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ON THE NUMBERS OF FACES OF
LOW-DIMENSIONAL REGULAR TRIANGULATIONS
AND SHELLABLE BALLS

CARL W. LEE AND LAURA SCHMIDT

ABSTRACT. We investigate the conjectured sufficiency of
a condition for h-vectors (1,hi,ho,...,hq,0) of regular d-
dimensional triangulations. (The condition is already shown
to be necessary in [2]). We first prove that the condition
is sufficient when h; > hy > --- > hg. We then derive
some new shellings of squeezed spheres and use them to
prove that the condition is sufficient when d = 3. Finally,
in the case d = 4, we construct shellable 4-balls with the
desired h-vectors, showing them to be realizable as regular
triangulations when hgy = 0 or hg = hj.

1. Introduction.

1.1. Polytopes and the g-theorem. The g-theorem [2, 13]
characterizes the f-vectors of simplicial (and hence also simple) convex
polytopes. One corollary is a necessary condition for the f-vectors
of simple unbounded polyhedra [2], which are the duals of regular
triangulations [15]. In this paper we investigate the sufficiency of this
condition, verifying it in several cases.

We begin with some definitions; more details can be found, for
example, in [4, 15]. A convex polyhedron is an intersection of finitely
many closed halfspaces in R. A bounded convex polyhedron is called
a conver polytope. The f-vector of a d-dimensional polyhedron (d-
polyhedron) P is f(P) = (fo(P),..., fa—1(P)), where f;(P) denotes
the number of j-faces of P. We also take f_1(P) = fq(P) = 1. A
d-polytope is simplicial if every face is a simplex, and simple if every
vertex (0-face) is contained in exactly d edges (1-faces), equivalently,
in exactly d facets ((d — 1)-faces). Simple polytopes are precisely the

duals of simplicial polytopes.
The h-vector of a simplicial d-polytope P (or of any (d — 1)-

dimensional simplicial complex) is h(P) = (ho(P),... ,hqa(P)), where
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W ) =30 () ), =0

j=0

We also define h;(P) = 0 if ¢ < 0 or ¢ > d. These equations are
invertible:

(2) fjl(P):Z(;l_;>hi(P), i=0,...,d.

i=0
The g-vector of P is g(P) = (go(P),... ,9|a/2)(P)), where go(P) =
h()(P) and gZ(P) = hZ(P) — hifl(P), 1= 17 Ceey |_d/2J

For positive integers a and i, the i-canonical representation of a is
the unique expression of a in the form

= () (1) ()

where b; > b;_; > --- > b; > j > 1. From this, define

al) = (" + )+ :
1+1 1 j+1
and we also take a‘®? = 0. A vector (ag,... ,a,) is called an M -vector

@

T 0

if it consists of nonnegative integers satisfying ap = 1 and a;41 < a
i=1,...,n—1.

Theorem 1 (g-theorem).A vector of nonnegative integers (hq, . . ., hq)
is the h-vector of a simplicial convex d-polytope if and only if

1. hy =hg_i, 1=0,...,d (the Dehn-Sommerville equations), and
2. (g0,--+,9|d/2)) 18 an M-vector.

This characterizes the f-vectors of simplicial polytopes and, by dual-
ity, f-vectors of simple polytopes.

1.2. Regular triangulations and simple polytopes. Consider a
simplicial convex d-polytope P and a vertex v of P. Deleting v from the
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boundary complex of P yields the antistar of v in 0P, the simplicial
(d — 1)-complex (0P) — v. By applying a projective transformation
that sends the vertex v onto the hyperplane at infinity, and projecting
(OP) — v onto a hyperplane orthogonal to the direction of projection,
it is evident that antistars are combinatorially equivalent to regular
triangulations [15] and vice versa.

Let P* be a simple polytope dual to P and F the facet of P*
corresponding to v. By applying a projective transformation that
sends F' onto the hyperplane at infinity, it is also evident that simple
unbounded polyhedra are combinatorially dual to antistars, and vice
versa.

A patch of a simplicial d-polytope P is a nonempty proper subset
C = {Fi,...,Fy} of facets of P such that there is a line shelling [15]
beginning with these facets. We will usually identify the patch with its
naturally associated simplicial (d — 1)-complex. Equivalently, there is a
polytope P’ projectively equivalent to P and a point v' ¢ P’ such that
the set of facets C' of P’ corresponding to C is precisely the set of facets
that v’ is beyond. Also equivalently, there is a polytope P” projectively
equivalent to P and a point v”" ¢ P" such that the set of facets C" of P"”
corresponding to C is precisely the set of facets that v” is beneath. (See
[4] for the definitions of beneath and beyond.) It is evident, then, that
the complementary sets of facets to patches are themselves patches,
and that patches are combinatorially equivalent to antistars, for in the
latter equivalence we may take Q@ = conv (P"” U {v"}) and then form
the antistar (0Q) — v".

Now assume that P contains the origin in its interior and P* is its
polar dual [4, 15]. Then C is a patch of P if and only if there is
a hyperplane H such that the associated set of vertices V of P* and
the complementary set of vertices (vert P*) \ V lie in opposite open
halfspaces associated with H. If H~ and HT' are the two closed
halfspaces associated with H and, say, V C H™, then we will call
P* N H™ the truncated simple polytope associated with V.

1.3. Computing h-vectors of regular triangulations. We
recall that the h-vector of a shellable simplicial (d — 1)-complex can
be computed from a shelling order Fi,...,F,, of its facets in the
following way [15]. For facet F there is a unique, minimal face
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G; = R(F}) of F; such that G; is not in the simplicial complex induced
by FiU---UF;_1. Let o(F;) = card G;. Then h; = card {j : o(F}) = i}.
In this way we can determine the h-vectors of antistars/patches/regular
triangulations.

The following is a useful lemma.

Lemma 1. Assume C is a patch of a simplicial d-polytope P, and
C' is the complementary patch consisting of those facets of P not in C.
Then h(C") + h"(C) = h(P), where h"(C) is the reverse of the vector
h(C).

Proof. This follows quickly from the equations h(P) = h(C') + h(C°)
and h(C°) = h"(C) (see [10]), where C° denotes the collection of
nonboundary faces of C. ]

It is well known that the dual to a line shelling of a simplicial polytope
P is a sweeping of its dual P* by a hyperplane: Choose a vector a € R?¢
such that a - v; # a - v; for all pairs of vertices v;,v; of P*, i # j. For
each edge v;v; of P*, orient it from v; to v; if a - v; < a - v;. Then the
h-vector of P is given by h; = card {j : v; has indegree i}, i =0,... ,d.
(See, for example, [3].) Similarly we can compute the h-vector for a
patch by restricting attention only to those vertices and edges lying in
H™.

One corollary [2] of the g-theorem is the following:

Corollary 1. If (hg,...,hq) is the h-vector of an antistar of a
simplicial d-polytope (equivalently of a patch of a simplicial d-polytope,
or of a regular (d — 1)-triangulation), then (x) holds:

Condition (x): The wvector (hy — hgik,h1 — hairk—1,--- s hm —
hd+k—m) is an M-vector for all integers k = 0,...,d + 1, m =
[(d+k —1)/2], taking h; =0 if i > d.

This condition is in fact necessary for the f-vectors of arbitrary three-
and four-dimensional balls. The g-vectors of 2-spheres are trivially
M-vectors. Kalai [6] showed that go > 0 for arbitrary triangulated
d-manifolds without boundary, d > 2, from which it follows that the
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g-vectors of 3- and 4-spheres are also M-vectors. The arguments in
[1] show that if (1, hy, he, k3, 0) is the h-vector of a 3-ball (and hence
itself an M-vector) then (1, h; — hg) is the g-vector of a 2-sphere and
(1,h1,ha — h3) is the g-vector of a 3-sphere, so both are M-vectors.
Similarly, if (1, hy, ho, h3, hg,0) is the h-vector of a 4-ball (and hence
itself an M-vector) then (1, h;—hy, ho—hs3) is the g-vector of a 3-sphere,
and (1, hy, ho — hy) is the g-vector of a 4-sphere, so both are M-vectors.
Finally, (1, hy, he, hs — h4) is an M-vector since hg — hy > 0, which
follows from Theorem 4.30 of [14] (thanks to Ed Swartz for bringing
this to the authors’ attention).

In this paper we investigate the conjectured sufficiency [2] of this
condition:

Conjecture 1. A vector of nonnegative integers (hg, ..., hq) is the
h-vector of a regular (d — 1)—triangulation if and only if Condition (x)
holds.

2. h-Vectors nonincreasing after h;. We begin by proving
sufficiency in the following case:

Theorem 2. Ifh = (1,hy,... ,hq) is a vector of nonnegative integers
satisfying hy > hy > -+ > hg_1 > hg =0 (with d > 1), then h satisfies
Condition (x) and h = h(A) for some regular triangulation A.

Using the inequality assumptions and the fact that h; < hlm, it is
easy to verify that h satisfies Condition (x). We will construct an
appropriate truncated simple polytope. We begin with a d-simplex
PY C R? having vertices z) < --- < 20, where the ordering of the
vertices (and the orientation of the edges) is with respect to increasing
last coordinate. Note that vertex z has indegree i, i = 0,...,d.
Assume that the last coordinate of x{ is 0, the last coordinates of
zd,... ,wg_l are very close to 0, and the last coordinate of acg is 1. We
will perform a sequence of truncations to achieve a simple polytope
such that the indegree sequence of the vertices having last coordinate
less than 1/2 is the vector h. A vertex with last coordinate less than
(greater than) 1/2 will be called low (high). Note that the indegree
sequence of the low vertices of P% is (1,...,1,0).
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At any stage we will assume that the current polytope P* (1) has
vertices z9,29,...,29 |, zi,23,... zh 2} 2l .0 22 ... 25,28,

x5, x% (2) each vertex zF has indegree i; (3) vertex xf has
neighbors z§) < z§ < z§ < --- < x5, (4) vertices z3,...,z} are
low and vertices z7,,... ,z} are high for some k =1,...,d — 1, and
(5) the vertices 5, x3,... ,z5_,,z5 form a facet.

For any ¢ = 1,...,k we define a truncation of type ¢ as fol-

. . s+1 s+1
lows: Choose points =77, ...,z on edges z3z7,... ,z5T)_,, respec-

tively, and point wfiH on edge z5z) such that ;ci“ < e < x;“;
xi“, - ,mfl are low; and :1:21%, .. ,;cle are high. Construct the
polytope P**1 by truncating the vertex z¥ using the hyperplane deter-
mined by the points 2§, ... ,953"'1. It is now straightforward to check
that conditions (1) through (5) hold for Ps*1. Further, the indegree
sequence of the low vertices increases by 1 for indegrees 1,...,¢ and

by 0 for indegrees £+ 1,... ,d.

To realize the given vector (ho,...,hq) we now start with P° and
perform hgy_; — 1 truncations of type d — 1, hg_o — hgq_1 truncations
of type d — 2, hg_3 — hg_o truncations of type d — 3,..., and h; — hy
truncations of type 1. Then in the final polytope P"* ! the low vertices
will have the indegree sequence (hy,... ,hq).

By duality, we conclude there is a regular (d — 1)-triangulation A
with h = h(A). O

3. New shelling orders for squeezed spheres. In this section
we describe an approach to constructing patches. There are two basic
steps: (1) find a shellable subcollection of facets of a simplicial polytope
that induces a simplicial complex A with the desired h-vector; (2) show
that there is a point z beyond precisely those facets in A (or else beyond
precisely the complementary set of facets). This implies that A is a
patch. So in (1) the desired patch is created combinatorially, and then
in (2) it is realized geometrically.

We will begin by describing several shelling orders of squeezed spheres
and explore h-vectors that can be achieved by partial shellings of low-
dimensional squeezed spheres. See [5, 9] for more information on
squeezed spheres. To describe the orders we need a few definitions.

Let [n](? denote the set of all subsets of {1,2,... ,n} of cardinality d.
Consider S € [n). If 1,2,... ,k € S, k < d, and k +1 ¢ S, then
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{1,...,k} is the left set of S; if 1 ¢ S then the left set of S is empty.
Ifj5,j+1,...,d€S,j>1,and j—1¢ S, then {j,...,d} is the right
set of S; if d ¢ S, then the right set of S is empty. If j > 1, k < d,
Jj+1l,...,keS,j—1¢S,and k+1¢ S, then {j,...,k} is a middle
set of S.

For any collection F' of subsets of {1,... ,n} define cone (F,0) to be
{SuU{0}:SeF}

Recall the definition of reverse lexicographic order on [n](® (the set of
all subsets of {1,2,... ,n} of cardinality d) by specifying that F' <grp G
if there is some k such that k € G\ F,and i € F < i € G for all i > k.

Consider some element j € F C [n] = {1,2,...,n}. Define {(F,j) =
macli € Z: i < ji ¢ F} and L(E,j) — (P\{j}) U {(F,))}.
Thus L(F,j) is the set resulting from “pushing” j and its immediate
predecessors in F' one step to the left. Define r(F,j) = min{i € Z :
i>j,4i¢ F}and R(F,j) = (F\{j}) U{r(F,7)}. So R(F,j) is the set
resulting from “pushing” j and its immediate successors in F' one step
to the right. Let d be a positive odd integer, and let n be a positive
integer. Take Fy(n) to be the collection of all members of [n](@+1)
having only even cardinality left, middle, and right sets. So sets in
F4(n), consist of unions of (d+1)/2, disjoint pairs of adjacent elements.
For F € F4;(n), when we write F = {a1,as,... ,a4+1} we implicitly
assume that the elements have been indexed so that a; < --- < ag4;-
For an even positive integer d, put Fy(n) = cone(F4-1(n),0). For
positive d consider a nonempty subcollection I of Fy(n) that is an
initial set of Fyq(n) with respect to the partial order <,. Equivalently,
for F € I, L(F,j) € I whenever L(F,j) € Fy(n).

The simplicial d-complex B(I) = {G : G C F for some F € I} with
facets in I is a d-ball. These simplicial complexes are called squeezed
balls. Kalai observed that squeezed d-balls B(I) for even d are just those
simplicial complexes of the form cone (B(J),0), where J is an initial set
of Fy_1(n). The boundary of a squeezed d-ball B(I), S(I) = 0B(I), is
topologically a (d—1)-sphere and is called a squeezed sphere. The facets
of S(I) are those subsets of B(I) of cardinality d that are contained in
exactly one facet of B(I). Squeezed balls are shellable and the reverse
lexicographic ordering of the facets is a shelling order [5].

By examining this shelling, one can readily characterize the facets
of S(I) [9]. Suppose d is odd and B(I) is a squeezed d-ball. Let
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F ={ai,...,a441} € I be a facet of B(I) and a; € F. Then F — q;
is a facet of S(I) if and only if (1) ¢ is even and a; is in the left
set of F, or (2) i is odd and R(F,a;) ¢ I. Suppose d is even and
B(I) = cone (B(J),0) is a squeezed d-ball. Then a subset F' € B(I) of
cardinality d is a facet of S(I) if and only if (1) F is a facet of B(J),
or (2) F = GU {0} where G is a facet of S(J).

3.1. Shelling order #1. Assume B(I) is a squeezed d-ball for odd
d. Let F, G € I, where F = {a1,...,a4+1} and G = {b1,... ,bgy1}.
Suppose F' —ay, and G—by are facets of S(I). Set r = min{j : a; = b; for
alli > j} (taking r = d+2 if agy1 7# bgt+1). Define (G—by) <5, (F—ax)
if one of the following conditions holds.

1. k is odd and / is even.

k and ¢ are both even and G <gr, F'.

k and ¢ are both even, G = F, and ¢ > k.

k and ¢ are both odd, k =¢ > r, and G <gr, F.
k and ¢ are both odd and ¢ > k > r.

k and ¢ are both odd and ¢ > r > k.

k and ¢ are both odd, &k, { < r, and F <gp G.

IR A o

Theorem 3 (Lee [9]). If d is odd and S(I) is a squeezed (d — 1)-
sphere, then <s, is a shelling order of its facets.

For F = {a1,... ,aq+1} and sphere facet F — a;, = F', F' is in the
first half of the facets of S(I) if k is even and is in the second half of
the facets of S(I) if k is odd. Note that there is a distinct separation
between the first and second half of the facets of S(I) using shelling

order #1. As a corollary, squeezed (d — 1)-spheres for d even are also
shellable [9].

The dependence relation on facets of a squeezed sphere with respect
to a shelling order is the partial order that is the transitive closure of
the following: H; depends on H; if H; and H; share a subfacet and H;
comes later than H; in the shelling order. We will write o(H;) = 4 if
the facet H; contributes to the increase of h; when H; is shelled, i.e.,

when H; is added to the simplicial complex induced by Hi,...,H;_;.
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So o(H;) = card R(H;). We will consider strong partial shellings of
S(I) that preserve the values of o(H;) and the minimal new faces
R(Hj). These are equivalent initial segments with respect to the above
dependence relation (i.e., closed downward under this partial order).

There are h-vectors that satisfy Condition (x) that cannot be obtained
using strong partial shellings of shelling order #1 [11]. For instance, if
we assume h; < 3, we can obtain all h-vectors satisfying Condition (*)
except the 20 listed in Figure 1.

)

1~

)

1,2,1,1
1,2,3,3
1,3,2,1
1,3,2,2
1,3,3,2
1,3,5,2
1,3,6,5

)

)

0,0
0,0
0,0
1,0

2.0
,2,1,0
0,0

bt

FIGURE 1. Unobtainable from shelling order #1.

For example, h = (1,2,1,1,0,0) satisfies Condition (*) but cannot
be achieved using shelling order #1. We would need to choose the first
facet of a suitable squeezed sphere for hg, the second and fourth facets
for hy, and the third facet for hy. We cannot choose the fifth facet
since that would give us two facets contributing to hy because of its
dependence relations. Since we do not choose the fifth facet then all
other facets depending on it are eliminated, which includes all other
facets in the sphere. So it becomes impossible to complete the partial
shelling of the ball with h-vector (1,2,1,1,0,0). This h-vector cannot
be achieved by a strong partial shelling of shelling order #1 for any
squeezed sphere.

3.2. Shelling order #2. We now define a second ordering of the
facets of squeezed spheres (shelling order #2) and prove it is a shelling
order. It turns out that more h-vectors satisfying Condition () (but not
all) can be achieved with strong partial shellings of shelling order #2.

To obtain shelling order #2, we rearrange shelling order #1. We take
the second half of shelling order #1 and make it the first half of shelling
order #2, then take the first half of shelling order #1 and reverse it
and make it the second half of shelling order #2.
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Define (G — by) <s, (F — ay) if one of the following conditions holds.
1. k is even and ¢ is odd.

2. k and ¢ are both even and F' <pgj, G.

3. k and ¢ are both even and G = F, and ¢ < k.

4. k and ¢ are both odd, k =¢ > r, and G <gr F.

5. k and ¢ are both odd and ¢ > k > r.

6. k and ¢ are both odd and ¢ > r > k.

7. k and ¢ are both odd, k, { < r, and F <pgy G.

Theorem 4 (Shelling order #2). If d is odd and S(I) is a squeezed
(d — 1)-sphere, then <, is a shelling order of its facets.

Proof. Let Hy,...,H. H.y1,...,Hs be shelling order #1, where
H,,... ,H, is the first half and H,41,... ,Hs is the second half. We
want to show that H,41,...,Hs, H,,... ,H; is also a shelling order.
Shellings of spheres are reversible; therefore, we know Hy,... ,H, 1,
H,, ... H; is a shelling order. In particular, once Hy,... ,H, ;1 have
been shelled, we know H,, ..., H; can be shelled onto H;U---UH,;.
Therefore, once we know H,.11,...,Hs is the beginning of a shelling
of S(I), we know it can be completed by shelling H,,...,H;. So it
remains to prove that H,y1,...,Hs is a (beginning of a) shelling of

S(I).

This proof mimics the proof in [9]. It suffices to show that for each
facet of S(I) there is a subset X with the properties (a) for each a; € X
there is a preceding facet (under <s,) of S(I) containing X — a; and
(b) X by itself is not contained in any preceding facet.

Assume that F = {aq,... ,aq+1} € I and F — a;, is a facet of S(I).

It will be sufficient to prove such an X exists when % is odd (since
k even refers to facets H,,...,H; which we know will complete the
shelling). Note that F' — aj has exactly one odd middle or right set
(the elements of F' immediately following ay). Let X = X; U Xy where
X; = {a; : i < k and i is even and a; is not in its leftmost position},
and Xo = {a; : i > k and 7 is odd}. Choose any a; € X. In each of the
following cases we will find a facet H of S(I) that precedes F' — a, and
contains (F' — ag) — a;.



NUMBERS OF FACES 1949

Case 1. Assume a; € X;. Note that this means that a; is not in
its leftmost set. Let Fy = L(F,a;), a = {(F,a;), F» = R(Fy,at), and
F3; = R(F,ai). Note that F3 ¢ I since F — ay, is a facet of S(I). If
F5 ¢ I, then take H = F'y —ay, which is a preceding facet by condition 4.
If, on the other hand, Fy € I, then R(Fy,a) = F3 ¢ I,s0 H=Fy —a
is a preceding facet by condition 7.

Case 2. Assume a; € X5. Let Fy = R(F,qa;), F» = R(F,ax), and
F35 = R(Fi,ar). Note that Fy ¢ T since F — ay, is a facet of S(I).
Hence, F3 is also not in I, since F» <, F3. If Fi ¢ I, then take
H = F — a;, which is a preceding facet by condition 5. If, on the other
hand, F; € I, then take H = F} — ay, which is a preceding facet by
condition 7.

So at this point we have verified that X satisfies (a). Now assume
G — by is a preceding facet of S(I) that contains X. Then (G — b;) <s,
(F — ag) via conditions 4, 5, 6, or 7, since k is odd. The removal of
X from G creates |X| odd sets, one for each element in a pair that is
removed. The positioning of the elements of G\ X is severely restricted
since G has to be in F4(n). So when you add the elements of G \ X
to X you must make sure that your result has even cardinality left,
middle, and right sets.

Condition 4 requires that G must agree with F' from aj onward since
k=4£ > r. If you try to add elements to complete your odd sets but in
a different way than F' — ay you end up with G >g, F, a contradiction
since G <gr, F. So completing G, other than becoming F', is impossible
if G is to contain X.

Condition 5 also requires that G must agree with F' from a; onward
since £ > k > r. However, then /£ is odd and ¢ > k implies that b, € X,
and therefore is in X. This is a contradiction, since in the beginning
we assume that G — by is a preceding facet that contains X, and hence
by cannot be in X.

Condition 6 requires G to disagree with F' at some point on or after
ar but to agree with F' from by, onward since £ > r > k. However, then
we once again have £ is odd and ¢ > k and therefore b, € X, which is
again a contradiction.

Condition 7 requires F' <py G and that G disagrees with F' on or
after ay, since k, ¢ < r. Let F' = R(F, ay), since F —ay, is a facet of S(I)
then F' ¢ B(I). This implies that all facets lexicographically greater
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than F’ are also not in B(I). Therefore G <gr F’ since we want G to
be a facet of B(I). So we need to find a G such that F <gp G <gr F'.
We know that G contains X, if we then add elements to G to make
G <gr F’ then it must agree with F from a; onward, which is a
contradiction to our condition. Therefore X satisfies (b), completing
the proof. O

Although shelling order #2 is an improvement on shelling order #1,
strong partial shellings achieving some of the h-vectors missed by
shelling order #1, one still cannot use strong partial shellings to obtain
every potential h-vector that satisfies Condition (%) [11]. In higher
dimensions, when hs > hy the h-vector cannot be constructed using
strong partial shellings of shelling order #2. For example, the h-vector
(1,3,3,4,0,0,0,0) satisfies Condition (x) but is not obtainable using
shelling order #2.

3.3. Shelling orders #3 and #4. Although shelling order #2 is an
improvement, there are still potential h-vectors satisfying Condition (x)
that cannot be obtained from strong partial shellings. We now look at
the reverse of the first two shelling orders and see if we can find an
improvement on shelling order #2. Shelling order #3 is the reverse of
shelling order #2. This is a shelling order since reversing a shelling
order of a sphere produces another shelling order [8].

When we reverse shelling order #2 and create shelling order #3,
we are able to construct some h-vectors for which hs > hs, such
as (1,3,3,4,0,0,0,0). However, this shelling order creates problems
with higher indices h; and we can no longer achieve h-vectors such as
(1,2,3,2,2,2,1,0) which shelling order #2 achieves [11]. We hazard a

conjecture:

Conjecture 2. FEvery potential h-vector that satisfies Condition ()
can be achieved by a strong partial shelling using either shelling or-
der #2 or shelling order #3.

Shelling order #4 is the reverse of shelling order #1. Similar to
shelling order #1 it fails to achieve several h-vectors that satisfy
Condition (x), such as (1,2,1,1,0,0) [11].
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3.4. Shelling orders when d is even. Recall that squeezed
d-balls B(I) for even d are just those simplicial complexes of the
form cone (B(J),0), where J is an initial set of Fy_1(n) and a subset
F € B(I) of cardinality d is a facet of S(I) if and only if (1) F is a
facet of B(J), or (2) F = G U {0} where G is a facet of S(J).

So we have to shell facets of the ball, B(J), and the facets of the
boundary of the ball, S(J). Now the ball has a reverse lexicographic
shelling and we know from previous sections that the boundary of the
ball (which is a sphere) has four different shelling orders for odd d. We
know that we can shell the ball first and then the cone of the boundary
next as in [8]. Here are some possible shelling orders:

1. Order A: shell the ball and then use shelling order #1 on boundary.

2. Order B: shell the ball and then use shelling order #2 on boundary.

3. Order C: shell the ball and then use shelling order #3 on boundary.

4. Order D: shell the ball and then use shelling order #4 on boundary.
We also have the reverses of these.

In [11] the various orders are examined to see which strong partial
orders appeared to achieve most of the potential hA-vectors that satisfied
Condition (x). Just as shelling orders #2 and #3 were better in the
odd case, there were similar results in the even case—shelling orders C
and its reverse appeared to be more useful. Shelling order B ran a close
second.

4. Dimension three. In this section we construct a regular 3-
triangulation A such that h(A) = h for a given vector h = (1, a, b, ¢, 0)
satisfying Condition (x) by first constructing a simplicial 4-polytope
P. We then find a line shelling of P such that an initial segment of
the line shelling is a certain set of facets B. We then let B’ be the
facets of P not in B. These facets in B’ will comprise a patch with the
desired h-vector. This is then equivalent to finding the required regular
3-triangulation.

Theorem 5. Assume h = (1,a,b,¢,0) is a vector of nonnegative
integers, such that h satisfies Condition (x). Then h is the h-vector of
some regular 3-triangulation.
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First observe that if b < a then we can apply Theorem 2 since
Condition (%) implies ¢ < b and hence h is non-increasing after hj.
Hence, from now on we assume that b > a. We now proceed to prove
Theorem 5 by a sequence of results.

Lemma 2. Let g =1, g1 = a—1 and go = b —a. Then
9 = (90,91, 92) is an M -vector.

Proof. Since a > 0 and b > a, our values for the g-vector are
nonnegative. We only need to check that g» < g§1>. By definition a(!) =
(1/2)(a®+a), thus b < (1/2)(a®+a) since h satisfies Condition (x). By
subtracting a from both sides, we get go = b—a < 1/2(a® —a) = g§1>.

Hence go < g§1>. Therefore g = (go, g1, g2) is an M-vector.

Lemma 3. There is a squeezed 4-ball B(J) with h-vector (go, g1, g2,
0,0,0).

Proof. Let n = a + 3. The vertices are 0,1,... ,n. Similar to [1],
we list those facets that contain 0 and have even cardinality right end
set. Except for vertex 0, the vertices of the facets fall naturally into
pairs. For i = 0,1,2, let V? be the set of facets such that exactly i
of these pairs are not in their “leftmost position.” For example, V!
are the facets that contain {0,1,2} but not 3 since the pair {3,4} is
not in its “leftmost position.” For all i choose the first g; sets in V¢,
using reverse lexicographic order. These are the facets of a squeezed
ball B(J) and they are shellable in reverse lexicographic order. If a
chosen F is in V? then it contributes to h;(B(J)) during the shelling,
hence h(B(J)) = (90,91, 92,0,0,0). o

In the following we will use the notation ijk¢ to denote the set
{i7j7 k7£}'

Lemma 4. The boundary of B(J) is isomorphic to the boundary
of a 4-dimensional g-theorem polytope P with h(P) = (1,a,b,a,1),
and includes all the facets in C = {0123,0134,... ,01(n — 1)n} where
n=a-+3.

Proof. Billera and Lee proved that the boundary of B(J) is isomor-
phic to the boundary of a 4-dimensional g-theorem polytope P with
h-vector (1,a,b,a,1) [1]. For a positive integer k > 1, we want to show
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that the subfacet 01k(k + 1) is contained in precisely one facet of B(J),
and therefore in the boundary of B(.J). When k£ = 2 we have the sub-
facet 0123. Since go = 1, there is only one facet of B(J) containing
0123, namely, 01234. When k > 2 we have the subfacet 01k(k+1). Let
G be a facet of B(J) containing 01k(k+1). Then there is a fifth element
£ of G to be added to 01k(k+1). Since k£ > 2 and 1 must be paired with
some vertex in G, we must have ¢ = 2. Therefore 012k(k + 1) is the
unique facet of B(.J) containing 01k(k+1). Hence the boundary of B(.J)
is isomorphic to the boundary of a 4-dimensional g-theorem polytope
P, and includes all the facets in C = {0123,0134,... ,01(n — 1)n}. O

Lemma 5. The facets of C form a shellable ball with h-vector
h(C) = (1,a,0,0,0), with the facets of C ordered as in Lemma 4.

Proof. Since C contains 0123, ..., 01(n—1)n, and n+1 is the number
of vertices, then we have 1 contribution to hg during the shelling,
namely by 0123, and then the rest of the facets contributing to h;.
Thus the vertices apart from the first four result in (n+1)—4=n -3
contributions to hy. Since a = n — 3, we have the h-vector of C equal
to (1,a,0,0,0). O

Lemma 6. There exists a point z in R* beyond precisely the facets
of P that are in C.

Proof. For a face F' of P let Fr be the set of facets of P containing
F. Consider the chain of faces of P: 01 C 012 C 0123. Let
C' = Fo1 \ (Foi2 \ Foi23). (Note Fo1 D Fo12 O Foi23-)

We will show that C = C'. Let F = 01k(k + 1) € C. If k = 2, then
F = 0123 and F € C’' since F € Fy1, Fo12 and Fyia3. If & > 2, then
F € Fo; but F ¢ Fyi2, hence F € C'. SoC C C'.

Let F € C'. If F = 0123, then F € C. Otherwise F' contains 01 and
is of the form 01k¢ with k < £. If the vertices k and ¢ are consecutive,
then F'is in C. Therefore assume the remaining two elements are not
consecutive elements; thus, 2 < k < ¢ < n, and k # ¢ — 1. Recall that
the facets of the squeezed 3-ball B(J) contain the vertex 0 and two
pairs of consecutive vertices. But F' € C' and F # 0123 implies F' does
not contain 012. Thus k > 2. But then there is no way to insert a fifth
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vertex in 01k¢ to create two pairs of consecutive vertices containing 1,
k and ¢. So C' C C, and therefore C = C’. The existence of z now
follows by the sewing construction of Shemer [12]. 0

If h = (ho,... ,hq), let A" = (hq,..., hg), the reverse of the h-vector.
We can now prove our main theorem.

Proof of Theorem 5. We first construct P and C as in the previ-
ous lemmas. Then there is a line shelling of P in which the facets
of C appear first. So as the facets of C are shelled we obtain a se-
quence of patches By,...,B, with respective h-vectors (1,0,0,0,0),
(1,1,0,0,0),...,(1,a,0,0,0). In particular, B, . is a patch, with h-
vector (1,a — ¢,0,0,0). Then the facets of P not in B, . also form
a patch B’, and by Lemma 1 it has h-vector h(P) — h"(B,—.) =
(1,a,b,a,1) —(0,0,0,a —¢,1) = (1, a,b,c,0). Therefore there is a regu-
lar three-dimensional triangulation A such that h(A) = (1,a,b,¢,0). O

5. Dimension four. In this section we consider nonnegative vectors
h = (1,a,b,¢,d,0) satisfying Condition (x). We begin by constructing
a b-polytope P. We then find a shelling of P such that a certain set of
facets Q is a strong partial shelling of the facets of P. We let Q' be the
facets of P not in ), and show that the simplicial complex determined
by these facets in Q' is a shellable 4-ball with the desired h-vector. In
the two cases d = 0 and d = a we are able to show that the set of facets
@’ is a patch and therefore equivalent to a regular 4-triangulation with
the desired h-vector.

5.1. Comnstruction of shellable balls.

Theorem 6. Assume h = (1,a,b,¢,d,0) is a vector of nonnegative
integers such that b > a and h satisfies Condition (x). Then h is the
h-vector of some shellable 4-ball.

Note. If b < a then we can apply Theorem 2 since h is non-increasing
after hy and Condition (x) implies d < ¢ < b.

Let ¥’ = (1,a,b,b,a,1) and A" = (1,a — d,b — ¢,0,0,0). Observe
that A" is an M-vector since h satisfies Condition (x). For example, if
h=(1,5,7,2,1,0) then &' = (1,5,7,7,5,1) and h" = (1,4,5,0,0,0).
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Lemma 7. Let go = 1, gy = a =1, and g = b—a. Then
9 = (90,91, 92) is an M -vector.

The proof is similar to that of Lemma 2. In our example, (1,4,2) is
an M-vector.

Lemma 8. There exists a squeezed 5-ball B(J) with h-vector
(9079179270,0,0,0).

Proof. Let n = a+ 5. The vertices are 1,...,n. Similar to [1] we
list those facets that contain 12 and have even cardinality right end
set. Let V? be the set of facets such that exactly i of these pairs are
not in their “leftmost position.” For all ¢ choose the first g; sets in V?,
using reverse lexicographic order. These are the facets of a squeezed
ball B(J) and they are shellable in reverse lexicographic order. If a
chosen F is in V', then it contributes to h;(B(J)) during the shelling,
hence h(B(J)) = (90,91, 92,0,0,0,0). u]

Carrying out this process for h = (1,5,7,2,1,0), we get the squeezed
5-ball with h-vector (1,4,2,0,0,0,0) and the following facets. The
superscripts indicate which vertices should be deleted and in which
order to obtain the facets of the boundary of the ball ordered by shelling
order #1.

1 2 3 4 56 7 89 10
126 23 3 42 5 ¢!

125 25 3 4% 6 7

124 26 4% 5 6 7

122 28 3 47 7 8

121 29 420 5 719 8

118 211 317 410 8 9

116 213 315 412 914 10

Lemma 9. There exists a five-dimensional g-theorem polytope P
with h-vector h' whose boundary is isomorphic to the boundary of the
ball B(J).
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This follows from the arguments in Billera and Lee [1].

CARL W. LEE AND LAURA SCHMIDT

In our

example, the facets of P with h-vector (1,5,7,7,5,1) are given below,
listed in shelling order #1. For each facet F', the marked face is R(F).

1 3 4 5 6 7 8 9 10
11 3 4 5
211 3 5 6"
311 3 4 5 67
411 2 3 6 7
51 3 4 6 7
61 4 5 6 T
7|1 2 3 7T 8
811 3 4 7T 8
911 4 5 7T 8
10(1 2 3 8 9*
111 3 4 8 9
1211 2 3 9 107
131 3 4 9 10*
1411 2 3 4* 10*
151 2* 4* 9* 10
16 2x 3 4 9* 10
171 2* 4* 8 9
18 2 3 4 8 9
191 2¢ 4 5" 8"
2011 2 5" ™ 8
21 2* 4* 5 ™ 8
22 2% 3 4 ™ 8
23|11 2 5 6% T*
24 2% 4* 5 6 T
25 2x 3 4 6* 7
26 2* 3* 4% 5 6"
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Lemma 10. There exists a shellable collection Q of facets of P such
that h(Q) = h"" and Q is the beginning of a shelling of P.

Proof. Note that hY < h{ and hf < hj. Recall from Section 3 that
there are first and second halves of shelling order #1 for P. Each facet
F in the first half has o(F) = 0, 1, or 2; and each facet F' in the second
half has o(F) = 3, 4, or 5. We shell the polytope P as follows: We first
choose the facet 12345, we then choose the first hY = a — d facets of
the form 123k(k + 1) for which & > 4, and finally we choose the first
h% = b—c facets of the form 1k(k+1)¢(£+1) for which k > 2, ¢ > k+1.
All of the chosen facets are in the first half of the shelling order. In our
example, we would choose the facets 1 through 10.

We claim this results in the collection of facets Q with h-vector
(1,a—d,b—¢,0,0,0). Consider the facets in the first half of the shelling
of P. Say a facet F is of type 7 if o(F) = 4, and thus F contributes
to h; in the shelling of P. Observe that, from the way the facets of
P are derived from the facets of B(J), each type 2 facet of P of the
form 134p(p + 1) is paired with and dependent (in the sense of the
shelling order) upon the type 1 facet of P of the form 123p(p + 1).
The remaining type 2 facets depend only on earlier type 2 facets. So
when choosing facets of Q, we must check that we choose all type 1
facets upon which any chosen type 2 facet depends. But this holds
because from the first half of the shelling we are removing d facets with
0(F) =1 and c facets with o(F') = 2, and Condition (x) implies d < c.
Thus we never remove more type 2 facets than type 1 facets.

Therefore selecting facet 12345, the first a — d facets of P of type 1,
and the first b — ¢ facets of P of type 2, results in a strong partial
shelling with h-vector (1,a —d,b— ¢,0,0,0).

Now we have to complete the shelling to P. So we will then choose
the remaining facets of the form 123k(k + 1) when k£ > 4. Then we
choose the remaining facets of the form 1k(k + 1)¢(¢ + 1) when k > 2,
£ > k + 1. This completes the first half of the shelling order. We can
then shell the second half using shelling order #1. O

Proof of Theorem 6. Assume h = (1,a,b,c,d,0) is a vector of
nonnegative integers such that b > a and h satisfies Condition ().
Construct the polytope P with h-vector b’ = (1,a,b,b,a,1). Find the
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collection of facets Q as above with h-vector A", that is, the beginning
of a shelling order of P. Let the set of facets Q' be the facets of P not in
Q. The set Q' is shellable (reverse the shelling of P) and has h-vector
h(P)-h"(Q)=(1,a,b,b,a,1)—(0,0,0,b—c,a—d,1) = (1,a,b,c,d,0).
This set of facets Q' is our desired shellable ball. O

5.2. Realization as patches. We now know that any h-vector
(1,a,b,¢,d,0) with b > a satisfying Condition (%) is combinatorially
realizable as a shellable ball. In this section we prove the realizability
of the shellable ball as a patch in cases d = 0 and d = a.

Recall if b < a then we can apply the proof from Theorem 2 since h
is non-increasing after hy and since Condition () implies d < ¢ < b.
Therefore, assume that b > a. Note Condition (x) also implies that
a > d, since the vector (1,a — d,b — ¢) is an M-vector.

For both cases, we need the patches that result in the h-vectors
(1,a,b,0,0,0) and (1,a,0,0,0,0); we call these, respectively, P; and
Pa.

Let P be the g-theorem polytope with h-vector (1,a,b,b,a,1). (We
know (1,a,b,b,a,1) satisfies the g-theorem conditions from Lemma 2
and therefore P is constructible.)

Let P; be the set of facets of P with an odd left set. Recall that, for
a face F of P, Fr is the set of facets containing F'. Let C; = F1 \ (Fia2\
(Fi2s \ (Fi23a \ Fi23a5))) = (F1 \ Fi2) U (Fi2s \ Fiaza) U Fra3as. (Note
1C12C 123 C 1234 C 12345 so F; D Fi2 O Fi23 O Fioza DO .7:12345.)

Lemma 11. The set of facets in Py equals the set of facets in Cy.

Proof. Recall each facet of P contains 5 vertices. We need to show
two things: first that any facet with even (possibly empty) left set is
not in Cy, and second that every facet with an odd left set is in C;.

Case 1. Assume F'is a facet of P with empty left set. Since F' has no
left set then F' does not contain the vertex 1, so F' ¢ F1, and therefore
F ¢ Cy. Now assume F' is a facet with an even left set, so F' € Fi5 or
F € Fiozq. If F € .7'-12, but F ¢ .7'-123, then F' ¢ C.. If Fe .7'-1234, but
F ¢ Fia345, then F ¢ Cy. So we have shown that C; C P;.

Case 2. Now assume G is a facet of P with an odd left set. We need
to show that G is in C;. Since each facet has only five vertices there
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are only three choices for odd left sets, namely, 1, 123, and 12345. If
G has odd left set 1, then G € F; \ Fi2 and therefore G € Cy. If G has
odd left set 123, then G € Fja3 \ Fiaz4 and therefore G € C;. If G has
odd left set 12345, then G € Fi2345 and hence G € C;. So we have now
shown that P; C C;. Therefore P; = C;. O

Lemma 12. The set of facets in Py is shellable in the induced order
and results in the h-vector (1,a,b,0,0,0).

Proof. Since P; is a patch this result follows directly from [9]. O

Let Py be the set of facets of P with an odd left set of cardinality
greater than 1. Let Co = Fia3\ (Fi234 \ Fi2345) = (F123\ Fi234) UF12345.
(NOte 123 C 1234 C 12345 so Fia23 O Fio34 O f12345.)

Lemma 13. The set of facets in Py equals the set of facets in Co.

Proof. This proof is similar to the proof of Lemma 11 except the
cases when the left set is 1 are excluded. a

Lemma 14. The set of facets in Py results in the h-vector
(1,a,0,0,0,0), where a =n — 5.

Proof. It is easy to see that there are a+ 1 facets in Py and each facet
F in P, after the first has o(F) = 1. O

The next two lemmas follow immediately from Shemer’s sewing
construction [12].

Lemma 15. There exists a point z in R® beyond precisely the facets
of P that are in C;.

Lemma 16. There exists a point y in R® beyond precisely the facets
of P that are in Cy.

So we now have our desired patches and points to begin the details
of each case.
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Case1l: d =0.

Theorem 7. Assume h = (1,a,b,¢,0,0) is a vector of nonnegative
integers, such that b > a and h satisfies Condition (x). Then h is the
h-vector of some reqular 4-triangulation.

Proof. We will begin by constructing the polytope P with h-vector
(1,a,b,b,a,1) which we know satisfies the g-theorem conditions from
Lemma 2. Recall that we have a set of facets P; with h-vector
(1,a,b,0,0,0) and a set of facets Py with h-vector (1,aq,0,0,0,0) with
points x and y as in the previous lemmas. Note that Py C 7P;.
There is a beginning of a line shelling of P, moving along a line
from int P to y, in which the facets of Py appear first. Then one
can extend the shelling by moving from y to z, during which the
remaining facets of P; appear. So as the facets are shelled we ob-
tain a sequence of patches By,...,Ba.ts with respective h-vectors
(17 07 0,0,0, 0)7 (17 17 0,0,0, 0)7 e (17 aaoa 07 070)7 (1,(1, 17 070’0)7 )
(1,a,b,0,0,0). In particular, B,1p_. is a patch with h-vector (1,a,b—
¢,0,0,0). Then (using Lemma 1) the facets of P not in B, yp—. also
form a patch B’ with h-vector h(P) — h"(Batb—-c) = (1,a,b,b,a,1) —
(0,0,0,b — ¢,a,1) = (1,a,b,¢,0,0). Therefore, there is a regular 4-
triangulation A such that h(A) = (1,a,b,¢,0,0).

Case 2: d = a =n — 5. This case is similar to Case 1 except d = a.
This results in the h-vector (1,a,b,c,a,0). Since the h-vector satisfies
Condition (*) this implies that b = ¢, and therefore the desired h-vector
is (1,a,b,b,a,0).

Theorem 8. Assume h = (1,a,b,b,a,0) is a vector of nonnegative
integers, such that b > a and h satisfies Condition (x). Then h is the
h-vector for some regular 4-triangulation.

Proof of Theorem 8. We construct the g-theorem polytope P with h-
vector (1,a,b,b,a,1) and delete any one facet. The result is a patch B’
with h-vector h(P)—(0,0,0,0,0,1) = (1,a,b,b,a,1) —(0,0,0,0,0,1) =
(1,a,b,b,a,0). Therefore there is a regular 4-triangulation A such that
h(A)=h. O

Given the confirmation in the above (admittedly still limited) cases,
we may hope that Conjecture 1 holds in dimension four for the remain-
ing cases. Of course, a verification of the sufficiency of Condition (x)
in all dimensions would be welcome.
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Note added in proof. Samuel Kolins has disproved Conjecture 1 in
dimensions five and higher [7].
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