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POSITIVE AND NEGATIVE RESULTS FOR EINSTEIN
METRICS ON QUOTIENT MANIFOLDS OF S3 x §°

LYDIA KENNEDY

ABSTRACT. We use Riemannian submersions to explicitly
construct an Einstein metric on Einstein-Witten manifolds,
viewing Einstein-Witten manifolds as quotient manifolds of
S3 x S5, For generalized Einstein-Witten manifolds we show
that, in certain cases, Riemannian submersions cannot be used
to construct an Einstein metric. In particular, we show the
metric constructed using Riemannian submersions, and con-
stant length orthogonal basis vectors is not an Einstein metric.
‘We then show that a totally geodesic metric constructed using
Riemannian submersions is not an Einstein metric.

1. Introduction. Riemannian geometry is distinguished from
topology in part by the Riemannian metric. The Riemannian metric
induces geometric structure that gives rise to sectional curvature, Ricci
curvature and scalar curvature. Sectional curvature is a generalization
of the Gaussian curvature of Riemannian surfaces. It is the Gaussian
curvature of two-dimensional submanifolds. Ricci curvature is an
average of sectional curvatures and scalar curvature is the trace of Ricci
curvature.

A natural question arising in the study of curvature is the question
of constant curvature: Are there metrics that give rise to constant
curvature of some form? Sectional curvature is a strong measure, and
constant sectional curvature is too restrictive to give rise to many inter-
esting examples. The common simply connected examples (dimension
n > 3) with constant sectional curvature 0, 1 and —1, respectively,
are R, S™ or H". (See do Carmo, [3, Chapter 6].) There are many
manifolds that do not admit constant sectional curvature metrics (see
Petersen, [4, Chapter 6]). So, the requirement of constant sectional
curvature is too strong. Constant scalar curvature is a considerably
weaker condition than constant sectional curvature, but turns out to
be too weak. We focus our attention on examples with constant Ricci
curvature.
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Metrics that have constant Ricci curvature arise naturally in general
relativity as solutions to Einstein’s field equations for gravity. As
such, the construction of metrics with constant Ricci curvature (called
Einstein metrics) is of interest in physics as well as mathematics. A
Riemannian manifold endowed with an Einstein metric is called an
Einstein manifold. Although no topological obstructions are known
for dimension n > 5, Einstein metrics are relatively rare among
Riemannian metrics.

This paper presents a computational approach to producing Einstein
manifolds using quotient manifolds. In 1990, Wang and Ziller published
a paper on the existence of Einstein metrics on principal torus bundles
[5], including results for circle bundles. The main result for circle
bundles shows that the principal S'-bundle over a product of Kéhler-
Einstein manifolds with positive first Chern class admits a totally
geodesic Einstein metric that is unique up to scaling. In this approach,
Einstein-Witten manifolds can be visualized as the total space of
the principal S'-bundle over CP' x CP? and thus, by [5], admits
a totally geodesic Einstein metric. The metric is determined by the
property that the projection onto the base is a Riemannian submersion
with totally geodesic fibers. Two special cases of these metrics (the
circle bundles over CP' x CP? and over CP' x CP! x CP') were
first discovered by the physicists Castellani, D’Auria and Fré in an
attempt to construct an effective Kaluza-Klein supergravity theory in
dimension 11 [2].

In this paper, we demonstrate a technique to explicitly construct
Einstein metrics that attempts to “reverse” the process used by Wang
and Ziller through the construction of Einstein metrics using quotient
manifolds and Riemannian submersions. This process allows us to
explicitly recover the Einstein metric of Wang and Ziller on Einstein-
Witten manifolds, viewed instead as quotient manifolds of $3 x S°.

We begin with a construction of Einstein-Witten manifolds as quo-
tient manifolds and construction of a basis of vector fields on 53 x S° to
be used in the computation. We then show in Theorem 1 the construc-
tion of an Einstein metric on the orbit space of the quotient manifold.
In Theorems 2 and 3 we explore the application of the construction
technique to generalized Einstein-Witten manifolds and find that, in
certain cases, it does not produce Einstein metrics.
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2. Construction of Einstein-Witten manifolds. An Einstein-
Witten manifold can be visualized as a quotient manifold of an S*-
action on S2 x S° given by

(z,y) — (e"%z,e™y)

where k, [ € Z are relatively prime and 6 € [0,27). We view S$® C C?
and S° C C? so that the S'-action is scalar multiplication on each
factor with orbit space My ;.

Theorersn 1. Let the metric on 53 % S® be given by the product metric
g = a%gg + gj; where a%g(f is the metric with constant sectional
2

curvature 1 on S® scaled by the parameter oy, and ggj is the canonical
2

variation of the metric on S® with the parameter cws so that the quotient
map S' — S5 — CP? of the Hopf circle action is a Riemannian
submersion.

There exists a unique choice of parameters ay and g so that the
metric on My that makes the quotient map of S* — S3 x S° — My,
a Riemannian submersion is an Finstein metric with totally geodesic
fibers.

To prove the theorem, we need a basis of vector fields on S3 x S® for
the purpose of curvature computations.

3. Background information.

3.1. A basis of vector fields on S* x S°. Let (M, g) and (N, h) be
Riemannian manifolds, and let ¢ : (M,g) — (N, h) be a submersion.
¢ is a Riemannian submersion under the following condition: if v, w €
TpM are perpendicular to the kernel of D¢ : T, M — Ty, N, then
g(v,w) = h(D¢(v), Dp(w)). (See Petersen, [4].)

Since the metric on My, is chosen to make the quotient map a
Riemannian submersion, we may use O’Neill’s curvature equations
[1] to explicitly compute curvatures on My; and S x S5, and thus
demonstrate that the given metric on M}, ; is indeed an Einstein metric
with the appropriate choice of a1 and as.
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For the curvature computations, we use a “nice basis” for % x S°.
“Nice” in this sense means a basis consisting of vectors that are purely
vertical (tangent to the orbit of the S'-action) or purely horizontal
(orthogonal to the orbit of the S'-action). Since the action is one-
dimensional, the basis needs to consist of one vertical vector and seven
horizontal vectors. Since S3 x S% is endowed with a product metric,
all mixed curvature terms (those terms involving vectors from both $3
and S%) will be zero, thereby simplifying the curvature computations.
The use of the product metric allows us to begin the construction of a
nice basis by considering S and S® individually.

3.1.1. The vertical direction on S3 x S°. On S3, we use the
identification of S® with the Lie group SU(2). As a subset of C2, S3
is the set {(z,w) € C?||z|? + |w|? = 1}. S? is then naturally identified
with

SU(2) = 2 7)) |z, w e C with |22 + Jw]® =1
z

w

by the assignment (z,w) (Z 7“)).

w Zz

SU(2) has the associated Lie algebra (containing vector fields on S3)

su(2) = { (—ﬁij—i’y ﬁ_—;jj) ‘a,ﬁ,wER}.

The standard basis for su(2) is given by the matrices X; = (é fi),

Xy = (701 é) and X3 = ((j 8) The basis vectors X1, Xy and X3 are

left-invariant vector fields on S3 = SU(2) via multiplication on the left
by X;. That is, X;(s.u) = X - ( : *_“’)

w z

By declaring X;, X2, X3 to be orthonormal, we generate a left-
invariant metric on S3. This metric is the standard metric go on S3
with constant sectional curvature 1. Scaling the metric on S% by ay
does not change the orthogonality of the basis {X1, X2, X3}.

The Hopf circle action on S® acts by scalar multiplication as z — ez
and X is tangent to the orbit of the action. The S'-action used to
generate My, acts on S3 by scalar multiplication as z ez It
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follows (and can be shown directly through computation) that [X; is
tangent to the orbit of the S'-action on the S3 factor of S3 x S°.

On S°, the metric is chosen to be a canonical variation of the metric
on S® so that the quotient map S* — S° — CP? of the Hopf circle
action is a Riemannian submersion. There is an orthogonal basis
{Y1,Y2,Y3, Y4, Y5} of S° such that Y5 is tangent to the Hopf circle
action. Using this basis for S°, the S'-action used to generate My
acts on S° by scalar multiplication as w — e”*%w. Since Y5 is tangent
to the Hopf circle action, kY5 is tangent to the orbit of the S'-action
on the S® factor of S3 x S®. Therefore, the vertical basis vector we
need on S3 x S% is the combination given by V = IX; + kY.

3.1.2. The horizontal directions on S3 x S°. For the horizontal
basis vectors on S® x S°, we begin with the horizontal vectors on each
factor. On S3, the vectors Xy and X3 are horizontal vectors since they
are orthogonal to X;. On S°, the vectors Y1, Yo, Y3 and Y, are
horizontal vectors since they are orthogonal to Ys5. Thus, it remains
only to find one additional horizontal basis vector, say Z, on S% x S°.

Writing Z in terms of the orthogonal basis {X1,X2,X3,Y1,Y2, Y3,
Y4, Y5} on S3 x S° and using the requirement that Z be orthogonal
to V leads to Z = —ka3X; + la?Y5. Therefore, we take the basis on
S3 x S5 to be {V,X2,X3,Y1,Y2,Y3,Yy,Z}, and so the basis of the
horizontal projection, My, is B = {X2,X3,Y1,Y2, Y3, Yy, Z}.

3.2. O’Neill’s curvature equations for Riemannian submer-
sions. For the curvature computations on Mj ;, the necessary O’Neill
equations in this setting are given in Appendix A. These equations re-
late the curvatures of the fibers, horizontal projection and total space
and further give an avenue of computation that is purely in terms of
the horizontal and vertical directions. O’Neill’s equations make use

of the tensorial invariants 7' and A of a Riemannian submersion on a
manifold M defined by

Tr, By =H (Vyg, VE) +V (Vyg, HE>)
and

Ap, Ey =H (V’}-LElvEQ) +V (VHElHE2)
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for all Eq,Fy € X(M) with HE; and VE; denoting the horizontal
and vertical components of E;. If F; and Ey are purely vertical,
then Tg, By = H(VE, E>). So, if T = 0, then each fiber is totally
geodesic. That is, the directional derivative in the vertical direction
remains vertical.

The metrics on S® and S°, respectively, are totally geodesic. This
means that Vx, X1 = 0 and Vy, Y5 = 0. So, the connection (directional
derivative) along the vertical direction of S® x S® is

VvV = Vix, 1ky, (1X1 + kY5) = 1°Vx, X + k*Vy, Y5 = 0.

Thus, the metric on S3 x S® is totally geodesic on the fibers.

4. Ricci curvature on M} ;. The Ricci curvature computations
can be broken into four parts: computations involving only a single
vector X; from S?; computations involving only a single vector Y; from
S5; computations involving Z (the mixed horizontal direction) and the
computations of mixed curvature terms on S3 and S°, respectively. In
what follows, sectional curvature and Ricci curvature are denoted by
sec and Ric, respectively.

Since the metric on S? is scaled by a1, we have (X;, X;) = o2. Since
the metric on S° is a canonical variation, we have (Y;,Y;) = 1 for
j=1,...,4 and (Y5,Y5) = a3. Therefore, using the product metric,
the basis B consists of orthogonal vectors with

(X2, Xo) = (X35, X3) = of
<Yj,Yj>=1 fOI‘jzl,...,4
(Z,Z) = ajos (IPad + k*a3)

4.1. Ricci curvature for X;. For Ricyy, (X /|| X, Xi/[| X)), we
use the identification of S3 with SU(2) and the properties of su(2) to
compute any curvatures needed for the S? factor of S® x S5. (See [4] for
further details, including the values of the Lie bracket and Levi-Civita
connection on S3.)

For Ricyg, ,(Xq/ |1 X ||, X5/[|Xs]]), we use the O’Neill equation

Ri653><55 (X,Y) = RiCNjk’l(X,Y) - 2<Ax, Ay>,
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where X and Y are orthonormal horizontal vector fields. We must
compute RiCSSXss (Xl/HXlH,XZ/HXZH) and <AX,;/HX1'H7AXI'/HXI'||>~ To
give a flavor of the computations, we include some steps here for
Ricgsxss (X2 /|| Xall, Xa2/[|Xz]])-

) X2 Xy .
Ricgsy g5 (—, ) (an average of sectional curvatures)
NS |
(V X2>+sec <X3 X2>
= secgsngs | =, ETO-Tl [ ——
NIV X X [ X
4
XQ Z X2
+ S€Cs3% g5 <Y-,—>—|—secss S5<—,—)
; ) 71 Xo “NIZ) Xl
1
= ————(R(X3, V)V, Xs)
[ X2 V2
1
+ o (R(X2, X3)X3, X2)
[ Xa |2 X5 |2
1
+ —————(R(X3,Z)Z,X5)
1X2|?[1Z]|?
12 S k%a3 5
-~ a? (12} + kzag)al * a_‘fal * aja3 (12a2 + k%c%)al
_ 2
a?’

With only one vertical direction, (Ax, /|x,|, Ax,/|X.|) becomes

1
<AX2/IIX2| ) AX2/|X2II> = X212 V]2 (Ax,V, Ax, V)

e oo
a? (202 +k2ad) 20} + k203

The computations for X3 are no different in substance, yield the same
result and are omitted. Therefore, we have
Ri < X; X ) 2 212
1CM,, ) =
SN 1|

NI
o 12af 4 k2a3

4.2. Ricci curvature for Y;. For Ricy, (Y;,Y;), we begin with
the canonical variation of the metric that makes the quotient map S* —
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(5%, 90) — CP?, a Riemannian submersion with Y5 tangent to the S'-
action. It is known that the orthonormal basis {Y1,Y2,Ys,Ys, Y5}
can be chosen so that sec(gs 4,)(Yi, Y;) = 1,i # j and

secep2(Y1,Y2) =1 seccp2(Ya,Y3)
secaep2(Y1,Y3) =1 seccp2(Ya,Y4)
seccp2(Y1,Yy) =4 seccp2(Ys,Ya)

4
1
1

(see [4]). Using O’Neill’s equations for S* — (8% go) — CP? for
horizontal vector fields X, Y, we have

secgs (X, Y) = seccp2 (X, Y) — 3| Ax Y|
Thus, we deduce the following values for || Ay, Y|l 4-

[Av, Yo =0  [|Ay,Y3| =1
[Av, Y3 =0  [|Ay,Y4] =0
Ay, Yal|=1  [[Av,Y4[ =0

2
Note that A;?Y = AxY, since the canonical variation is on the
2
vertical direction and X and Y are horizontal. Also, ||AZY]? =

o3| Ax Y2, since, with X and Y horizontal, AxY = V(VxY). With

the sectional curvatures on CP? and values for A relying solely on the
single vertical direction, the sectional curvatures on (S5, gag) are as
given below:

560(5’57ga§)(Y17Y2) =1 866(557gag)(Y2,Y3) =4 303
5€C(S5,gag)(Y17Y3) =1 560(55’903)(Y2,Y4) =1
560(5’57ga§)(Y17Y4) =4 303 866(557gag)(Y3,Y4) =1.

Using the sectional curvatures for (S°, go) and (S°, g,z2), we complete
the Ricci curvature calculations on S and find that

2k%a;

Ri Y, Y;))=6-20%+ 55—2—.
szw( i Y;5) 0‘2+12a%+k2a§
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4.3. Ricci curvature for Z. The remaining nonzero Ricci cur-
vature computation is for Z. Since Z = —ka3X; + la3Y5, we must
incorporate results from both S and S°.

Z
Ricgs 5( > secgs 5( —>
S\ z) iz Z S 2]

+ sec ( v Z >
S3xS5\ TIxr 1 Tl
VI Iz

! Z
+ Z SECG3% S5 (Yj, m)
j=1

The computation necessary on the S component of Z is no different
in substance than those given above. We find that

(v 1)
S€Cg3 % g5 —_—, T =
SN

This is confirmed with a brief, direct calculation of (R(Z,V)V,Z).
This result is unsurprising as V is vertical and Z is horizontal. What
is not obvious is the value of the S® component

4
Z

Secgs g5 <YJ, —) .
;l 1Z]

The computation of this term requires some cleverness in the use of the
canonical variation metric on S°.

To begin,

4

Z 2ot
§ 5€Cg3y g5 (Yj,—|z|> = HZH12 § (R(Y;,Y5)Y5,Y;).
j=1

To compute the sum Z?:1<R(YJ,Y5)Y5,YJ»>, we again use O’Neill’s
equations. On S°, we have

Ys Ys > ( Ys ) H o2 Y5
R|lY,, , Y, ) = secg: Y, — | =||A
< ( 7 ||Y5||)|Y5|| 7 S Y Yil[Ys

2




958 LYDIA KENNEDY

since Y is horizontal and Y5 is vertical. (See O’Neill’s equations as
given in Appendix A). Thus,
‘ a3 AP

2
Y5
24y, —

Ja2

2
SECG3 % S5
) <J’|Y5II> H 7HY5||

oz, Y

Since Ay, Y5 = HVy, Y5, the canonical variation metric 9a2 does
not change the value of HagAYjY5||3a%. So, ||0‘2AY;-Y5H§Q§ =

|aa Ay, Y52, . Returning again to O’Neill’s equations and using known
curvatures for (S°, go), we have

1= 866(35’90)(Yj,Y5) = ||AYJ'Y5||§0
Therefore,
Y; 2
secsast (Yo ) = o Yol = aaidv, Yol
= a3 || Ay, Ys|;, =
Finally,
Y5 Ys Y5
R(Y-, ) ,Y‘>:8€CS3 S5<Y-,—
< Yl Y)Y ) 7Y
= Oé%
= o (R(Y;, Y5)Y5,Y)) = o)
Y5> ! ’ 2

= (R(Y;,Y5)Y5Y;) = aj

:>Z (Y;,Y5)Ys5,Y;) = 4aj

For (Az/z|,Az/z|), the computation is straightforward since the
metric on S® x S® is totally geodesic.
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AV A%
(Az )z Az))2)) = <AZ/|Z|—|V||’AZ/”Z” ||V|>

1 2
NN E e

AzV = HVzV
=M (—ka3Vx,V +1aiVy,V)
=M (—klajVx, X1 + klaiVy, Y5)

=0.
So, using established quantities from S® and S°, we conclude that

Ri < Z Z ) 2k%a 4120303
e — — | = ]
Mo\ Tzl 12l ~ oF (Pa? + k2ad) T Pa? + k0]

4.4. Mixed Ricci curvature terms.

4.4.1. RZ’CJVI;‘,,Z(XQ/HXQHaXB/HXBH)' Since R(Xi,Xj)Xk = 0 for
i, j, k distinct (see [4]), we turn our attention to Ricys, ,(Xa2/| Xz, X3/

1X3]))-
. Xy X3 ) Xy X3
Ricgsy g5 (—,—) = Ricgs (—,—)
X Xl X" [ Xl
STEA O S
— 1] 11Xl /) 1 X 11|

Since R(XQ,XQ)Xg = O, R(Xg,Xg)Xg = —XQ and <X2,X3> = O,
the sum is zero. This leaves only (Ax, /x| Ax,/|x,|) t0 compute.

Ax,V =M (Vx,1X;) = H(—IX3) = —I1X3
Ax,V = H (Vx,I1X1) = H(~1X3) = —I1Xo.

SO, <AX2V,AX3V> = <—ZX3, —ZX2> = 0 and Ric]\/jk‘l(XQ/HXQH,Xg/
1X3]) = 0.
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4.4.2. Ricpy, ,(Yi,Y;),i # j. In this case, some preliminary
notes on sectional curvatures are useful before launching into the Ricci
curvature computations.

The tensorial invariant A has the property that AxY = (1/2)V[X,Y]
when X and Y are horizontal vector fields. Since Y5 is the sole ver-
tical direction on (S®,gp), we may write AxY = (1/2)V[X,Y] =
(1/2)(X,Y],Y5)Y5. Using this in conjunction with another of
O’Neill’s equations, we have

3
secgs(X,Y) = secep2 (X, Y) — Z<[X,Y],Y5>2.

Therefore, {[X,Y],Y5)? = [4(seccp2(X,Y) — 1)]/3. Using the known
values for the sectional curvatures on CP?, we find ([Y;, Y], Ys5) =
:|:255_1'7k-. Therefore, when 7 7& j, <[Yi,Yk],Y5> . <[Yj,Yk],Y5> =0.

Since

<AY¢’AY]'> ||VH2<AY1V AY_] >
k2
= W<H (Vy,Y5),H (Vy,Y5)),

we need to compute H(Vy,Ys).
Using the horizontal vectors Yq,...,Y,4 on (S°, 9az),

4
H(Vy,Ys5) = Z (Vv, Y5, Y)Y
=1

Since the connection is torsion-free, (Vvy,Y5,Yr) = —(Vv, Yk, Y5),
and we observe that (Vy, Y, Y5) Y5/ Y52 = V(Vy, Yi) = Ay, Y, =
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(1/2)V[Y;, Yi]. Thus,

Y
(Vy, Y5, Y5)—2 =

s~ 2 e

N | =

Y5
Y5

(Yi, Y|, Ys) 7

N | =

<[Yi’ Yk]v Y5>

N | =

= (Vv, Y, Ys5) =

|
] =

=H (VYiY5) <VY1Y5,Y;€>Y1€

b
Il

||
M%H

(Vv Ye, Y5) Yy

Il
-

Il

|

N —
-

([Yi, Y], Y5) Y.

B
Il
—

Returning now to (Ay,, Ay,),

(Ay,, Ay;) = ||VH2 (M (Vy,Y5),H (Vy,Y5))
4 4
=3 V <Z [Yi, Y4, Y5)Ye, Y ([Y;, Y], Ys Yl>
IVIP\ = —
[T
= v 2 Ye Yl Ys) - (1Y, i, Ys) = 0.
k=1
Finally,

RiCCp2 (Yi,Yj) = RiC(S5,ga2)(YiaY ) <AY AY >
2
= RiC(S5,gag)(Yian)-

Since CP? is Einstein with Riccp2(Y;,Y;) = 6 and Ricep2 (Y;,Y;) =
0, we find that Ric(ss 4 ,)(Y:,Y;)=0and therefore Ricay, ,(Yi, Y ;)= 0.
2

We are now ready to prove Theorem 1.
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5. Proof of Theorem 1.

Proof. To show that M}, ; is an Einstein manifold, we must show that
there exists a scalar A, called the Einstein constant, such that

(1)

piew,, (5, ) _2, W
SO  [1X]| af  12af + k%a3
2 4
(2) Rica,, (Y;,Y;) =6—2a3 + % =)
(3)
RicM}c,l <i7 i) = 2 2122(1% 2 4l22a%a§ 2 =
1Z]" (| Z]] of (Paf + k2a3)  12af + k2a3

Therefore, we must find a7, @2 and A so that equations (1), (2) and
(3) are solved simultaneously.

For computational simplicity, we make the substitutions a; = ? and
az = a3 and clear all denominators by multiplying each equation by
ai(I?a; + k%az). This yields

(4) 2a1 (l2a1 + ]CQCLQ) + 2l2a1 = \a (l2a1 + k'QCLQ)
(5) (6 — 2az)a1(I%a; + k%az) + 2k*a1a3 = Aa1 (I2ay + k*az)
(6) 2k2as + 41%a3as = Aay(I%a; + k*as)

Subtracting equation (6) from equation (4) and factoring gives 41%a; (1—
ajaz) = 0. Since a1 = a? = (Xg, Xs) = (X3,X3) # 0, az = 1/a;. Now,
subtracting equation (5) from equation (4) and substituting 1/a; for
az, we derive the cubic equation

31%a3 — 31%af + 3k*a; — k* = 0.
Therefore, a; is a root of the cubic polynomial f(z) = 3122 — 31222 +
3k%x — k2.
Note that f(z) = 31223 — 31222 +3k%*z — k* = 31222 (2 — 1)+ k*(3z—1).
If x is negative, then so are x — 1 and 3z — 1, forcing f(x) < 0. If z is

at least 1, then  — 1 and 3z — 1 are both positive, forcing f(x) > 0.
Therefore, all real roots of f(z) must fall in the interval (0,1).
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To determine the number of real roots, consider f/(z). The derivative
f'(z) = 91222 — 61%z + 3k? has roots
1 12 — 3k2 1 12 — 3k2
+ ==

— - _ Y v d S
=3 3l and it =3 3l

With consideration of the discriminant, we have three cases.

(i) 12 < 3k2. If I? < 3k?, the roots 21 and =5 are both complex and
hence, f has exactly one real root as there are no local extrema and f
is always increasing.

(ii) 12 = 3k2. Sincel, k € Z with ged (I, k) = 1, [> = 3k? is impossible.

(iii) 1> > 3k%. In this case, the roots x; and zo are both real roots.
Since the graph of f’ is an upward pointing parabola, f will have a local
maximum at the point (z1, f(z1)) since x; is the smaller of the two
roots of f’. We consider the value of f(x1). After some simplification,

we see that
Fl) = (—412 + 6k2)(l — 12— 3k?)
1 ol .

Since [2 > 3k2, 212 > 3k? and —412 4+ 6k2 < 0. Since [ > /12 — 3k2, the
sign of [ — /12 — 3k?2 and the sign of 9] will be the same. Therefore,
f(z1) < 0. Since the local maximum value is negative, f has only one
real root.

Finally, by choosing a; to be the unique root of the cubic polynomial
f(z) = 31223 — 31%2” + 3k*r — k? and az = 1/ay, A is determined, the
Ricci curvature equations (1)—(3) are satisfied, and the metric on My,
is therefore an Finstein metric. Earlier computation directly showed
that the metric is totally geodesic. O

6. Construction of generalized Einstein-Witten manifolds.
A natural question arising from Theorem 1 is whether the technique
used yields other Einstein metrics. One class of manifolds constructed
in the same manner as that used with Mj,; is the class of generalized
Einstein-Witten manifolds, denoted Nj ;. Generalized Einstein-Witten
manifolds are obtained through the use of a more general S!-action on
53 x §%. Ny, is the seven-dimensional quotient manifold obtained by
taking the orbit space of S' — S3 x S° — Nj; under the S'-action
given by

((Z, w), y) — ((eihGZ, eilgGw), eikey),
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where k,l € Z, 6 € [0,27), ged(l,k) = 1 and ged (I1,l2) = | with
I1 # lo. We again view S C C? and S° C C? so that (z,w) € S3 C C?
and S acts on S° by scalar multiplication.

Theorelsn 2. Let the metric on S3x .85 be given by the product metric
g = a%gg + gj; where a%g(f is the metric with constant sectional
2

curvature 1 on S® scaled by the parameter oy, and ggi s the canonical
2

variation of the metric on S® with the parameter o so that the quotient
map S* — S° — CP? of the Hopf circle action is a Riemannian
submersion.

Equip Ni; with the metric that makes the quotient map of St —
S3 x 8% — Nk, o Riemannian submersion. If the basis vectors on
53 x 8% have constant length, then Ny with this metric is not Einstein.

For the proof of Theorem 2, as with Theorem 1, we need a basis of
vector fields on S3 x S° consisting of one vertical direction and seven
horizontal directions.

7. Background information.
7.1. A basis on 5% x S°.

7.1.1. The vertical direction on S® x S°. Since the S'-action on
S5 is unchanged, we use the same orthogonal basis {Y1, Y2, Y3, Y4, Y5}
with £Y5 tangent to the orbit of the S'-action.

To find the vertical direction on S3, we again utilize the identification
of $3 with SU(2). Translating the S-action on S3 to SU(2) gives the

action as ‘ }
z —w elllez _ellgew
Tz el emthlz |-

7“’) on the left by the

z
w z

This corresponds to the multiplication of (

matrix

A 0 _ e’il19|z|2 _|_ e’il29|w|2 (eille _ e’ilg&)zw
( ) - (efilge _ e*lh@)w e*ll19|z|2 _|_ e*ll29|w|2 .
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Note that A(f) € SU(2) and

) = (el Filewl® o (ilhet —ilpe?)
_ (_,L'l26“29 n illeille)m _ille—il19|z|2 _ il26—1l29|w|2
€ su(2).

We see that A(0) is the identity matrix, so (% %w) = A(0) - (; ;w)
and the S component of the vertical direction on S% x S° is given by

A’(0) as it is tangent to the orbit of the action on S3. In terms of the
standard basis X1, X2, X3 on su(2), we have

A(0) = i(l1]z* + laJwl?) i(ly — l2)zw
il —l)zw  —i(ly|z)? + la|w]?)

= (2] + 1w Xy — (11 — lo) Im (2w)Xa+ (11 — o) Re (2w) X3.

So, the vector tangent to the S'-action on S% x S®°is V = B; + kY5
where By = A’(0).

7.1.2. The horizontal directions on S3 x S°. The horizontal
directions on S° are, as with My, the vectors Y1,Y2,Y3, Y, We
must find the two horizontal vectors on S and then the remaining
seventh horizontal vector on S x S°. Let the two horizontal vectors
on S% be denoted by By and Bs. We assume X;, X3 and X3
are orthogonal with constant length. Setting Bs = Z?Zl b2; X; and
requiring that By be orthogonal to B, we may choose ba1, baa and bag
so that B2 = (11 —12) Im (zw) <X2, X2>X1 + (11 |Z|2 +12|U1|2)<X1, X1>X2.
Following the same procedure with B3 and with the requirement that
B3 be orthogonal to both B; and Bs, we may choose b31, b3z and bss
so that

B3z = (I1]2]* + L2Jw[?)(ly — I2) Re (2w) (X3, X5) X4
— (l1|2’|2 + l2|w|2)(l1 — ZQ) Im (ZU))<X3, X3>X2
— ((L]2]? + L w)* (X1, X1) + (I — 12)*(Im (2w))* (X2, X2)) Xs.

For computational and notational simplicity, we define the following

functions. Let ) )
f1 =U]z|" + 2w

fo=—(l1 = l2) Im (2w)
f3 = (ll — lg) Re (ZU))
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Then, the basis on S® may be written as

B = f1X1 + foXao + f3X3

By = — f2(X2, X2) X1 + f1 (X1, X1)X2

Bs = f1/3(X3,X3)X1 + f2f3(X3, X3)Xo
— (X1, X1) + f3(X2,X3)) Xs.

The remaining horizontal direction Z is found in the same manner as
on My, and we have Z = —k(Y5,Y5)B1 + (B1,B1)Y5.

The basis on Ny ; is now given by {B2,B3,Y1,Y,Y3,Yy,Z}. Since
B, and Bjs are constructed from the standard basis of su(2) with
functional coefficients rather than constant coefficients, we need to
compute the derivatives of the coefficient functions for use in the
curvature equations.

7.2. Derivatives on S3. For the derivatives of the coefficient
functions, we use integral curves. An integral curve is a curve passing
through a given point p tangent to a given direction X,. That is, an
integral curve is the solution to a second order differential equation with
initial conditions given as a point and a direction. The derivative of a
function on the manifold in the direction of a given vector is, then, the
derivative of the composition of the function with the integral curve.

Taking advantage of the identification of S® with SU(2), we use the
following integral curves v for Xy, X5 and X3, respectively.

_{ cos(t) + isin(t) 0
7% (t) = ( 0 cos(t) — isin(¢) )

os(t) in(t)
VX, (1) = <_C sin(t) EOS(t))
(

_( cos(t) isin(t)
75 (t) = <isin(t) cos(t) )
Each of these curves is the identity matrix when ¢ = 0 and is translated
to (z,w) € S through multiplication on the right by (; = ) That is,
vi(t) = vx, (t) - (i v ) Note that X;, Xz and X3 are right-invariant

w z
in this case.
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To compute the derivatives of f; on S®, we compute (d/dt)(f; o
75 (t))]e=0 for i, € {1,2,3}. We demonstrate with Xs(f1).

d
Xo(f) ey = 72 (froma(®) ],

_d zcos(t) + wsin(t
Tt h —zsin(t) + w cos(

1 —w cos(t) + Zsin(t) )]

) wsin(t) + Z cos(t)

t=0
d
= [l1 (2 cos(t) + wsin(t)) (wsin(t) + Z cos(t))

— Iy (—wcos(t) + Zsin(t)) (—z sin(t) + wcos(t)) | ‘t:O
= [2(l1 — l2) Re (zw) (cos*(t) — sin®())

=2 (l]2]? + Ia|w]?) cos(t) sin(t)

+2 (Iiw]? + I3|2[?) cos(t) sin()] |, _,
= 2(l1 — l2)Re(zw) = 2f3.

The remaining derivatives are found in a similar fashion. The table
below summarizes the results.

Xi(f1) =0 Xi(f2) = —2f3 X1(fs) = 2f2
Xao(fi) =2fs Xa(f2)=0 Xa(f3) = =2f1+ (1 +12)
X3(f1) = —2f2 X3(f2) =2f1— (I +12) X3(f3)=0.

Now declaring X1, X5 and X3 to be orthogonal with (X;,X;) = a2,
(X2, Xs) = b?, (X3,X3) = c?, where a, b and ¢ are constants, we may
use the Koszul formula and the values of the right-invariant brackets
to compute Vx,X; for 4,5 € {1,2,3}. With this information, we
may also compute the values of the curvature tensor R(X,;,X;)X,
i,7,k € {1,2,3}. See Appendix B for a listing of these quantities.

7.3. The metric with constant length basis vectors is not
totally geodesic. The simplest case for O’Neill’s equations occurs
when the fibers are totally geodesic. That is, when VyV = 0. On
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N1, we have V=B + kYs5.

VvV = Vg, ry: (B1 +kYs5) = Vg, B + E*°Vy, Y5
= Vg, B; since the metric on S is totally geodesic
3
= fiVx, (1X1 + f2Xo + f3X3)
i=1
3
= Z fil AVx, X1 4+ (X f1)X1 + f2Vx, X
i1
+ (Xif2) X2 + f3Vx, X3 + (X f3)Xs]

R G- =L RWATARY

4 <2f1f3(:22 ) +

(I + lz)fz) Xs.

When [, # I3, VvV will not be zero for all (z,w) € S3, so this metric
with (X1, X;) = a?, (Xg2,Xs) = b? and (X3,X3) = ¢? is not totally
geodesic.

7.4. O’Neill’s equations for NN ;. Since the metric on Ny ; is not
totally geodesic, we must use an expanded form of O’Neill’s equations
for curvature. The necessary equation is

Ricp, , (X,Y) = Ricgsxss (X, Y) +2(4x, Ay) + (TX, TY)
1
L (TN — (Ve V).

where T is the tensorial invariant for Riemannian submersion on a man-
ifold. Let {U;};e. be an orthonormal basis of the vertical distribution
Vp. Then (TX,TY) = Zj<TUjX,TUjY> and N = Zj Ty,Uj is the
mean curvature vector.

8. Ricci curvature equations on Nj;. The Ricci curvature
equations for N ; are considerably more complicated than those for
My, 1, not in small part due to the functional coefficients of the basis on
53, As a result, the computations necessary to find the Ricci curvature
equations are lengthy. The computations are not included here, but are
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a straightforward, if somewhat messy, application of O’Neill’s equation
and associated tensors using the values of the connection and curvature
tensor found in Appendix B and the derivatives summarized above in
subsection 7.2.

The Ricci curvature equations themselves are lengthy and not in-
cluded in full generality here. The equations presented here are in
the simplified cases when the points on S* are in the form (0,w) with
w € St C Cor (z0) with z € S € C. We will see from these sim-
plified equations that the metric on N ; as described in Theorem 2 is
not an Einstein metric.

9. Proof of Theorem 2.

Proof. For the class of points (S1,0) C S3, we have f; = I3 and
f2 = f3 = 0. This yields | B1||? = 212, |Bs||? = a*V?13, | Bs|| = a*c?l4,
V]2 = a3 + k?a3 and ||Z]|?> = a3a®l3(a®? + k?a3). Using these
quantities, the Ricci curvature equations become:

(T;Z,CN ( B, B ) 200t — (@ = )?) | 2 —a?)l(la — 1)
“UIB: |Be a?b?c? b3 (a2} + k%a3)
2((0% + 2 — a®)ly — (I + 1))
b2c2(a?l? + k2a3)
i-1
a?l? + k%a3
Ricx ( B; Bs; ) _ 2(ct — (a2 — b?)?) 4(a? — B2)12
<\ TBoll” T P 20T 2ad)
2((&2 — 62)l1 + b2(l1 + ZQ))
a?b2c2ly (a2l? + k2a3)
2(&2 - bg)(ll + lg) l% — l%
Ali(a?l} + k2a3)  a?l3 + k23
Riex (i i) _ 2Ka3(at - (P —)?) | do3e’l}
Nzl 1z a2b2c2(a2l? + k2a2) ' @22 + k2a2
2k%a$§

+

Ricy, , (Y4, Y;) =6 — 203 +
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For the class of points (0,S') C 53 we have f; = Iy and fo =
fs = 0. Also, |B1|*> = a?3, ||B2H2 = a*b?l} ||B3H = a*c®l3,
[VI? = %13 + k?a2 and ||Z||2 = aZa?13(a®13 + k:2 2). With thebe
quantities, we have the following Ricci curvature equations:

(%)
Riex B, B\ _ 2(0* — (a® — c2)?)  2(c®? —a®)(ly —1o)
S\ UB2||” B2l a?b?c? b2(a?l3 + k2a3)
2((0% + 2 — a?)ly — (I + 1))
b2c2(a?l3 + k2a3)
B
a?l3 + k%a3
oy, (B Bo ) 2@ B s
M\ Bsll Bl ) ~ a2 2 (a3 + K2a3)
2((a® — b2 — @)ly + b2(ly + 1))
b2c2(a2l3 + k2a3)
B 2(&2 - bg)(ll + l2)ls l% — l%

+

22 +k2a2) a2+ k2ad
Ricy (i i) _ 2Wad(at— (1P —P) | dada?B
\Tall T2l ) ~ @@ g + imay) i+ ias
2k2a$

. _ 2
RZCNkJ (Yl,Yi) =6— 20&2 + m

If the given metric on Nj; is an Einstein metric, then we must, at
least, be able to find values for the parameters to simultaneously satisfy
the eight Ricci curvature equations given above. We begin by setting
the above equations equal to A, and we focus on the Ricci curvature
equations (T) and (x). Subtracting these two equations gives

2k%a8 2k%a§ _
a?l? + k203 a3+ k203

This yields [3—13 = 0. So, [; must be equal to I or —l3. By assumption,
I1 # lo; therefore, [; = —Io, in which case, we find that f; = lo(1—-2|2|?).
We now consider the point (zo,wo) = (1/v/2,1/v/2) € S3. At (20, wo),
f1 =11 —2(1/2)) = 0 and fo = 2l5Im(1/2) = 0. Thus, |By|? =
ab?fi +a®bf7 = 0.
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Since a basis vector cannot be length zero at any point, it cannot be
the case that [y = —[5. This is a contradiction. Therefore, N}, ; with this
metric is not Einstein for any choice of a, b, ¢, a3. Earlier computation
(see subsection 7.3) showed the metric is not totally geodesic. O

10. A totally geodesic metric on N ;. Since the necessary
Ricci curvature equation (subsection 7.4) on Ny ; is complicated by the
fact that the “natural” metric arising from the generalization of the
construction on My ; is not totally geodesic, it is also natural to ask
whether Nj; would admit an Einstein metric if it were endowed with
a totally geodesic metric.

Theorersn 3. Let the metric on 53 % S® be given by the product metric
g = a2g5 + gsf; where a2gs" is the metric with constant sectional
2

curvature 1 on S scaled by the parameter oy and gsz is the canonical
2

variation of the metric on S® with the parameter ao so that the quotient
map S' — S5 — CP? of the Hopf circle action is a Riemannian
submersion.

Equip N, the metric that makes the quotient map of S' — S3 x
S5 = Nk, a Riemannian submersion. If the metric on Ny is totally
geodesic, then Ny does not admit an Einstein metric.

10.1. Background information. In order for the metric on Ny
defined by the horizontal projection of the basis {V,Ba, B3, Y1, Yo,
Y3, Y4, Z} on S% x S® to be totally geodesic, we must have VvV = 0.
That is, we need Vg, B; = 0.

We consider the length of B;. Assuming that the standard basis
vectors X1, Xa, X3 for su(2) are orthogonal, ||B1||? = f2(X1,X1) +
f3(X2,X2) + f2(X3,X3). We have seen that the metric cannot be
Einstein if the lengths of the X; are constant. So, we consider the
possibility that the lengths of the X; are functions of the complex
variables z and w. The metric on S® remains the same.
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If |B1|*> = a1, the metric will be totally geodesic. For ease of
computation, we assume that (X;,X;) = (Xo,Xo) = (X3,X3) =
g(z,w). Then, ||B1]|?> = g(z,w)(fZ + f3 + f3) = a1. Thus,

o o - oy

SR RIEP Bl

Notice that g(z,w) is a positive function since oy > 0 and I4|z|? +
lz|w|? > 0 since z and w cannot simultaneously be 0.

9(z,w)

Now, using the derivatives on $% computed in subsection 7.2, we
compute the values of the connection for this metric using the Koszul
formula. It is then a straightforward exercise to show that VyV =0
and this is, indeed, a totally geodesic metric. We now prove Theorem 3.

Proof. Using O’Neill’s equations for curvature in their simplified
form, the Ricci curvature equations for Ny ; with this totally geodesic
metric can be found. A similar argument to the one given above in the
proof of Theorem 2, considering the two classes of points (S!,0) C S3
and (0,S') C S3 once again yields the condition that I} = —lIs.
This condition further simplifies the Ricci curvature equations, but
the simplified equations at the point (1/v/2,1/y/2) € S® force the
requirement that l; be equal to 0. Therefore, this totally geodesic
metric on N ; cannot be Einstein. 0

APPENDIX

A. O’Neill’s equations for S2 x S° and Mij;. Let U,V be or-
thonormal vertical vector fields, and let X, Y be orthonormal horizontal
vector fields. Then,

(7) secgsx g5 (U, V) = secp, (U, V)

(8) secssxss (X, U) = [[AxU|1?

(9) SBCSSX55(X,Y) = SECM,M(X,Y) —3||AxYH2,
and

(10) Ricsaxss(U, V) = Ricg, (U, V) + (AU, AV)
(11) Ricgsygs(X, U) = —<(5A) X, U)
( ) RiCSSX55(X,Y) = RiCNjk’l(X,Y) - 2<Ax,Ay>,
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where sec denotes the sectional curvature and Ric denotes the Ricci
curvature. In addition, F, is the fiber at p and A is the tensorial
invariant of a Riemannian submersion on a manifold M defined by

Ap By = H (Vyp, VE) +V (Vup, HE>),

for all Fy, Es € X(M) with HE, and VE; denoting the horizontal and
vertical components of Fj.

The definitions of (AU, AV), <(3A)X,U> and (Ax,Ay) are given
below. Let {X;}icr be an orthonormal basis of H, and {U,};cs be an
orthonormal basis of V,,. Then

(AU, AV) =) (Ax,U, Ax, V)

2

(54) X = =3~ (Yo, X) U;

J

(Ax, Ay) =Y (AxU;, AyUj;).

J

B. Right-invariant connections and curvatures on Nj;. Us-
ing the Koszul formula and the right-invariant brackets on S® with
(X1,X1) = a?, (X2,X3) = b? and (X3,X3) = ¢?, we find that
Vx,X; =0 and

a®? —b%—¢? —a? 4+ %+ 2
Vx, Xg = <7>X3 Vx, X3 = (7)3(2

c? b2
a? —b*+ 2 —a?+ b2 — 2
VX1 = <T>X3 V. Xs = (T)Xl
—a? — b+ 2 a?+b% -2
VXBX]_ - <T)X2 VXSXQ = <T>X1

The values of the curvature tensor R on the basis vectors X; are listed
below.

R(X;, X)Xy, =0 ifi,7,k distinct
04 _ (a2 _ b2)2 _ 262(612 + b2 _ 62)
b2c2

R(X1,X9)X: = Xa



974 LYDIA KENNEDY

(a2 — b2)? — ¢t +2¢2(a + 12 — )

0%, X2) X = a2c? X3
R(Xy, X3) X, = o) 1:262252(&2 — b +c?) 3
R(Xy, X3) X3 = el b4:252bz(a2 - b+ 62)X1
R(X2, X1) X1 = A :202262(“2 +b% — 62)X2
R(X2, X1)Xs = Co ) 6:23262(“2 +b% — 62)X1
R(X2, X3) Xy = oy :2(2;52(“2 - - cz)X:s
R(X9,X3) X5 = e :222%(192 +c = a2)X2
R(X3,X1) X, = g :2022b2(a2 - b2+ 62)X3
R(X3,X1) X3 = role ey 6:2(?2[)2(“2 - b2+ 62)X1
R(X3,X2) Xy = oy ;2(2;2%(‘12 - - cz)X:s
R(X3,X2) X3 = o) ;222%(52 +c - a2)X2.
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