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THE LOCAL AND GLOBAL ZETA FUNCTIONS
OF GAUSS’S CURVE

BETH MALMSKOG AND JEREMY MUSKAT

ABSTRACT. The singular curve C ⊂ P2 defined over Fp

for a prime p by the equation x2t2 + y2t2 + x2y2 − t4 = 0 is
known as Gauss’s curve. For p ≡ 3 mod 4, we give a proof
that the zeta function of C is

ZC(u) =
(1 + pu2)(1 + u)2

(1− pu)(1− u)
.

We define the (Hasse-Weil) global zeta function for any
geometric genus 1 singular curve and, in particular, find
that the global zeta function of C is

ζC(s) =
ζ(s)ζ(s− 1)

LE(s)L(s, χ′)2
,

where E is a projective nonsingular model for C, LE(s) is its
L-function, and L(s, χ′) is a Dirichlet L-series for a character
χ′ that we specify. We then consider more generally the
ratio RX(s) of the Hasse-Weil global zeta function of a

singular curve X and that of its normalization X̃. We finish
with questions about the analytic properties of RX(s).

1. Introduction. On July 9, 1814, Gauss made the last entry in his
mathematical diary. He recorded the following discovery [3, 8].

Theorem 1.1. Suppose p = a2+b2 ≡ 1 mod 4 is prime, where a+bi ≡
1 mod (2 + 2i). Then the number of solutions to x2 + y2 + x2y2 = 1
over Fp is p+ 1− 2a.

Here, Gauss counted the two double points at infinity as four points
total. Counting the points at infinity without multiplicity yields leads
to the following theorem.

Theorem 1.2. [7, Chapter 11.5]. Consider the curve C : x2t2 +
y2t2 + x2y2 − t4 = 0 in P2 defined over Fp where p ≡ 1 mod 4. Write
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p = a2+ b2 with b even and with a ≡ (−1)b/2 mod 4. Then the number
of points on C(Fp) is N1 = p− 1− 2a. Furthermore, the zeta function
of C is

ZC(u) =
(1− 2au+ pu2)(1− u)

1− pu
.

Notice that setting t = 1 yields Gauss’s original equation. Gauss did
not provide a proof of his statement, and the first known proof uses
the complex multiplication of elliptic functions associated to C which
is due to Herglotz in 1921 [6] (see also [2]). Several other proofs have
been published over the years, see Lemmermeyer’s notes in [8, Chapter
10] for a survey. Lemmermeyer also shows that there are p+ 1 points
on C over Fp for p ≡ 3 mod 4 by showing a bijection between the
Fp-solutions to x2+y2+x2y2 = 1 and the Fp-solutions to the equation
w2 = 1− v4.

In this paper, we first expand Lemmermeyer’s work to count points
of C over Fpn for p ≡ 3 mod 4 and n ≥ 1 (see also [7, Chapter 11,
Exercises 10–13]). This allows us to calculate the zeta function of C
over Fp for all primes p. We then extend the definition of the global zeta
function to singular curves and compute the (Hasse-Weil) global zeta
function of C. We then introduce RX(s), the ratio of the global zeta

function of X and the global zeta function of X̃, the normalization of
X. For Gauss’s curve C, the ratio is a product of Dirichlet L-functions.
Finally, we ask whether this is a phenomenon that in some sense extends
to all geometric genus 1 singular curves over Q.

2. Zeta functions over finite fields.

Definition 2.1. [7, Chapter 11.1]. Consider a projective curve X
defined over Fp. The zeta function of X is given by

ZX(u) = exp

( ∞∑
n=1

Nn(X)un

n

)
,

where Nn(X) denotes the cardinality of X(Fpn).
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Fact 2.2. [8, Chapter 10.5]. ZX(u) is a rational function of the form

ZX(u) =
∏
i

(1− αiu)
∏
j

(1− βju)
−1

for some αi, βj ∈ C. Furthermore,

Nn(X) =
∑
i

αn
i −

∑
j

βn
j .

In this section, let p be a prime with p ≡ 3 mod 4, and let ζ8 be a
primitive eighth root of unity, so ζ8 ∈ Fpn if and only if n is even.

2.1. The zeta function of C. Here we define some plane curves bi-
rational to C, for which it will be easier to count Fp-points. Specifically,
we will consider the following projective curve E as well as an affine
slice E0:

E : y2t− x3 + 4xt2 = 0, E0 : y2 − x3 + 4x = 0.

We also use G0 and C0:

G0 : z2 + w4 − 1 = 0, C0 : x2 + y2 + x2y2 − 1 = 0.

Proposition 2.3. We have

Nn(C0) =

{
Nn(G0) if 2 - n;
Nn(G0)− 2 if 2|n.

Proof. Consider the birational map

µ : G0 −→ C0 given by (w, z) 7−→ (x, y) =

(
w,

z

1 + w2

)
.

The map µ is defined for all (w, z) ∈ G0(Fpn) such that w2 ̸≡ −1 mod
p. Note that the inverse map is µ̃(x, y) = (x, (1 + x2)y). Therefore, µ
induces a bijection from G0(Fpn) to C0(Fpn) for n odd and a bijection

away from the points (0,±
√
−1) ∈ G0(Fpn) for n even. Hence,

Nn(C0) = Nn(G0) for n odd and Nn(C0) = Nn(G0)−2 for n even. �

Proposition 2.4. For even n, we have Nn(C0) = Nn(E0)− 3.
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Proof. Consider the following birational map defined over Fp2 :

η : E0 −→ G0 given by (x, y) 7−→ (w, z) =

(
ζ8y

2x
,
y2 + 8x

4x2

)
.

This induces a map from E0(Fpn) to G0(Fpn) for n even, which is
defined away from (0, 0) ∈ E0(Fpn). The inverse map is

η̃ : G0 −→ E0 given by (w, z) 7−→
(

2

z + ζ28w
2
,

4ζ78w

z + ζ28w
2

)
.

The map η̃ is defined for all points of G0(Fpn) since there is no
point (w, z) in G0(Fpn) such that z + ζ28w

2 = 0. Therefore, the
induced map η∗ : E0(Fpn) − {(0, 0)} → G0(Fpn) is a bijection and
Nn(G0) = Nn(E0) − 1 for n even. Proposition 2.3 then gives us
Proposition 2.4. �

Note that Proposition 2.4 shows that E is the normalization of C
over Fp2 , so C has geometric genus 1. However, since C is singular, its
zeta function is not determined just by the value N1(C) (as it is for E).

Theorem 2.5. Consider the curve C : x2t2 + y2t2 + x2y2 − t4 over Fp

where p ≡ 3 mod 4. Then

Nn(C) =

{
pn − 2(

√
−p)n − 1 if n even,

pn + 3 if n odd.

Furthermore,

ZC(u) =
(1 + u)2(1 + pu2)

(1− u)(1− pu)
.

Proof. It is elementary to calculate that Nn(G0) = pn + 1 when n
is odd [8, page 318]. Then, since E is a smooth curve of genus 1 with
p + 1 points over Fp, the Weil conjectures allow us to easily calculate
that

Nn(E) = (1n + pn)− ((
√
−p)n + (−

√
−p)n).

Therefore, when n is even, Nn(E) = pn − 2(
√
−p)n + 1 and Nn(E0) =

pn − 2(
√
−p)n.

Since

Nn(C0) =

{
Nn(E0)− 3 if n even,
Nn(G0) if n odd,
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and the curve C has two points at infinity regardless of n, we have
deduced the values of Nn(C). In order to calculate the zeta function
of C, notice that Nn(C) can be rewritten for any value of n as

Nn(C) = pn + 1− (
√
−p)n − (−

√
−p)n − 2(−1)n.

Therefore,

ZC(u) = exp

( ∞∑
n=1

(pn + 1− (
√
−p)n − (−

√
−p)n − 2(−1)n)un

n

)
.

Using the identity
∑∞

n=1 w
nn−1 = − ln(1−w), we get the desired result

ZC(u) =
(1 + u)2(1 + pu2)

(1− u)(1− pu)
. �

2.2. Comparison to zeta functions of normalizations. The re-
lationship between the zeta function of a singular curve over a finite
field and its normalization has been studied in [12, 14]. Gauss’s curve
C is an example of a projective plane curve with singularities. By [5,
Chapter 17], for every such singular curve X, there exists a nonsingular

projective curve X̃ along with a normalization map ν : X̃ → X. For
every nonsingular point P of X, the preimage ν−1(P ) consists of only
one point.

Another approach to determining ZX(u) is to consider X̃ and its
zeta function ZX̃(u). Then Nn(X) can be calculated by comparing it to

Nn(X̃) while considering the size and field of definition of the preimages
of the singular points of X. More precisely, let Xsing represent the set

of singular points of X. Let Q | P denote the set of points Q ∈ X̃ such
that ν(Q) = P . Then we let deg (P ) be the degree of the field extension
of the residue field of P over Fp. The following lemma explains how the
zeta function of a singular curve is related to the zeta function of its
normalization. It is a consequence of the Euler product representation
of the zeta function [9, Chapter 8.4].

Lemma 2.6. (see, e.g., [1, Section 2]). Let X be a complete irreducible

algebraic projective curve with normalization X̃. Then

ZX(u)

ZX̃(u)
=

∏
P∈Xsing

∏
Q|P (1− udeg (Q))

1− udeg (P )
.
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We now apply this lemma, using that C̃ = E. For p any odd prime,
C has two degree-one singular points P1 = [1, 0, 0] and P2 = [0, 1, 0]. If
p ≡ 3 mod 4, there is one point of degree 2 on E for each of these, hence
ZC(u)/ZE(u) = (1 + u)2. When p ≡ 1 mod 4, there are two points of
degree 1 on E for each of these, yielding ZC(u)/ZE(u) = (1− u)2.

3. Global zeta functions. Let X be an elliptic curve defined over
Q by a global minimal model (so defined by a generalized Weierstrass
equation) over Z with discriminant ∆, let Xp be the reduction of X
mod p, and let S = {p prime: p | ∆} be the set of primes of bad
reduction for X (see [7, Chapter 18.2] for reference). Then the above
function ZXp(u) is defined for primes p /∈ S. Via the change in variables
u = p−s, we can define

ζXp(s) = ZXp(p
−s)

to be the (local) zeta function of X at p.

The global zeta function of X is a function which incorporates the
local zeta functions of X for all primes p /∈ S, as well as zeta factors
which we will define below for p ∈ S. Global zeta functions have been
studied extensively and are the subject of the well-known Birch and
Swinnerton-Dyer conjecture (see [4, Lecture 2] for a more complete
discussion of BSD).

Let Np(X) = |Xp(Fp)|, and let αp = p+1−Np. We then have that,
for p /∈ S,

ζXp(s) =
1− αpp

−s + p1−2s

(1− p−s)(1− p1−s)
.

The (incomplete) global zeta function of X is defined to be the product
of the local zeta functions:

ζ∗X(s) =
∏
p-∆

ζXp(s).

Let L∗
X(s) =

∏
p-∆(1 − αpp

−s + p1−2s)−1, which is called the (incom-

plete) L-function of X.

To complete these functions, we include local ζ-factors corresponding
to p ∈ S. For elliptic curves, we use the following definitions (see
[4, 11])
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ζXp
(s) =



1
(1−p−s)(1−p1−s) if X has additive reduction at p,

1
(1−p1−s) if X has split multiplicative reduction

at p,
1+p−s

(1−p−s)(1−p1−s) if X has non-split multiplicative

reduction at p.

Taking the product over all p, we have a formula for the global ζ
function of X

ζX(s) =
∏
p

ζXp(s) = ζ(s)ζ(s− 1)LX(s)−1,

where LX(s) is the corresponding completed L-function of X. Deter-
mining the global zeta function of X is equivalent to determining its
L-function.

We note that, for an elliptic curve E defined over Q, one can add a
factor corresponding to infinity to obtain the function

Λ(E, s) = (2π)−sΓ(s)LE(s),

where Γ(s) is the usual Gamma function. Wiles, Taylor and others
proved that Λ(E, s) has an analytic continuation to the entire complex
plane and satisfies a functional equation [4]. While it is necessary to
carefully specify ζXp for primes of bad reduction to get the functional
equation of Λ(E, s), it is not necessary to do so just for determining
whether LE(s) has a meromorphic continuation to the whole s-plane.
So, while the formal definition for LXp comes from the characteristic
polynomial of Frobenius acting on the dual of the inertial invariants
of the Tate module of E (see [4]), one could naively define L−1

Xp
as

(1 − p−s)(1 − p1−s) times ZXp(p
−sz). When X is a global minimal

model overQ, these two definitions for ζXp agree, but this motivates our
following ad hoc definition. We call the following elementary global zeta
function of a singular curve the (Hasse-Weil) global zeta function (to
contrast with [1, 13], where the “global” zeta function has a different
meaning; see also [10]).

Definition 3.1. Let Y be a singular curve over Q with normalization

Ỹ over Q, where Ỹ is an elliptic curve. Let S be the set of primes

of bad reduction for Ỹ . Define ζYp
(s) = ζỸp

(s) for p ∈ S. Define the
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Hasse-Weil global zeta function of Y to be

ζY (s) =
∏
p

ζYp(s).

Our Hasse-Weil global zeta function of a singular curve X uses the

local zeta functions of X at all primes of good reduction for X̃ and the

same zeta factors as X̃ for primes of bad reduction for X̃. Since X is
singular, it does not have a minimal model in the traditional sense, so

we consider the global minimal model of X̃ as a proxy for studying the
primes of bad reduction.

3.1. The global zeta functions of E and C. As above, E is the
normalization of Gauss’s curve C over Q. The function LE(s) is well
known. To fix notation, let P be a prime of Z[i], P - 2. Let N(P ) be
the norm of P . For A ∈ Z[i], let (A/P )4 ∈ {0,±1,±i} be the quartic
residue symbol of A modulo P . That is,(

A

P

)
4

= 0 if P | A

and (
A

P

)
4

= A[N(P )−1]/4 mod p, otherwise.

Define a Hecke character χ on primes P of Z[i]. If P divides 2, define
χ(P ) = 0. If N(P ) = p2 for some rational prime p, then p ≡ 3 mod 4
and (P ) = (p), where p is inert in Z[i]. In this case define χ(P ) = −p.
If N(P ) = p, i.e., (p) splits in Z[i] and p ≡ 1 mod 4, then P = (π)

for some π ∈ Z[i] with π ≡ 1 mod (2 + 2i). Define χ(P ) = (4/(π))4π,
where a bar denotes complex conjugation.

The Hecke L-function associated to χ is defined as

L(s, χ) =
∏

P prime of Z[i]

(1− χ(P )N(P )−s)−1.

For the case of the elliptic curve E = C̃ : y2t−x3+4xt2 = 0, it is shown
in [7, Chapter 18.6] that LE(s) = L(s, χ). This reflects that fact that
the curve E has complex multiplication by Z[i] (see [11, subsection
11.10]).



LOCAL AND GLOBAL ZETA FUNCTIONS 283

To express the Hasse-Weil global zeta function of the singular curve
C, we use the following character.

Definition 3.2. Let χ′ be the Dirichlet character χ′ : Z → {0,±1},
where χ′(n) = 0 if n is even, χ′(n) = 1 if n ≡ 1 mod 4, and χ′(n) = −1
if n ≡ 3 mod 4, i.e., the non-trivial character associated to the extension
Q(i)/Q.

The Dirichlet L-function associated to χ′ is

L(s, χ′) =
∏

p prime of Z

(1− χ′(p)p−s)−1.

Theorem 3.3. The Hasse-Weil global zeta function for C is given by

ζC(s) :=
∏
p

ζCp(s) =
ζ(s)ζ(s− 1)

LE(s)L(s, χ′)2
=

ζE(s)

L(s, χ′)2
.

Proof. Recall from Theorem 1.2 that Np(C) = p − 1 − 2ap for
p ≡ 1 mod 4, where ap is the value such that a2p + b2 = p with b

even and ap ≡ (−1)b/2 mod 4. Also note that E has additive reduction
at p = 2, the only prime of bad reduction for E. We then have

ζC(s) =
∏
p

ζCp(s) =
1

(1− 2−s)(1− 21−s)∏
p≡1(4)

(1−2app
−s+p1−2s)(1−p−s)

1−p1−s

∏
p≡3(4)

(1+p−s)2(1+p1−2s)

(1−p−s)(1−p1−s)
.

A few simplifications yield the form:

ζC(s) = ζ(s)ζ(s− 1)
∏

p≡1(4)

(1− 2app
−s + p1−2s)(1− p−s)2

∏
p≡3(4)

(1 + p−s)2(1 + p1−2s)

Now consider the relationship between ap and αp, where αp = p+ 1−
Np(E). When p ≡ 1 mod 4, the two singularities on Cp are double
points, which in the normalization Ep yield two points each. That
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means that Np(E) = Np(C) + 2, giving

p+ 1− αp = p− 1− 2ap + 2,

so αp = 2ap for p ≡ 1 mod 4. When p ≡ 3 mod 4, we know that
Np(E) = p+ 1, so αp = 0.

Therefore,

ζC(s) = ζ(s)ζ(s− 1)
∏
p ̸=2

(1− αpp
−s + p1−2s)(1− (−1)(p−1)/2p−s)2

= ζ(s)ζ(s− 1)LE(s)
−1L(s, χ′)−2. �

3.2. Comparison of global zeta functions. For any singular curve
X of geometric genus 1 over Q, consider now

RX(s) :=
ζX̃(s)

ζX(s)
.

This function captures the information of how ζXp(s) differs from
ζX̃p

(s) for all primes p. For Gauss’s curve, we have that

RC(s) = L(s, χ′)2.

In particular, as a product of L-series, this ratio has an analytic
continuation to the entire complex s-plane and a functional equation
relating RC(s) and RC(1 − s). This ratio is also equal to the product
over all primes of the ratios of the local zeta functions:

RX(s) =
∏
p

ζX̃p
(s)

ζXp(s)
=

∏
p/∈S

∏
P∈Xpsing

1− p−sdeg (P )∏
Q|P (1− p−sdeg (Q))

.

This ratio can be calculated by studying the preimages of the singular

points of Xp in X̃p for all p of good reduction for the normalized curve.

A few questions naturally arise regarding RX(s). Is the particularly

nice form of RC(s) due to the fact that C̃ is an elliptic curve with
complex multiplication? Would RX(s) also be a product of Dirichlet
or other nice L-functions for other singular geometric genus 1 curves?
Here, RC(s) has a meromorphic continuation to the entire complex
plane. Is this the case for any singular curve of any geometric genus?
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