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ON SUMS OF SQUARES OF PRIMES
AND A kTH POWER OF PRIME

TAIYU LI

ABSTRACT. In this article we consider the exceptional set
of integers, not restricted by elementary congruence condi-
tions, which cannot be represented as sums of two or three
squares of primes and a kth power of prime for any in-
teger k > 2. For example, we prove that with at most
O(Nl_(1/3k2k72)+5) exceptions for k > 4, all positive inte-
gers n < N, satisfying the necessary congruence conditions,
are the sum of two squares of primes and a kth of prime. This
improves substantially the previous results in this direction.

1. Introduction. Let A3 be the set of all integers n which satisfy
the conditions

eif kisodd, n Z0 (mod 2), n # 2 (mod 3);
n#Z0 (mod 5) for 41k,
n#0,2 (mod 5) for4 |k,

and n Z 1 (mod p) for p=3 (mod 4) and (p—1) | k. And also let A4
be the set of all integers n which satisfy

o if k is odd, n Z 0 (mod 3);
e if k is even, n =4 (mod 24).

o if k is even, n = 3 (mod 24), {

In 1938 Hua [5] proved that almost all n € Az are representable as
sums of two squares of primes and a kth power of prime, from which
it instantly follows that almost all n € A4 are representable as sums of
three squares of primes and a kth power of prime. More precisely, for
any integer k > 2 and j = 3,4, let

E;(N) = |€;(N)],
where

Ei(N)={neA;j:n< N,n;ﬁp%—}—---—}-p?_l—}-pf for any primes p,, }.
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Hua’s result actually states that E;(N) < N(log N)~# for some
positive constant A. Later, Schwarz’s work [19] refined Hua’s result
by the same upper bound but for any A > 0. The upper bound of
E3(N) was further improved by Leung and Liu [8] to N'~? for some
computable but small positive § depending on the constants in Deuring-
Heilbronn phenomenon.

In particular, the case & = 2 of this problem has attracted many
authors. Since 1998, when Liu and Zhan [12] found a new approach to
increase the size of the “major arcs” in the application of the Hardy-
Littlewood circle method, there has been a flurry of activity in this
area; one may chart the developments in [1, 2, 7, 9-11, 13, 14, 18,
22].

In the case k = 3, Lii improved the upper bound of E3(N) to
N829/840+¢ i [15], and then to N20/2'*¢ in [16].

By using the circle method, we obtain the asymptotic formulae for
the weighted number of solutions on the major arcs (see Propositions
2.1 and 5.1 for details) which will, as can be seen in the following
sections, occupy the largest portion of this paper on applying the
iterative method and the estimate for Dirichlet polynomials in [9].
While treating the minor arcs, we use the estimate in [7] to bound
the exponential sums over primes (see Proposition 2.2). Collecting all
these arguments, we make the following improvement.

Theorem 1. Let k € N and E3(N) be defined as above. Then, for
all large N, we have

E3(N) < N'=Q/3k2 ) de - g g > 4,

Theorem 2. Let k € N and E4(N) be defined as above. Then, for
all large N, we have

N (19/42)+e Zf k=3;

E (N
1(N) < {N(1/2)(1/3k2’“_2)+5 if k> 4.

Remark. Applying the bound of exponential sums over primes in
Proposition 2.2, we can obtain for k = 2, F3(N) < N(/8)+¢ and
E4(N) < NG/8)*e The two estimates coincide with that of E}(N)
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which was proved by Kumchev [7] and Ren [18] separately and that
of E)(N) established by Liu, Wooley and Yu [11], respectively, which
are the optimal results by applying the circle method at present. Here,
E}(N) denotes the number of exceptions up to N for the problem with
j squares. And, we will see in the next section, that the bound of
exceptional sets is determined by the minor arc estimates.

Besides the above two aspects, we shall also investigate the represen-
tation of integers m as sums of a prime, a square of prime and a kth
power of prime. Let A be the set of all integers n which satisfy

e if kis odd, n =1 (mod 2);
eif kiseven,n =1 or 3 (mod 6).

Then for any integer k > 2, we define
E(N)=[{n€A:n < Nyn#p + 9%+l for any primes p,}.

Recently, Wang [21] established that E(N) < N(1/2)-(2/5k4" " )+e,
Arguing similarly to the proofs of Theorems 1 and 2, we obtain the
following.

Theorem 3. Let k € N and E(N) be defined as above. Then, for
all large N, we have

NB/8)+e ifk=2;
E(N) < { N(19/42)+ if k =3;
N(1/2)—(1/3k2* %) +e if k> 4.

Very recently, Harman and Kumchev [3] introduced the sieve method
into the present problem for the case k = 2 and proved that E{(N) <
NQ7/200+e and E}(N) < N/20+¢ a5 well as an upper bound
N(7/20)+¢ for the number of exceptions up to N for the problem with
a prime and two squares of primes, at a cost of loss of the asymptotic
formula for the number of solutions on the major arcs but replaced
with a lower bound. By using a sieve method there is a greater flexi-
bility in the application of exponential sum estimates than arises from
a standard application of the circle method. We shall investigate the
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problem in the present paper combined with sieve method, and this
will appear elsewhere.

Notation. As usual, ¢(n), u(n) and A(n) stand for the functions
of Euler, Mobius and von Mangoldt respectively. We use X mod ¢ and
X° mod ¢ to denote a Dirichlet character and the principal character
modulo ¢, and we use the notation Y " to denote sums over all primitive
characters. For integers a,b,... we denote by [a,b,...] as their least
common multiple. The letter IV is a large integer, and L = log N.
And r ~ R means R < r < 2R. If there is no ambiguity, we express
(a/b) + 0 as a/b+ 0 or 6 + a/b. The same convention will be applied
for quotients. The letters € and A denote positive constants which are
arbitrarily small and sufficiently large respectively, ¢ denotes a positive
constant which may vary at different places, and p, with or without
subscripts, always denotes a prime number.

2. Outline of the method and proof of Theorem 1. We shall
concentrate on proving Theorem 1. We will describe the straightfor-
ward modifications needed for Theorem 2 at the end of the paper and
will suppress the proof of Theorem 3 altogether.

For any integer k¥ > 2, and all n € A3 with n ~ N, consider the
quantity

ra(n) = > (logpi)(logps)(log ps),

n=p:+p3+ph
N/2<p?,p3, pE<N

where p1, p2, p3 are primes. Define further the exponential sum
Sk(o) = Z (logp)e(p*a), k> 2.
N/2 <p*<N

Then we have
(2.1) rs(n) :/0 S2(a)Sk(a)e(—na) da.

In order to apply the circle method, we set

N

2.2 P=N* -
(2.2) , Q PLE’
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where 6 is a fixed number such that 0 < § < (1/3k) and B is a constant
that will be determined in terms of a given constant A. By Dirichlet’s
lemma on rational approximation, each a € [(1/Q), 1+ (1/Q)] may be
written in the form

a 1
2.3 a=—-+A A< —=
(2.3) . Al 0

for some integers a,q with 1 < a < ¢ < Q and (a,q) = 1. We denote by
M(a, q) the set of a satisfying (2.3) and write the major arcs 9 for the
union of all M(a,q) with 1 < a < ¢ < P and (a,q) = 1. Then define
the minor arcs by m = [(1/Q),1 + (1/Q)]\M. Now the formula (2.1)

e ra(n) = { L), }5%<a)sk(a>e(—m> de

To handle the integral on the major arcs, we will establish the
following asymptotic formula in Sections 3 and 4. In view of this,
we shall need some necessary notations. For X mod ¢ and k& > 2, we

define
< ah®
Cr(X,a) =) x(h)e<—>,
h=1 q
Cr(g,a) = Cr(X%,a).
If X1,...,X;, j = 3 or 4, are Dirichlet characters modulo ¢, then we
write

q

an
Bj(n,g,X1,-5X5) = > 6(— ?>C2(X1aa)"'02(Xj—1,a)0k(><j,a),
a=1
(a,q)=1

B3(7’L, q) = B3(’I’L, q7X07 X07 XO):

and

Ss(n,P)= > L”(”’)Q).

3
<p P\

Proposition 2.1. Let the major arcs 9 be as above with P,Q
determined by (2.2). Then for n ~ N, and 2B > A + 15k with A > 0
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sufficiently large, we have
1
/ S3()Sk(a)e(—na)da = yTA P;G3(n, P) + O(NY*1log N),
m

where
P Y () om0 < e,
mi+ma+mz=n

N/2<m;<N

and G3(n, P) > log ! N for all n € A3 with at most O(N®/6)t<) or
O(N'teP~1/2) exceptions according to whether k =2 or k > 3.

Now we bound the contribution of Sk(«) from the minor arcs.

Proposition 2.2. Let the minor arcs m be as above with P,Q
determined by (2.2). For any integers k > 2, let

1/8 if k= 2;
p(k) =< 1/14 if k= 3;
1/(3-2F1) ifk > 4.

Then we have
sup |Sk(a)| < NA/KI=(ek)/k)Fe,

aem

Proof. Put
o N3/2k if £k =2;
| N(E=20(k))/(2k-1)  if g > 3.

Then Theorem 3 of Kumchev [7] states that

(2.4) sup |Sk(a)| < NW/R=e®/k)+e L (g2 NELE) /\/q(1+ N|X)

acm

for a satisfying
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Now Q* < @, and hence the minor arcs can be written as m = ¥ U ¥,
where

1 1
2.5 Blh=qa:1<q¢<P, — <)<
(25) ' { == 00 A qQ*}

and

1
Egc{a:P<q<Q*,|)\|§ *}
9Q

In either case we have ¢(1 4+ N|)\|) > P, and hence (2.4) becomes

N(1/k)+e
sup |Si ()] <« NA/M—ot)/mre ¢ NTTOT°
(2.6) sup |k ()| VP
< NA/B ok k) e

This completes the proof of Proposition 2.2. i

We will see that, as shown in Section 5, Proposition 2.2 holds for a
still larger range of # than that in (2.2).

Now we can establish Theorem 1 by applying the device introduced
by Wooley [22].

Proof of Theorem 1. Introduce the generating function

Z(a) := Z e(—an).

n€53(N)
Clearly we have
1
/ S2(a)Sk(a)Z(a) da = 0.
0

Using Proposition 2.1, it follows that

‘ /m S2(0)Sk(0)Z(a) da

/zm S2(0)Sk(0)Z(a) da

Z /sm S2(a)Sk(a)e(—an) da

n€€z(N)
> ENl/kL_15k,

2.7)
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where we abbreviate E3(N) to E. Then by Cauchy’s inequality and
Proposition 2.2, we deduce that

1
B < N0 sup 5, ()]} / 152(0) Z(e)] da
(2.8) agm 0

< N—(l/k)—i-s{ sup \Sk(a)|}H11/2H21/2,

acm

where
1 1
H, =/ |S2(a)|* day, HZ:/ 1Z(@)|? da = E.
0 0

The integral H; can be estimated by Hua’s lemma,

(2.9) Hi<L* ) 1<NL-

m% +m§ =m§+mZ
N/2<mi<N

The assertion of Theorem 1 now follows from (2.8), (2.9) and Proposi-
tion 2.2. O

3. Preliminaries and estimation of J and K. Define
Bj(n,q,X1,...,X;) for j = 3 or 4 as in Section 2, as well as Bs(n,q)
and G3(n, P). For the singular series &3(n, P), we can establish a
lower bound for almost all n. Applying the argument in [3, Lemma 7]
for k = 2 and in [8, Lemmas 6.4 and 6.6] for £ > 3, we can get the
following.

Lemma 3.1. For all n € Az with n ~ N, except for a subset
of cardinality O(N©®/9+e) or O(N'*P~1/2) exceptions, according to
whether k = 2 or k > 3, respectively, we have

Gs(n, P) > L5

The following lemma, for which the proof is implied in [8, Lemma
6.7] and is now standard, plays an important role when we prove
Proposition 2.1.
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Lemma 3.2. Let X; mod r; with j = 1,2,3 be primitive characters,
ro = [r1,72,73], and X° the principal character modulo q. Then

1 - e

3 5 Bs(n, g, xaX%, xax?, XaXO)| < 1 P logtF

= ¢°(a)

rolq

Furthermore, we define for k > 2
(3.1)

Vi) = ) e(mN),

N/2 <mF<N
We(GA) = Y (logp)x(pe(@*d) —dox D> e(mFy),

N/2 <pk<N N/2 <mk<N

where dy = 1 or 0 according as X is principal or not; also, define

Je(g) =Y lg,r] /AT 3 max W06 A,

r<P Xmodr s1/trQ
/2 % 1/(rQ) ) 1/2
Kilg) = X025 Y ([ i)
r<P Xmodr —1/(rQ)

* . . . oy
where Y means that the summation is over all primitive characters.

Our Proposition 2.1 depends on the following three lemmas.

Lemma 3.3. Let P,Q be as in (2.2). We have
Jk(g) < g_(1/2)+€N1/kLC.

Lemma 3.4. Let P,Q be as in (2.2). For g =1, Lemma 3.3 can be
improved to

Jr(1) < NYkL=4,

where A > 0 is arbitrary.

Lemma 3.5. Let P,Q be as in (2.2). We have
Ki(g9) < g~ (/2 +e NA/k)=/2) e
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We will not present in detail the proofs of these three lemmas, since
they are similar to those of [14, Lemmas 2.2-2.4]. We will only give
a proof of Lemma 3.3. To this end we shall need the following hybrid
estimate for Dirichlet polynomials which was established by Liu [9,
Lemma 2.1].

Let X%/5 <Y < X and My, ..., Mg be positive integers such that
(3.2) 270V <M;---My <X, and 2Mg,...,2My < X/5.
For j =1,...,10, define

logm if j=1,
(3.3) a;j(m)=<¢1 ifj=2,...,5,
w(m) ifj=6,...,10,

where p(n) is the Mobius function. Then we define the functions

filsg= 3o WA
and
(3.4) F(S,X) = f1(8,X)"'f10(8,X),

where X is a Dirichlet character and s a complex variable.

Lemma 3.6. Let F(s,X) be defined as above. Then for any
1<R<X%ZandT >0,

Y 3T /TQT F<%+it)dt

r~R Xmodr
2
< {R—T 4B g2y X1/2} log® X.

d|r
d d1/2

Proof of Lemma 3.3. Let

Wi A) = > (Am)x(m) — 8x)e(m* ).

N/2<m*<N
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Then .
Wi (G A) — Wi (X, \) < N2k,

This contributes to Jx(g) an amount

P\ ~(1/2)+e
< g~ (1/2)+e N1/2k Z Z (E) 7,

dlg r<P
d<P d|r

<<g—(1/2)+sN1/2kZ Z m—(/24e g

dlg m<P/d
d<pP

<<g—(1/2)+EN1/2kP3/2+6 < g—(l/Q)—i-SJ\fl/k:L—A7

where we have used [g,7](g,7) = gr and (2.2). Thus Lemma 3.3 is a
consequence of the estimate

(3.5)
—(1/2)+€ * T —(1/2)+enrl/kTc
g g,T E max |[Wi(X,A)| < g N/FLC,
T‘NR[ ] Xmodr |MS1/(TQ)| k( )‘

where R < P and ¢ > 0 is some constant.

It is easy to establish (3.5) for R < 1. In fact, in this case we must
have r = 1, and hence the left-hand side of (3.5) is

< g~(/2)+e Z logm < g~(1/2+eN1/k L,
N/2 <mk<N

which is obviously acceptable. It therefore remains to show (3.5) in the
case R > 1.
To the sum

(3.6) Y. Alm)x(m),

(N/2)1/k<m<u

we apply Heath-Brown’s identity (see [4, Lemma 1]) for £ = 5, which
states that, for m < X,

5
) -
A =3 (3) vt S ogmiutma) - (may)
j=1 my-mgj=m
mj+1,...,m2j§x1/5
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We set X = N in the above formula. Also, in (3.2) we take
X = NY* and Y = (N/2)'/*; define a;(m), f;(s,X) and F(s,X) as
in (3.3) and (3.4). Therefore (3.6) is a linear combination of O(L'?)
terms, each of which is of the form

S(us M) = > Y a(m)x(my)

mq~Mq mio~Mio
2710(N/2)1/k<m1--- mio<u

-+ +ayo(m10)X(mio),
where M denotes the vector (Mg, Ma,. .., M) with M; as in (3.2).
By Perron’s summation formula (see for example, [17, Theorem 2,

page 98] or [20, Lemma 3.12]) and then shifting the contour to the left,
the above X (u; M) is
1 [UH/LHT s _ (N/9)s/k N/kL2
w = (N2 4ot 0( )
s

= F(s,x
2mi 141/L—iT (5:X) T

1 1/2—iT 1/2+HiT 141/ L+iT N1/kp2
Sl o)
2mi 14+1/L—iT 1/2—iT 1/2+iT T

where T is a parameter satisfying 2 < T' < N/*. The integral on the
two horizontal segments above can be easily estimated as

uo'
F(o£iT —
1/2§§12¥+1/L‘ (o 11 %) T

< max N(lfg)/kLi
1/2<0<1+1/L T
N'kL
T
on using the trivial estimate
Fo £iT,X) < |fi(0 £1T,X)| -+ | fro(o £ 1T, X))
< (M{TOL)M, ™7 My
< NO=o)/kp,

1 T 1 u1/2+it _ (N/2)(1/2+it)/k
Y(u;M) = — F(=+it dt
(u; M) / <2+1’X> 1/2+it
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Now recalling 7 > 1, we have §y = 0 for all X mod 7 in the definition
of Wi (X, ), and consequently,

WA = Y A(m)x(m)e(m*N)
N/2 <m*<N

N1/k
:/ dw»d{ 3 anmw}
(N/z)l/k (N/2)1/’“<m§u

Hence W, (X, A) is a linear combination of O(L!?) terms, each of which
is of the form

N1k
/ e(u®)) dX(u; M)
(

N/2)t/k

l T 1 Nl/k '

=5 F(§ + it,X) / uw /it (k) dudt
-T (N/2)1/k

Nl/kL2
+o< — (LHANO.

By taking 7 = N'/* and changing variables in the inner integral, we
deduce from the above formulae that

T 1
/ F<— +it,X>
o \2

N
X / v(l/%)_le(L logv + )\v> dvdt| + N/(3k)
N/2 2k7T

(3.7) |/W7k(X, N < LY max

where the maximum is taken over all M = (My, Ms, ... , Mip). Since

d t t
— | —1 AN | =——+A
dv <2k7r g+ v) 2kmv A
a2 [/t t

— —1 | = ———=
dov? <2k7r g+ v) 2kmv?’

by Lemmas 4.3 and 4.4 in [20], the inner integral in (3.7) can be
estimated as

(1/2k)—1 N N
<< <_> min{ ’ i }
2 t+ 2kmA

VT min e+ 2km
<{NWWVH+IKMSﬂ,

N1k )|t if T, < |t| < T,

(3.8)
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where

T, = 4knN/(RQ).

Here the choice of T is to ensure that |t + 2kwAv| > |t|/2 whenever
|t| > T; in fact,

|t + 2km\v| > [t] — 2kn|v|/(rQ) > [t|/2 + T./2 — 2knN/(RQ) > |t/2.

Therefore it follows from (3.7) and (3.8) that (3.5) is a consequence of
the following two estimates: For R < P and 0 < 17 < T},

(3.9) ) [g,r] /D= Z /m < 1tx>‘dt

r~R Xmodr
< 97(1/2)+EN1/2k(T1 4 1)1/2LC;

(o)l

97(1/2)+5N1/2kT2LC‘

while for R< Pand T, < T, < T,

(3.10) Zgr (1/2)+e Z/

r~R Xmodr

To show (3.9), we note that [g,r](g,r) = gr. Then the left hand side

of (3.9) is
(1/2)+ R —(1/2)+ 2Ty
- €
<g Z(E) Z Y / < ltX)dt.
d|g ’I‘NRXIIIOd’I’
d<R

By Lemma 3.6, the above quantity can be estimated as

» R\ —(1/2+e
<g DY <E>

dlg
d<R
2
(IZ Ty + —dﬁz Ty /2 N3/10k 4 Nl/2k>L
<g —(1/2)+e {R 3/2)+eT + R(1/2)+6T(1/2)+5N3/10k

Nl/Qk}Lc
<<g—(1/2)+6N1/2k(T1 + 1)1/2Lc,
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provided that R < P = N with 6 < 1/3k. This establishes (3.9).

Similarly, we can prove (3.10) for R < P = N? with 8 < 1/3k, by
taking T'= T, in Lemma 3.6. Lemma 3.3 thus follows from (3.9) and
(3.10). o

4. Proof of Proposition 2.1. With Lemmas 3.3-3.5 known, we
can use the iterative idea to prove Proposition 2.1.

Proof of Proposition 2.1. For ¢ < P and N/2 < p* < N, k > 2, we
have (g,p) = 1. Therefore we can rewrite the exponential sum Si(«)
as

g o Ck(Qv a) L a
Sk<q+/\> ~ el) Vk(/\)Jrso(q) 2, Cloaio)

=:a + bg.

Xmodg

Thus

@) [ S5)Sila)e(~na)da
=/ (az + b2)?(ak + br)e(—na) da
m

= / (a%ak + 2agbyay + biag + a3by, + 2a2byby + bgbk)e(—na) do
m

=:Iig + 2111 + L2 + I + 2121 + I2,

where
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and
1 1 2-j an
I = ) Z Cy 7 (g,a)e| — —
quso q a=1
(a,9)=1
1/4Q ) J
x/ V2 (A { 3 Ca(x,a)Walx, )\)}
—1/4Q Xmodgq
x{ > C’k(x,a)Wk(X,A)}e(—n)\)d)\.
Xmodgq

We shall prove that I;o gives the main term and others the error
term. We first compute the main term I;o. Applying [6, Lemma 8.8]
to Vi(X), we get for k > 2,

NL/E
(4.2) Ve(\) = / e(uf\) du+ O(1)

= % Z e(mA)m/P=1 1 0(1).

N/2<m<N

Substituting this into Iy we see that

/1/<ZQ
1/4Q

(4.3)

1
I __§
10 kg

2
< (m)\)m_l/2>
N/2 <m<N

e(m\)m 1/k—1>e(—nA) dA

N/2 <m<N
Bs( 1/4Q
<Z |B3(n,q |/ ‘ (m)\)mfl/Z
4<P 1/9Q 1 Nj2 <m<N

X

Z e(mA)m(/®)

N/2 <m<N

-1 d)\>.
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Using the following elementary estimates

(/M1
(4.4) T emam/l (g) min <N, &)

N/2 <m<N

and Lemma 3.2 with 7o = 1, the O-term in (4.3) can be estimated as

-1 1/k)—(3/2)
1Bs(m, )| [ [N LN\
<Y i N5 dx

ey S C)
+/oo N\ /B8 gy
No1 \ 2 A2
< NW/K=(1/2) 15k

Now we extend the integral in the main term of (4.3) to [-1/2,1/2];
by a similar argument we see that the resulting error is

/2 7 ar\ (/R)-2 gy A\ (k)2
< L15k}/ <E> F < <E> P2Q2Ll5k
1/PQ

< Nl/kL_A,

provided that 2B > A + 15k. Thus (4.3) becomes

1
(4.5) Ly = - Ps&s(n, P) + O(N'kL=4),

where Pj is defined in Proposition 2.1 and satisfies P3 < nl/* with
n ~ N, A > 0 is sufficiently large by noting Lemma 3.1.

For the other terms in (4.1), we begin with I which is the most com-
plicated one. Reducing the characters in I25 into primitive characters,
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we have

22| =

1
Z@(q) Z Z Bs(n,q,X1,X2,X3)

q<P X1modgq X3modgq

1/9Q
x/ Wa(X1, N Wa(Xay )W (Xa; A)e(—n) dA
-1/¢Q

SDIED Do

<P r3<P Ximodr;

* | Bs(n, g, X1x°, X2X%, x3x°)]
> D

3
Xzmodrzg q<P i (q)
rolq

1/9Q
X / [Wa (X1 X°, M) | W2 (X2X?, A) | Wi (X3X°, M) | dA,
-1/qQ

where X is the principal character modulo g, ro = [r1,72, 73] depending
on ry, 79,73, and the sum " is over all primitive characters. For ¢ < P
and N/2 < p* < N, k > 2, we have (g,p) = 1. Using this and (3.1), we
have Wy (x;X°, A) = Wi (X;,A) for the primitive characters X; above.
Thus by Lemma 3.2, we obtain

IFED IS Z*

ri1<P r3<P Ximodr;

" 1/(r0Q)
/ W (X, M) [Wa (s M| [ Wi (X, )| dA
X3 modrg —1/(r0Q)

B 0 0 0
<3 |Bs(n, g, x1X°, XoX°, x3X?)|

3
= ©*(q)
Tolg
S IR LD SIS )
ri1<P rg<P X1modr; Xzmodrs

1/(ro@Q)
X / [Wa(x1, A)| [Wa (X, A)| [Wi(Xs, A)| dA.
—1/(roQ)

In the last integral, we take out |W3(X1, )| and then use Cauchy’s
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inequality to get
(4.6)
I L€
| 22| < Z Z ‘/\|<1/ |W2(X17>‘)|
r1 <P Ximodry
1/(r2Q) ) 1/2
x> 37 </ W (X2, )| d)\>
ro <P X2modry 1/(r2Q)
* 1/(r3Q) 1/2
X Z 7‘6(1/2)+€ Z </ |Wk(X3,>\)|2 d>\> .
rg<P X3modrs —1/(rsQ)

Now we introduce an iterative procedure to bound the above sums
over 11, rg, T3, consecutively.

We first estimate the above sum over r3 in (4.6) via Lemma 3.5. Since
ro = [r1,72,73] = [[r1,72], 73], the sum over r3 in (4.6) is

* 1/(rsQ) 1/2
= Z [[1‘1,1‘2],7‘3]7(1/2)+€ Z (/ |Wk(X3a/\)|2d)\>

r3<P Xzmodrs —1/(r3Q)
= Ki([r1,7m2]) < [rl’r2]7(1/2)+6N(1/k)f(1/2)Lc,

This contributes to the sum over ry of (4.6) in amount

< NW/R)=(1/2) e Z [7‘1,7“2]7(1/2”5

ro<P
" 1/(r2Q) 1/2
> (/ WQ(XQ,A)lsz)
Xz modrs —1/(r2Q)

— N(l/k)_(1/2)LCK2(r1) < r;(1/2)+5N(1/k)—(1/2)Lc,

where we have used Lemma 3.5 again. Inserting this last bound into

(4.6), we can bound the sum over r; and find that
(4.7)

|Is| < NO/W=(/2) pe N . m (/2% Z* max
ri<P X1 modr, <1/ (rQ)
= NOM=0/2 [ gp(1) « NVEL4,

[Wa(X1, N

where we have used Lemma 3.4 in the last step.
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For the estimation of the terms I1, I12, Ig, I21, noting (4.2) and (4.4)
we get

1/Q 1/2 N (2/k)72N 1/2
(/ |Vk(/\)|2d)\> <<<<—> —> < NWo=1/2),

~1/Q 2 2

Using this estimate and Lemmas 3.3-3.5, we argue similarly to the
treatment of Is> and obtain

(4.8) \Li1| + | Ti2| + |Ia0| + |Inn] < NY*L=4,
Proposition 2.1 now follows from (4.1), (4.5), (4.7) and (4.8). O

5. Proof of Theorem 2. We now outline the modifications
necessary to our previous argument. We keep the same major and
minor arcs decomposition but merely replacing 6 in (2.2) by

2
5.1 0<b< .
(5.1) <<

Then for all n € A4 with n ~ N, consider

ra(n) = > (log p1)(log p2)(log p3)(log p4)

k
n=p}+p3+p3+p}
N/2<p3,p3,p3, PE<N

_ {/ﬂﬂ—}—/m}S;’(a)Sk(a)e(na)da.

Moreover, define Ji(g) and K(g) as in Section 3 with the exponent
of [g,r] there, i.e. —(1/2) + ¢, replaced by —1 + . By the same
treatment, we can estimate J and K to get the desired upper bounds
as shown in Lemmas 3.3-3.5 with the exponent of the variable g
replaced also by —1 + ¢, and the range of 6, arising in (5.1), will be
determined simultaneously. And the saving —1 + ¢ plays a key role in
the argument to obtain this larger range of §. Then following the proof
of Proposition 2.1, we can get the asymptotic formula of r4(n) on the
major arcs.
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Proposition 5.1. Let the major arcs M be defined as in Section 2
with P,Q determined by (2.2) but 0 replaced by (5.1). Then forn ~ N,
we have
(5.2)

1
. S3(a)Sk(a)e(—na) da = 7 Py Sy(n) + O(NY/D+A/R) 1og=AN)

where
P4 = Z (m1m2m3)71/2m511/k)_1 < N(1/2)+(1/k),
my1+ma+msz+ma=n
N/2 <m;<N

and 0 0 0 0
> B4(n,q,X 7X 7X 7X)

Gy(n) :=

" qzzl ¢*(a)

which satisfies S4(n) > 1 forn € Ay.

We remark that G4(n) > 1 for n € A4 (the argument is similar to
Lemma 3.1). Combining (5.2) with the similar treatment in Section 2,
we find that Proposition 2.2 also holds for the larger range of 6 in (5.1)
and hence Theorem 2 follows as required.
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