̂j · · · bm)

which implies b
(i)
j (b

(i)
1 · · · b̂(i)j · · · b(i)m ) ̸= (b

(i)
1 · · · b̂(i)j · · · b(i)m ), so this is in-

deed a U-factorization.

(2) Let

(µ1, µ2, . . . , µi0−1, ai0 , µi0+1 . . . , µN )

= (λi)(a1i)(a2i) · · · (ani) ⌈(b1i)(b2i) · · · (bmi)⌉

be a τ×-U-α-factorization. We note that aji ∈ U(Ri) for all i ̸= i0 and
all 1 ≤ j ≤ n and bji ∈ U(Ri) for all i ̸= i0 and all 1 ≤ j ≤ m since
they divide the unit µi. Next, every coordinate in the i0 place must be
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a non-unit in Ri0 or else this factor would be a unit in R and therefore
could not occur as a factor in a τ×-factorization. This tells us that

ai0 = λi0a1i0 · · · ani0

⌈
b1i0 · · · bi0

⌉
is a τi0 -factorization. Furthermore, (bki) is assumed to be τ×-α for all
1 ≤ k ≤ m, and the other coordinates are units, so bki0

is τi0 -α for all
1 ≤ k ≤ m by Theorem 5.4. Again, we need only show that

ai0 = λi0a1i0a2i0 · · · ani0

⌈
b1i0 b2i0 · · · bmi0

⌉
is a U-factorization. Since all the coordinates other than i0 are units,
we simply apply Lemma 5.1 and see that we indeed maintain a U-
factorization. �

Theorem 5.6. Let R = R1 × · · · × RN for N ∈ N with τi a sym-

metric relation on R#
i . Let α ∈ {irreducible, strongly irreducible, m-

irreducible, very strongly irreducible}. Then R is τ×-U-α if and only if
Ri is a τi-U-α for each 1 ≤ i ≤ N .

Proof. (⇒). Let a ∈ Ri0 be a non-unit. Then a(i0) is a non-unit
in R and therefore has a τ×-U-α-factorization. Furthermore, the only
possible non-unit factors in this factorization must occur in the i0th
coordinate. Thus, as in Lemma 5.5 (2), we have found a τi0 -U-α-
factorization of a by taking the product of the i0th entries. This shows
Ri0 is τi0 -U-α as desired.

(⇐). Let a = (ai) ∈ R be a non-unit. For each non-unit ai ∈ Ri,
there is a τi-U-α-factorization of ai, say

ai = λiai1 · · · aini

⌈
bi1 · · · bimi

⌉
.

If ai ∈ U(Ri), then a
(i)
i ∈ U(R), and we can simply collect these unit

factors in the front, so we need not worry about these factors. This
yields a τ×-U-α-factorization

a = (ai) =

n∏
i=1

λ
(i)
i a

(i)
i1

· · · a(i)ini

⌈
m∏
i=0

b
(i)
i1

· · · b(i)imi

⌉
.

It is certainly a τ×-factorization. Furthermore, bjk ̸= 0j for 1 ≤ j ≤ m

and 1 ≤ k ≤ mj , so b
(j)
jk

is τ×-α by Theorem 5.4. It is also clear from
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Lemma 5.5 that this is a U-factorization, showing every non-unit in R
has a τ×-U-α-factorization. �

Theorem 5.7. Let R = R1 × · · · × RN for N ∈ N with τi a sym-

metric relation on R#
i . Let α ∈ {irreducible, strongly irreducible, m-

irreducible, very strongly irreducible}, and let β ∈ {associate, strongly
associate, very strongly associate}. Then R is a τ×-U-α-β-df ring if
and only if Ri is τi-U-α-df ring for each 1 ≤ i ≤ N .

Proof. (⇒). Let a ∈ Ri0 be a non-unit. Suppose there were an
infinite number of τi0 -U-α essential divisors of a, say {bj}∞j=1, none

of which are β. But then {b(i0)j }∞j=1 yields an infinite set of τ×-U-α-

divisors of a(i0) by Lemma 5.5. Furthermore, none of them are β by
Lemma 5.1.

(⇐). Let (ai) ∈ R be a non-unit. We look at the collection of τ×-U-α
essential divisors of (ai). Each must be of the form (λ1, . . . , bi0 , . . . , λN )
with λi ∈ U(Ri) for each i, and with bi0 τi0 -α for some 1 ≤ i0 ≤ N .
But, then bi0 is a τi0-α essential divisor of ai0 . For each i between 1
and N , Ri is a τi-U-α-β-df ring, so there can only be finitely many
τi-α essential divisors of ai up to β, say N(ai). If ai ∈ Ri, then we
can simply set N(ai) = 0 since it is a unit and has no non-trivial
τi-U-factorizations. Hence, there can be only

N((ai)) := N(a1) +N(a2) + · · ·+N(aN ) =

N∑
i=1

N(ai)

τ×-α essential divisors of (ai) up to β. This proves the claim. �

Corollary 5.8. Let α and β be as in the theorem. Let R = R1 ×
· · · × RN for N ∈ N with τi a symmetric relation on R#

i . Then R is
a τ×-U-α τ×-U-α-β-df ring if and only if Ri is a τi-U-α τi-U-α-β-df
ring for each 1 ≤ i ≤ N .

Proof. This is immediate from Theorems 5.6 and 5.7. �

Theorem 5.9. Let R = R1 × · · ·×RN for N ∈ N with τi a symmetric

relation on R#
i . Then R is a τ×-U-BFR if and only if Ri is a τi-U-BFR

for every i.
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Proof. (⇒). Let a ∈ Ri0 be a non-unit. Then a(i0) is a non-unit
in R and hence has a bound on the number of essential divisors in
any τ×-U-factorization, say Ne(a

(i0)). We claim this also bounds the
number of essential divisors in any τi0 -U-factorization of a. Suppose
for a moment a = a1 · · · an ⌈b1 · · · bm⌉ were a τi0 -U-factorization with
m > Ne(a

(i)). But then

a = λ(i0)a
(i0)
1 · · · a(i0)n

⌈
b
(i0)
1 · · · b(i0)m

⌉
is a τ×-U-factorization with more essential divisors than is allowed, a
contradiction.

(⇐). Let a = (ai) ∈ R be a non-unit. Let B(a) = max{Ne(ai)}Ni=1,
whereNe(ai) is the number of essential divisors in any τi-U-factorization
of ai, and for ai ∈ U(Ri), Ne(ai) = 0. We claim that B(a)N is a bound
on the number of essential divisors in any τ×-U-factorization of a. Let

(ai) = (λi)(a1i) · · · (ani) ⌈(b1i) · · · (bmi)⌉

be a τ×-U-factorization. We can decompose this factorization so that
each factor has at most one non-unit entry as follows:

(ai) =
N∏
i=1

λ
(i)
i a

(i)
1i

· · ·
N∏
i=1

a(i)ni

N∏
i=1

b
(i)
1i

· · ·
N∏
i=1

b(i)mi
.

Some of these factors may indeed be units; however, by allowing a
unit factor in the front of every τ -U-factorization, we simply combine
all the units into one at the front and maintain a τ×-factorization. We
can always rearrange this to be a τ×-U-factorization. Furthermore,

since aji is inessential, by Lemma 5.1, a
(i)
ji

is inessential. Only some
of the components of the essential divisors could become inessential;
for instance, if one coordinate were a unit. At worst, when we

decompose, b
(i)
ji

remains an essential divisor for all 1 ≤ j ≤ m and
for all 1 ≤ i ≤ N . But then, the product of each of the ith coordinates
gives a τi-U-factorization of ai and thus is bounded by Ne(ai), so we
have m ≤ Ne(ai) ≤ B(a), and therefore there are no more than B(a)N
essential divisors. Certainly the original factorization is no longer than
the one we constructed through the decomposition, proving the claim
and completing the proof. �
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Theorem 5.10. Let R = R1 × · · · × RN for N ∈ N with τi a

symmetric relation on R#
i . Let α ∈ {irreducible, strongly irreducible,

m-irreducible, very strongly irreducible}. Then R is τ×-U-α-HFR if
and only if Ri is a τi-U-α-HFR for each i.

Proof. (⇒). Let a ∈ Ri0 be a non-unit. We know by Theorem 5.6
that a(i0) is a non-unit in R and has a τ×-U-α-factorization. Suppose
there were τi0-U-α-factorizations of a with different numbers of essential
divisors, say:

a = λa1 · · · an ⌈b1 · · · bm⌉ = µc1 · · · cn′ ⌈d1 · · · dm′⌉

where m ̸= m′. By Lemma 5.5, this yields two τ×-U-α-factorizations:

a(i0) = λ(i0)a
(i0)
1 · · · a(i0)n

⌈
b
(i0)
1 · · · b(i0)n

⌉
= µ(i0)c

(i0)
1 · · · c(i0)n′

⌈
d
(i0)
1 · · · d(i0)n′

⌉
.

This contradicts the hypothesis that R is a τ×-U-α-HFR.

(⇐). Let (ai) ∈ R be a non-unit. Suppose we have two τ×-U-α
factorizations

(ai) = (λi)(a1i)(a2i) · · · (ani) ⌈(b1i)(b2i) · · · (bmi)⌉

= (µi)(a
′
1i)(a

′
2i) · · · (a

′
n′
i
)
⌈
(b′1i)(b

′
2i) · · · (b

′
m′

i
)
⌉
.

For each i0, if ai0 is a non-unit in Ri0 , then since each τ×-α element
can only have one coordinate which is not a unit, we can simply collect
all the τ×-divisors which have the i0 coordinate a non-unit. This
product forms a τi0 -U-α-factorization of ai0 , and therefore the number
of essential τ×-factors with coordinate i0 a non-unit must be the same
in the two factorizations. This is true for each coordinate i0, hence
m = m′, as desired. �

Theorem 5.11. Let R = R1 × · · · × RN for N ∈ N with τi a sym-

metric relation on R#
i . Let α ∈ {irreducible, strongly irreducible, m-

irreducible, very strongly irreducible}, and let β ∈ {associate, strongly
associate}. Then R is τ×-U-α-β-UFR if and only if Ri is a τi-U-α-β-
UFR for each i.
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Proof. We simply apply Lemma 5.1 to the proof of Theorem 5.10 to
see that the factors can always be rearranged to match associates of
the correct type. �
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