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NUMERICAL RANGES OF COMPOSITION OPERATORS
WITH INNER SYMBOLS

VALENTIN MATACHE

ABSTRACT. Operators on function spaces acting by com-
position to the right with a fixed self-map ¢ of some set are
called composition operators with the symbol . In this pa-
per, composition operators on the Hilbert Hardy space over
the unit disk are considered. The numerical ranges of compo-
sition operators with inner symbol of parabolic automorphic
type or hyperbolic type are shown to be circular.

1. Introduction. Let H? denote the Hilbert Hardy space on the
open unit disk U, that is, the space of all functions f analytic in U
satisfying the condition

1/2
0 1l 2= sup ( / |f(r<>|2dm<o) < +oo,
0<r<1 ou

where m is the normalized Lebesgue measure. Actually, the integrals
in formula (1) tend increasingly to || f||2 as r — 1.

It is well known that || ||2 can also be calculated with the formula

(2) 1fll2 =

where {c,} is the sequence of Maclaurin coefficients of f.

The space H* is the space of all bounded analytic functions on U
endowed with the supremum norm || ||o.. Obviously, H* C H? since
Ifll2 < || flloo- A well-known fact about H2-functions is the fact that,
by a classical result of Fatou [10, Theorem 1.3 |, eventually extended
by F. and M. Riesz, those functions have nontangential limits almost
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everywhere on OU. The nontangential limit function of any f in H?
will be denoted by the same symbol as the function itself. It is known
that it is an L;-function and

(3) 1£ll2 = (/BU |f(C)|2dm(C)>1/2, feH

A bounded analytic function on U is called an inner function if it has
unimodular nontangential limits almost everywhere on 0U.

For each analytic self-map ¢ of U the composition operator with
symbol ¢ is the following operator

(4) Cof=fop, feH.

Such operators are bounded, as a consequence of Littlewood’s subordi-
nation principle, [10, Theorem 1.7], saying that composition operators
whose symbol fixes the origin are contractions. If ¢ is a conformal
automorphism of U, we call C, an automorphic composition operator.

The numerical range of a Hilbert space operator T is the set W (T') =
{Tf, )« |Ifll = 1}. It is well known that the numerical range of
a bounded operator is a convex subset of the complex plane whose
closure contains the spectrum of the given operator, [12, Chapter 22].
The quantity w(T') = sup{|(T'f, f)| : ||f|| = 1} is called the numerical
radius of the operator T'.

Our main goal in this paper is proving that composition operators
with inner symbol of parabolic automorphic type or hyperbolic type
have circular numerical ranges. Some explanations are in order here.

Analytic self-maps of U are classified as symbols of hyperbolic, re-
spectively parabolic type, based on a noted theorem. We state it in
the following and use in its text the notation @™ to designate the
nth iterate of a self-map ¢ of U, that is, ¢!l = p o ... 0, n-times,
n=1,23,....

Theorem 1 (Denjoy-Wolff). Let ¢ be an analytic self-map of U other
than the identity or an elliptic disk automorphism. Then the sequence
of iterates {<p["]} converges uniformly on compacts to a constant w € U
called the Denjoy- Wolff point of .
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For any self-map ¢ and any z € U the set O,(z) = {z,¢(2),...,
@l™(2),...} is called the orbit of z under ¢.

If the Denjoy-Wolff point w of an analytic self-map ¢ is on U, then
the angular derivative ¢'(w) is known to exist and satisfy the condition
0 < ¢'(w) < 1. If p'(w) < 1, then ¢ is called a self-map of hyperbolic
type. If @' (w) = 1, then ¢ is called a self-map of parabolic type. Analytic
self-maps of parabolic type are classified into two categories. The first is
self-maps of parabolic automorphic type. This means that the self-map
¢ of parabolic type has hyperbolically separated orbits, that is,

(5) lim p(p"*(z),0"(2)) >0 z €,

n—-+o0o

where p is the pseudohyperbolic distance p(z,w) = |(w — 2)/(1 — wz)|,
z,w € U. Either all the orbits of an analytic self-map of parabolic
type are hyperbolically separated or all of them are hyperbolically non-
separated, that is,

(6) lim p(p"t1(2),¢l"(2)) =0, 2€U.

n—-+oo

In case (6) holds, ¢ is called a self-map of parabolic non-automorphic
type. The limits in (5) or (6) necessarily exist because the sequence
under scrutiny is decreasing, by the Schwarz-Pick lemma [22, Section
4.3], saying that analytic self-maps of U are contractive under the
pseudohyperbolic distance, that is, if ¢ is such a map, then

plp(2), p(w)) < p(z,w), 2,weU.

The terminology parabolic automorphic type, respectively hyperbolic
type is also related to linear fractional model-theory for analytic self-
maps of U, a body of knowledge that contains Theorem 2 in the next
section and similar additional results. We refer the reader to [22] for
more details on it.

If the Denjoy-Wolff point is in U, that is, if ¢ is an analytic self-map
of U with a fixed point, then the numerical range of (', can exhibit
quite a variety of shapes, [16]. If ¢ is inner, not the identity or a
rotation, and the fixed point is the origin, then W (C,) = U U {1},
[16]. The case when p(z) = Az, |\| = 1, is very easy to handle, leading
to a regular polygon inscribed in U if A is a root of 1, respectively
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to UU{A\" : n > 0}, when X is not a root of 1, [16]. There are only
two kinds of quadratic composition operators: those of constant symbol
and those having symbol of the form a,(z) = (p — 2)/(1 — pz), where
p € U. They have elliptical numerical ranges, (possibly degenerate,
that is, the elliptical disk can be reduced to the focal axis). The
elliptical disk is closed in the case of constant symbols and open in the
other case, [17]. Composition operators of symbol c,, are automorphic
composition operators whose symbol fixes a point, (also known as
elliptic automorphisms). For any elliptic automorphic symbol, that
symbol is conformally conjugated to a rotation. If the fixed point is
not the origin and the aforementioned rotation is not by a root of unity,
then W(C,,) is a disk about the origin, [6, Theorem 4.1], but the exact
description of W(C,) is currently unknown. Composition operators
whose symbols are monomials fixing the origin can have polygonal or
cone-like numerical ranges, [16]. Besides the few facts summarized in
this section, very little is known about numerical ranges of composition
operators on H?2.

According to [6], if ¢ is a parabolic or hyperbolic disk automorphism,
then W (C,,) is a circular disk centered at the origin. Our main results
in this paper are extensions of those facts. We show that W(Cl,) is a
circular disk centered at the origin if ¢ is an arbitrary inner function of
parabolic automorphic type, respectively an arbitrary inner function of
hyperbolic type (not just a parabolic or hyperbolic disk automorphism).
Those results are obtained in Section 2, (Theorem 3), respectively
Section 3 (Theorem 4).

2. Inner symbols of parabolic automorphic type. The
following theorem, [20, Theorem 1], is the main tool in showing that
composition operators with inner symbols of parabolic automorphic
type have circular numerical ranges.

Theorem 2. Let ¢ be an analytic self-map of U with Denjoy- Wolff
point on OU. If ¢ is of parabolic automorphic type, then there is some
analytic o from U into the right half-plane satisfying

(7) cop=o0+1b

for some monzero real constant b. If ¢ is of hyperbolic type, then
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(8) cop=Ko

for some K > 1.

It should be added that the hyperbolic case was originally proved by
Valiron [24], and Pommerenke’s new contribution in [20] was to treat
the case of symbols of parabolic type. He wrote a unified proof of both
(7) and (8) which will be used in one of the following technical lemmas
to show that, if ¢ is inner, then the maps o satisfying (7), respectively
(8), can be chosen so that they have purely imaginary nontangential
limits almost everywhere.

In order to prove that, we record first a Hilbert-space principle that
appears in [4, Proof of Theorem 3.1] and is very easy to prove.

Lemma 1. If a sequence {z,} in the unit ball of a Hilbert space H
converges weakly to a norm-one vector z, then {x,} is norm-convergent
to x.

Based on this principle we record a second technical lemma whose
proof is straightforward.

Lemma 2. A sequence of inner functions tends uniformly on
compacts to an inner function if and only if it is || ||2-convergent to
that function.

Relative to weak convergence in H?, we wish to note that H?
is a reproducing kernel Hilbert space, (a Hilbert space where point
evaluations are bounded functionals), and for that reason, a sequence in
H? is weakly convergent if and only if it is norm-bounded and pointwise
convergent. Using Montel’s theorem in classical complex analysis, it
can be shown that, actually, weakly convergent sequences in H? tend
to their limit not just pointwise, but even uniformly on compacts.

Lemma 3. If ¢ is an inner function of parabolic automorphic type,
or of hyperbolic type, then the map o satisfying (7), respectively (8), can
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be chosen so that its radial limit function has purely imaginary values
almost everywhere.

Proof. Without loss of generality, one can assume that the Denjoy-
Wolff point of ¢ is 1. The existence of such ¢ for an arbitrary analytic
self-map ¢ of parabolic automorphic type or hyperbolic type, having
Denjoy-Wolff point 1, was proved by Pommerenke [20] by constructing
o as the uniform limit on compacts of the sequence

(140" (2))/ (1=l (2)) —iS(1+¢(0) /(1 —¢!"}(0))

gn(2) = R(1+(0))/(1—¢(0)) e

For all n, the radial limits of g,, are purely imaginary almost every-
where, (since ¢ is inner). Thus, the sequence

gn_]-
gnt+1

fn: , n=1,23,...,

consists of inner functions and tends uniformly on compacts to the
function (o —1)/(o +1). In order to establish that o has purely imagi-
nary radial limits almost everywhere, it is necessary (and sufficient) to
prove that (o —1)/(o0 4+ 1) is inner. By Lemma 2, this happens if and
only if the sequence {f,} is || ||2-Cauchy. Note that {f,} is a sequence
of inner functions, and |f,,/fn.| < 1 if m > n, which is a consequence
of the fact that, by the Schwarz-Pick lemma, |f, 11| < |fn| for all n,
(see also [20, (3.6)]). Thus, the family {fmn/fn}m>n consists of inner
functions, and hence ||fi — full2 = || fm/fn — 1||2, m > n. Therefore,
in order to prove ||fm — fall2 = 0 as m,n — +oo, it will suffice to
show that f,,/f, — 1 pointwise on U as m,n — +oo, (by Lemma 1).
Indeed, f, — f = (6 —1)/(c + 1) uniformly on compacts and hence
pointwise. The function f is a nonzero analytic self-map of U, so for
each z € U with property f(z) # 0, fm(2)/fn(2) = f(2)/f(2) =1if
m,n — +oo. If, arguing by contradiction, one assumes that there is
a point p € U and some g9 > 0 so that |f,(p)/fn(p) — 1| > eo for
infinitely many m > n, one can use Montel’s theorem to get a sequence
{fmy/fn,} that satisfies |fm, (p)/fn, (p) — 1| > €o and tends uniformly
on compacts to a, necessarily holomorphic map hA. By what we noted
above, h coincides to 1 on the subset of U where f is nonzero. By the
analytic continuation principle, it follows that A is identically 1, hence
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fmy, (P)/ fne(p) — 1, a contradiction. We proved by contradiction that
{fn} is || ||2-Cauchy. O

The following principle is used in the particular setting of hyperbolic
automorphic composition operators to establish one of the main results
in [6].

Proposition 1. A composition operator C, on H? which has inner
etgenfunctions associated to each A € OU must have circular numerical
range with center at 0.

Proof. If w € W(C,), that is, w = (C,f, f), for some f € H?,
7|l = 1, then choose any A € OU and any inner eigenfunction u
of Cy, corresponding to the eigenvalue A and note that ||uf||2 = 1 and
(Couf,uf) = Mufop,uf) = MCyf, f) = Aw. This shows that W (Cl,)
has circular symmetry, (that is, if it contains a point, then it contains
the whole circle about the origin passing through that point). Since
numerical ranges are convex, W (C,,) must be a circular disk, (open or
closed) about the origin. o

The principle above is satisfied in the following situation:

Proposition 2. The numerical range of a composition operator
which has a singular inner eigenfunction associated to some unimodular
eigenvalue X # 1 is a disk centered at the origin.

Proof. Recall that singular inner functions are of type

ks*y(z)_exl?,(—/8 u+zdu(u)>, zev,

ulu—=z2

where v is a finite, nonnegative, Borel measure which is singular
with respect to Lebesgue measure. If S, is an eigenfunction of some
composition operator C', associated to some A = €% =1, then

<_/BU Zf—iz; dl/(u)> - (-/W itz dy(u)) — (0p+2kn)i, z€U,
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for some integer k. Therefore, for all a > 0, S,, is an eigenfunction

of C, corresponding to the eigenvalue A\, = ete(0o+2km)  Op the
other hand, the eigenvalues \,, a > 0, exhaust the unit circle. By
Proposition 1, the numerical range of C, is a disk centered at 0. |

Based on the technical lemmas and propositions above, we can treat
the case of symbols of parabolic automorphic type. This is the main
result of the current section of this paper.

Theorem 3. The numerical range of a composition operator whose
symbol  is an inner function of parabolic automorphic type is a circular
disk centered at the origin having radius larger than 1.

Proof. Let ¢ be an analytic self-map of U of parabolic automorphic
type, and let o be associated to ¢, as in Theorem 2. It is easy
to check that, for each 0 < € < 2m, the function exp(—(0/b)o), if
b > 0 respectively, exp((6/b)o), if b < 0 is an eigenfunction of C,
corresponding to the eigenvalue e =%, respectively e?’. Since o is valued
in the right half-plane and purely imaginary almost everywhere on 90U,
the eigenfunctions above are zero-free inner functions, that is, singular
inner functions. By Proposition 2, it follows that W (C,) is a disk
centered at 0. That disk has radius larger than 1. Indeed 1 is an
interior point of W (C,,), whenever ¢(0) # 0, [16, Proposition 3.3 |. O

A consequence of the proof above is the following.

Remark 1. The composition operators that satisfy the assumptions
in Proposition 1 and, hence, all composition operators induced by
inner functions of parabolic automorphic type have point spectrum
with circular symmetry.

Indeed, if A # 0 is an eigenvalue of C,, and f an eigenfunction
corresponding to it, then for each p with property |u| = |A| one can
choose an inner eigenfunction corresponding to the eigenvalue pA\—!
and consider the function uf # 0 which is visibly an eigenfunction of
C,, corresponding to the eigenvalue p.
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Can relation (8) be used to produce inner eigenfunctions in the case
of symbols of hyperbolic type? It is known that it can be used to
produce outer eigenfunctions (see [10] or [13] for the notion of outer
function). This has been first noted by Nordgren [18 ]in the case of
hyperbolic disk automorphisms and eventually extended to symbols
of hyperbolic type, using Theorem 2 in the process. More exactly, if
@ is such a symbol, then based on Theorem 2, one can consider any
unimodular X = e and, by using the notation in Theorem 2, construct
the function f)(z) := exp(iflog o(z)/log K). Based on (8), one readily
obtains C,fx = Afa. The fact that, for all A € U, one has that
fr € H? is proved in [9, Theorem 7.21], where it is actually shown
that fx, 1/fx € H*; thus, fy is a bounded outer eigenfunction. The
interesting consequence of all these considerations is:

Remark 2. If ¢ is a symbol of hyperbolic type, then

9) T C W(C,).

Relative to Remark 1, the circular symmetry of the whole spectrum,
not just the point spectrum, is established for arbitrary composition
operators with symbol of hyperbolic type in [9, Theorem 7.21], (by
using the eigenfunctions f)). This makes it very tempting to conjecture
that, at least when the symbol is inner, the numerical range is a disk
about 0. We are able to prove that fact in the next section.

3. Inner symbols of hyperbolic type. The well-known Herglotz
theorem [21, Theorem 11.19] says that each nonnegative harmonic
function on U is representable as the Poisson integral of a finite positive
Borel measure.

For each a € 0U, 7, the Aleksandrov measure of index « of ¢, is
the measure whose Poisson integral equals P(¢(z), @), where P(w, ),
w € U, a € 0U is the usual Poisson kernel. These measures were
introduced and studied by Aleksandrov [2] and used by Cima and
Matheson [7] to understand compact composition operators on Hardy
spaces. This author used them to prove essential norm formulas for
composition operators with inner symbols [15].
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Related to that, we consider the operator A,:
PAw(H) =FP,op, peM.

Above, M is the space of complex Borel measures on 0U and, for all
measures v, P, denotes the Poisson integral of v. In other words, A, (x)
is, by definition, the measure whose Poisson integral equals P, o ¢.
The existence of such a measure is a consequence of representing each
complex Borel measure as a finite linear combination with complex
coefficients of nonnegative Borel measures and Herglotz’s theorem.

It is elementary to see that
Viu=P,, peM

is an isometry of M onto h!, the space of complex-valued harmonic
functions f on U satisfying the mean growth condition

£l = s [ 7w)]dm(u) < -+
0 au

S
<r<1

(see also [21, Theorem 11.19]).

If the composition operator of symbol ¢ acting on h'
Cof =fop, [feh!,

is also denoted C,,, then V~'C,V = A,. Thus, the operators A, are
similar copies of composition operators. To avoid confusion we chose
to denote them by A, (although some authors [23] call these operators
too composition operators). The symbol C, will designate from now
on only the composition operator on H? with symbol .

The Aleksandrov measures are related to the operators A, as follows:
To = Ap(da), o € OU, where as usual J,, is the unit point mass measure
at a. Thus, the Aleksandrov measure of index « of ¢ is the nonnegative,
finite measure 7, on U whose Poisson integral equals the nonnegative
harmonic function

« z — z 2
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A well-known fact about the Poisson integral of a measure on 0U is that
its radial limit function is the absolutely continuous part in its Lebesgue
decomposition with respect to the normalized arc-length measure m on
OU. Therefore, if we denote by o, the singular part of 7, then (10)
leads to the equality

1— (&)

(11) dro(£) = 5 dm(§) + doa(§)-

e — (&)

An immediate consequence of the above equality is the fact that ¢ is
inner if and only if 7, = 04, @ € OU. A formula obtained by this author
is the key to understanding the action of A, on singular measures, in
the particular case of automorphic symbols.

Proposition 3. If ¢ is a disk automorphism and p L m a Borel
measure on OU, then

(12) Ap(m)e ™ = P(p(0), u) du(u).

Proof. 1t is elementary to see that [S,| = exp(—F,). On the other
hand, S, o ¢ is inner and zero-free, hence a unimodular multiple of the
singular inner function S,, where v is given by

dvp™ (v) = P(p(0),v) du(v),

which is proved in [14, Lemma 3.1]. Thus P, = P, o ¢. O

A straightforward application of formula (12) is calculating the Alek-
sandrov measures of disk automorphisms. Indeed, combining (11) and
(12) leads to the formula

(13) A‘P(Ja) =Ta =0a = P(SO(O)a a)écp*l(a)a a € aUa
valid for any disk automorphism ¢. An application of this formula is

proving the following.

Lemma 4. Automorphic, hyperbolic composition operators have sin-
gular inner eigenfunctions associated to unimodular eigenvalues differ-
ent from 1.
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Proof. Let the measure p be defined as follows:

+oo
pi= ) wnbgiy,

n=—oo

where u € QU is any unimodular number which is not a fixed point of
¢ and, for a negative integer n, ¢! designates the |n|-fold iterate of
¢!, whereas [ is the coordinate function.

The numbers w,, are defined as follows:
wo =1,  w,P(p(0), oM (u)) =w, 1, n=%1,+2,43,....

The measure p is a finite, nonnegative, singular measure because
|wy /wn—1] = 1/P(¢(0),w) if n — +00, where w denotes the Denjoy-
Wolff point of ¢. On the other hand, 1/P(¢(0),w) < sup{P(z,w)/
P(p(z),w): 2 € U} =¢'(w) < 1, [1].

A similar argument involving the hyperbolic automorphism ¢~
shows that lim,,_, oo |wp_1/wy,| < 1.

1

By formula (13), A,p = p; thus, Agap = ap, a > 0 and so, Sy, is an
eigenfunction of C, associated to some unimodular eigenvalue A, for
all @ > 0. If we prove A, # 1, for some a > 0, the proof is over. Note
that

Sauo‘P(O) . = 2|p(0)] sin(Ar [n](y))-Ar 0
Ao = San0) 7P <_lanz_:oo o )))wn> '
Assume the fixed points of ¢ are £1. Then ¢ leaves invariant the
upper and lower semicircles, respectively. It also leaves invariant the
diameter of endpoints +1, for which reason ¢(0) is a nonzero real
number. Thus, all numbers ¢!*/(u) are on the same semicircle as u,
and u # +1. Therefore, the numbers, sin(Arg (o!"l(u)) — Arg (¢(0))) =
sin(Arg (¢[™(u))) are either all positive or all negative, depending on
the sign of ¢(0). At any rate, this makes the quantity

Wn

io 2|i0(0) | sin(Arg (¢!")(u)) — Arg ((0)))
[l (u) — ¢ (0)]?

n=—oo

nonzero, for which reason the eigenvalues A\, cannot equal 1 for all
a > 0.
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If the fixed points of ¢ are not 1, then there is a disk automorphism
a so that a~togoa = 1 is a hyperbolic disk automorphism with fixed
points 1. Given the induced operator similarity: CoC,C5' = Cy, it
follows that C, has unimodular eigenvalues, not equal to 1, associated
to singular inner eigenfunctions, because Cy has that property. o

The lemma above is a refinement of [14, Example 3.4]. We included
it with its proof, though, for two reasons. On one hand, for the sake of
completeness; on the other, because the result in [14] does not establish
the fact that the eigenvalue under consideration, is different from 1.
That fact is essential to us in this paper, where the lemma above,
combined with our previous considerations, allows us to extend the
result in the lemma to arbitrary composition operators whose symbol
is an inner function of hyperbolic type. Indeed:

Theorem 4. Let ¢ be an inner function of hyperbolic type. Then
W(C,) is a disk, (open or closed) centered at the origin, having radius
larger than 1.

Proof. Without loss of generality, assume 1 is the Denjoy-Wolff
point of ¢. By Theorem 2, there is o an analytic map of U into the
right half-plane satisfying (8) and, according to Lemma 3, the map
u := (0 — 1)/(c + 1) may be assumed inner. It is straightforward to
check that

K-1
(14) uop=cg¢ou where ¢(Z):1Z~:_rrz andr:K+1'

As one can readily see, ¢ is a hyperbolic disk automorphism so, by
Lemma 4, there is 1 # A € 9U, so that the operator C4 has a singular
inner eigenfunction S, associated to the eigenvalue A. By (14), S, ou
is a zero-free inner function; thus, a singular inner function that is an
eigenfunction of C, associated to the eigenvalue A. By Proposition 2,
W(C,) must be a disk about 0. The fact that the radius of that disk
is greater than 1 follows exactly as in the proof of Theorem 3. O

As a final comment, we wish to mention the fact that some authors
trace the introduction of Aleksandrov measures as early as Clark’s
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paper [8] and therefore call the aforementioned measures, Aleksandrov-
Clark measures, [19].
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