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ZASSENHAUS ALGEBRAS

JOSHUA BUCKNER AND MANFRED DUGAS

ABSTRACT. Let K be a field and A a K-algebra. Let

A= {y € Endg (A) : ¢(X) C X for all left ideals X of A } be
the ring of all K-linear transformations of the K-vectorspace
A that leave all left ideals invariant. For many classes of finite

dimensional algebras A we determine if A = A. In the last
section, we consider the case of Leavitt path algebras.

1. Introduction. In 1967, Hans Zassenhaus published the following,
remarkable

Theorem 1 [10]. Let R be a ring with identity such that R, the
additive group of R, is a free Abelian group of finite rank. Then there
exists an Abelian group M such that R= R®zZ C M C R®z Q and
End (M) = R, i.e., any homomorphism of M is the multiplication from
the left by some element r € R.

This result was generalized to a larger class of rings in [7] and recently
in [8]. The key to the proof is the construction of a (manageable) family
F of left ideals of the ring R such that

End (R, F) = {¢ € End (R") : p(X) C X for all X € F}

consists only of left multiplications by elements of R, ie., R =
End (R, F). Such a family F of left ideals was called a Zassenhaus
family in [8]. Of course, the ring R has a Zassenhaus family of left ide-
als, if and only if the family of all left ideals is a Zassenhaus family, if
and only if the family of all principal left ideals is a Zassenhaus family.

It is easy to see that the ring T = { [‘; 2} 1a,be Q} has no Zassenhaus
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family of left ideals. One could say that rings with Zassenhaus families
of left ideals have, in some sense, “enough” left ideals.

Given a ring R, we define

R={p cEnd(R"): p(X)C X for all left ideals X of R}.

(Of course this notion can also be defined for right ideals [8]. Here we
use left ideals, which allows us to write maps on the left). If sR = {0}
for s € R implies s = 0 (1 € R is sufficient for that), then the ring
R contains a copy of R, i.e., all left multiplications by elements of R.
This allows one to iterate the R construction by transfinite induction.
We have an example in [5], where this transfinite, ascending chain of
rings never terminates. Ele only other examples we have at this time

have the property that R = P:, i.e.,” acts as some kind of “closure
operator.”

In this paper we want to restrict our attention to algebras A = Ag
over a field K. We will adjust our definitions to this new situation.
Let Endg (A ) denote the ring of all linear transformations of the K-
vectorspace Ag. We define

Z;:{go € Endg (A) : p(X) C X for all (algebra) left ideals X of A}.

In this paper, disregarding the notations in [8], we call the algebra Ag
a Zassenhaus algebra, if Ax = Ag. Note that Ax has an identity even
if Ag does not. Moreover, if 1 € Ak, then Ak is naturally embedded
in

Ag = Ak ® {p € Ak : p(1) = 0}.

Here we identify a € A with the map (a-) : A — A where (a-)(z) = az
for all z € A.

From now on, we will suppress the subscript K. All examples of
K-algebras A that we know are either Zassenhaus algebras or A is

a Zassenhaus algebra, i.e., A = A. The purpose of this paper is to
compute A, where A is some K-algebra. We are only able to obtain
partial results.

Here is an easy example: Let D be a division ring of dimension n
over K. Then D has only the trivial left ideals and D is simply the
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ring of n X n matrices over K, and thus, if n > 1, is not equal to D. It

was shown in [5] that in this case D = D.

Suppose that A is finite dimensional, and let J(A) denote the Jacob-
son radical of A. The case when J(A) = {0}, i.e., A is a semi-simple
algebra is easy to settle. This was done in [5] and we recall the result
in Section 4. In Section 2, we deal with local algebras, i.e., A/J(A) is a
division ring. In that case if A # K and K are infinite, then A is never
a Zassenhaus algebra, but A is a Zassenhaus algebra. The case when
A/J(A) is a ring direct product of division rings, i.e., A is a reduced
algebra [9], appears to be quite difficult to deal with. We can only show
that the reduced algebras that arise as path algebras of certain quivers
are Zassenhaus algebras. If A is primary, i.e., A/J(A) is a simple alge-
bra, not a division ring, then A is Zassenhaus, as follows from earlier
results. In Section 4 we use a representation of Artinian algebras as
checkered matrix rings, cf. [3], to get some more general results. In our
last section, we recall the definition of the Leavitt path algebra Lx (T')

over a directed graph T', cf. [1] and compute I;(\F) These algebras,
which attracted a lot of attention recently, see for example [1, 2], are
somewhat similar to path algebras over quivers, but more involved. We
will prove the following result that illustrates that the “ -construction”
frequently behaves like some ”closure operator.”

Theorem 2. Let K be an infinite field and T' = (V, E) a row finite,

—

oriented graph. Then Li(T'), with the finite topology, is a complete
topological ring such that {Og : H a finite subset of V} is a basis
of that topology and Lk (T') is a dense subring of I;(\F), which is a
Zassenhaus algebra. Moreover, if T' is finite, then L/K(\F) = Lg(T).

2. Local algebras. Let K be a field and R a finite dimensional K-
algebra. Recall that R is called a local K-algebra if R/J(R) = D, where
D is a division ring and J(R) is the Jacobson radical of R. Recall that
J(R) is a nilpotent ideal of R. We need some preliminary observations.

Proposition 1. Let K be a field, E = Mat,x,(K) and H =
Matxn(K) and 8 € Homg (E, H) such that 3(z) € Hz for allxz € E.
Then there exists some B € H such that 8(xz) = Bz for allz € E.
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Proof. Let () be the matrix with a 1 in the (i, j)-position and 0’s
everywhere else. Then there exists an £,; € K such that B(eY) =
S laie®D. Tet 1 < j < n. Then there exists an £,;; € K such

a=1

that B(e()) = 3" Lyie(@D.

Now B(e(1) +e0)) = A(e(D) 4 () for some matrix A = (a;a) € H.

Thus 37 Laie@D+T | 05600 = A(e(D) 4£)) =™ a6l
+ Yo Gaiel®).

This implies that {n; = @ai = fas; for all 1 < j < n. Now let
T = Zi,j mije(ij) € E.

Then B(z) = 3, ;2i;B(e) =3, ;| ijlaie®?) = (3, Laitij)a,j =
Bzx where B = ({,;) € H. O

Proposition 2. Let K be a field and W a finite dimensional K-
vector space such that dimg (W) < |K|. Let T be a K-subalgebra of
Endg (W) such that 1 € T. Then T is additively generated by non-
singular elements © of T, i.e., t € T and tx = 0 implies t = 0.

Proof. Let t € T be such that 0 is an eigenvalue of ¢. Then there exists
some 0 # p € K such that p is not an eigenvalue of ¢. Let s =¢ — pl.
Then s € T and 0 is not an eigenvalue of the linear transformation
s. This means that s is invertible in Endg (V) and it follows that s is
non-singular in 7". This means that ¢ = s+ p1 and both summands are
non-singular elements of 7T'. ]

Proposition 3. Let K be a field and V,W finite dimensional
K -vector spaces such that dimg (W) < |K|. Let E = Endg(V),
H = Homg(V,W), and 1 € T any subalgebra of Endgx(W). Let

R= [fl :ﬂ . Then R is a Zassenhaus K-algebra.

Proof. Note that RR = {5;} {5;} = [HEEETH TOT] C R, which

shows that R is a K-algebra. Now we list some left ideals of R

(1) ForO;éeEEdeﬁneJE:R[gg} = [flg}

(2) For § € T define Ls :R[gg] = [8195}‘
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(3) For h € H, define Ly, = R [2 g} - [Toh g}, and finally

(4) For h € H,§ € T, define J, s = R [g g} - {[fh fé] Lz € T}.
Now let ¢ : R — R be a K-linear map leaving all left ideals of R

invariant. Then ¢ is represented by maps o« : £ — E,8: F — H,n :

H — H, and @ : T — T such that @([ZS]) = [6(;)‘@]@) g(oz)] for all

x € E,y € H,z € T. The invariance of the left ideal in (1) and the fact
that E is a Zassenhaus algebra by [4, Theorem 1] imply that there is
some e € E such that a(z) = ez for all z € E. The invariance of the
ideals in (1) implies that B(x) € Hx for all z € E. By Proposition 1 we
get that there exists some hy € H such that B(x) = hoz for all z € E.

We now inspect the ideals in (4). We have: ¢ ([2 2]) = [n(oh) 0(01)} €

Jp1 for all h € H. This implies n(h) = 6(1)h for all h € H.
Let § € T be a non-singular element of 7". Then

¥ ([22]) = [e(S)h 0(05)} = |:th(,]5h th(,]as]

for some t5 5 € T and all h € H. This implies that (to5 — ts5)0 = 0
for all a,b € H. Since ¢ is non-singular, we infer ¢, 5 — ¢, s = 0 for
all a,b € H and t,5 = t5 € 1T depends only on § € T. We now

have: ¢ ([2 g]) = [0((1))}1 0(05)} = [t?h t?(;} and thus (0(1) — ts)h =0
for all h € H = Homg (V,W). Since (1) —t; € T C Endg (W), we
infer §(1) = ¢5 for all § € T. This shows that § = (1), since, by
Proposition 2, T is additively generated by non-singular elements.

We conclude that ¢ is the multiplication from the left by [Z 9(01)} € R.

This shows that R is a Zassenhaus algebra. O

Lemma 1. Let K be a field and 1 € R a K -algebra such that R/J(R)
is a division ring and J(R) is nilpotent. Then R = C ® J(R) as K-
vectorspaces and each non-zero element of C is a unit of R.

Proof. Let 0 # ¢ € C. Then there exists a d € R such that
de,ed € 14+ J(R). Since J(R) is nilpotent, dc and cd are units in
R. This shows that ¢ has a left inverse and a right inverse in R and
thus is a unit in R. O
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We can now prove the main result of this section.

Theorem 3. Let K be an infinite field, and let R be a finite
dimensional, local K-algebra. If R # K, then R is not a Zassenhaus
algebra, but R is a Zassenhaus algebra.

Proof. Let R = C @ J(R) as K-vectorspaces and L a left ideal of
R such that L € J(R). Then there exists some 0 # ¢ € C and
j € J(R) such that ¢+ j € L and, by Lemma 1, ¢ is a unit in R.
Then d =c 1(c+j) € (1+J(R))N L is a unit in R. This shows that
L = R. Thus every proper ideal of R is contained in J(R).

Let T = {¢ € Endg(J(R)) : ¢(X) C X for all left ideals X C
J(R) of R}. It is now obvious that

R_ EndK(C) 0
~ |Homg (C,J(R)) T

By Proposition 3, R is a Zassenhaus algebra. If dimg(C) > 1, then
Endg (C) has non-trivial idempotent elements, but R does not. This
shows that R G R in this case. Assume dimg(C) = 1, ie., C = K.
Then dimg (R) = dimg (R) + dimg (7). Thus R S R unless T = {0},
ie., J(R) = 0 and thus R 2 D is a division ring, which is not a
Zassenhaus K-algebra unless R = K. This shows that K is the only
local, finite dimensional K-algebra that is a Zassenhaus algebra. o

In some situations we can say a little more.

Let N be a nilpotent ring, N™ # 0 = N"*!. Define a,.(N) = {z €
N:Nz =0} 94N. Of course, N* C a,(N).

Claim 1. Let 0 # L <y N. Then LNa,.(N) # 0.

Proof. Assume LNa,(N)=0. Let 0 # s; € L. Then Ns; # 0, and
there is some s3 € N such that 0 # s3s; € L. Assume that we already
have elements sg_1,...,S3,82 € N such that s;_1---s35281 =t # 0.
Then 0 # t € L and thus not in a,.(N). Thus there is some s € N
such that syt # 0. For k = n + 1 we get a contradiction, since IV is
nilpotent. ]
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Let D be some division ring such that the nilpotent ring N is a D— D-
bimodule. Then the direct sum S = D & N is a ring with J(S) = N.

Let m € Nym ¢ a.(N), and 0 # § € Nm N a.(N). Then
S(m +6) = D(m + 6) ® Nm.

To prove this, let 0 # d € D, n € N such that d(m + §) = nm.

Then (d—n)m = —d§ and m = (d—n)~'dd € a,(N), a contradiction.
We will also need

Proposition 4. Let 1 € R be a ring and M a free R-module of rank
at least 2 and ¢ € Endz(M) such that p(z) € Rz for allz € M. Then
there is some a € R such that p(z) = ax for all x € M.

Proof. Let B be a basis of M, and let by, b3 be two distinct elements of
B. Then there are 71,72,73 € R such that ¢(b1) = r1b1, (b)) = rabo,
and ¢(by + be) = r3(by + by). Since B is a basis, we infer ry = r3 = ra,
and it follows that there exists some a € R such that ¢(b) = ab for all
b€ B. Now let s € R. Then (b + sb2) = aby + t(sba) = (b1 + sbs)
for some 7,t € R. We infer that a = r and ts = as. This shows that
©(sb) = a(sb) for all s € R,b € B, which implies that ¢(z) = ax for all
reM. ]

Proposition 5. Let K be a field and D a division ring that is also
a K-algebra. Let S = D ® N be a ring with N2 = {0} and N a

D — D-bimodule. Then S = [HOE;iK(E:)DJ)V) g] if do,p(N) > 1.

12

If dimp(N) = 1, then § [EndK(m 0

Endg (D) EndK(D)}. In either case,

w))
W)

Proof. If dimp(N) = 1, then N is the only non-trivial left ideal of S.
If dimg (V) > 1, then every non-trivial left ideal of S is contained in
N and every left D-subspace of pINV is a left ideal of S. The rest now
follows easily from the above. mi

Theorem 4. Let the K -algebra D be a division ring and S = D®N a
finite dimensional K -algebra such that J(S) = N with N® =0 # N"!
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and dimp (N) > 2. Moreover, assume that

(*) A=a,(N)Z Nm for allm € N.
Then S = [HOE;CII(K(ZDI)V) ;}, where T is a K-algebra of the form T =
D & M with M"~1 = {0}.

Proof. Since each element in S — N is a unit of S, each proper left
ideal J of S is contained in N. This shows that S has the proposed
form, where ' = {¢ € Endg (N) : ¢(x) € Sz for all z € N}. Now let
A = a,(N) D N™. Note that a subset J of a,(N) is a left ideal of S
if and only if J is a subspace of the left D-vector space N. Now let
¢ € T. By Proposition 4, there is some d € D such that ¢ [4= d is
the multiplication by d € D. Now let m € N — A and a € A — Nm.
Then S(m + a) = D(m +a) + N(m + a) = D(m + a) ® Nm. Thus
o(m+a) = di(m+ a) + ym for some d; € D and y € N. Moreover,
o(m) = dam + zm for some z € N, and thus dom + zm + da =
di(m + a) + ym and (d2 — d1)m = (di — d)a mod Nm. This implies
(de — dy)m € Nm and thus d; = dy. This shows that (dy — d)a € Nm.
If dy — d # 0, we get that a € Nm, a contradiction to our choice of a.
Thus, for ¢ = ¢ — d we have (z) € Nz for all z € N and it follows
that ¥~ = 0.

Note that A € N? implies the condition (x) posed on A in this
Theorem. O

Example 1. We would like to point out a natural example for
algebras S that satisfy the hypotheses of Theorem 4. Pick a natural
number n and a division K-algebra D. Let S be the ring of all lower
triangular n X n-matrices over D with the same element d € D down on
the main diagonal. Then J(S) is the set of all lower triangular matrices
with only zeros on the main diagonal. Define

1 if (4,5) =(n,n—1)
= (a;4) € Sb a;; = ’ ’
v = () Y {O otherwise.
Then S = D & J(S) and J(S)y = {0}, ie, ¥ € a,(J(S)) but
¥ ¢ (J(S))?% Now Theorem 4 tells the structure of S.

3. Reduced algebras. Recall that the finite dimensional K-algebra
R is reduced [9, page 101], if R/J(R) = @', D; is a ring direct sum of
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division rings D;. Unfortunately, this case seems to be quite difficult.
We restrict our attention to path algebras over quivers. Recall that a
quiver @ = (V, E) is an oriented graph where V is the set of vertices
and F is the set of edges (arrows). For e € E, the element t(e) € V is
the tail of e and h(e) € V is the head of e. A path 7 = ene,—1 - €261
in @) is a sequence of edges e; such that t(e;11) = h(e;) foralll <i<n
and n > 1. (We follow the custom in the topic that paths run from
the right to the left.) The number n is the length of the path 7.
Define h(m) = h(e,) and t(7) = t(e1). Let II be the set of all paths
in Q. The path algebra of the quiver @ over the field K is the vector
space KQ = ®ycy Kv ® ®renKm with a multiplication defined by the
following relations:

For 7,0 € II, we have

o {71'0' if t(7) = h(o)
0 otherwise.
Here 7o is the concatenation of the two paths. Moreover, for v € V,
e € E we have

ve:{e if v = h(e) and ev:{e if v =t(e)

0 otherwise 0 otherwise.

Finally,

{ uw ifu=vw
uv = i
0 otherwise.

The path 7 is closed if t(r) = h(r). A loop is an edge e with
t(e) = h(e). We will always assume that @ is finite, i.e., the sets
V and F are finite. In that case, it is well known that the K-algebra
K@ has finite K-dimension if and only if @ is acyclic, i.e., there are
no closed paths (loops) in Q. Moreover, 1 = > _ v is the identity
of K@ and V is a complete set of pairwise orthogonal idempotents in
K(@Q. We are able to show

Theorem 5. Let K be a field and Q a finite quiver. Then the
following hold:

(a) If K is an infinite field, then KQ is a Zassenhaus algebra.
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(b) If K is any field and Q has no loops, then KQ is a Zassenhaus
algebra.

(c) If K is any field and Q is acyclic, then KQ is a reduced Zassen-
haus algebra.

Proof. To show (b), let ¢ € KQ be such that (1) = 0. We will
show that ¢ = 0. Let v € V. Then KQ = (KQ)v @& (KQ)(1 — v)
and p(—v) = (1 —v) € (KQ)v N (KQ)(1 —v) = {0}. This shows
that ¢(v) = 0 for all v € V. Now let e € E and u = h(e). Then
vle) =p(u+e) € (KQ)(u+e)N(KQ)e. Let m be some path. Then
me # 0 # 7u if and only if ¢(7) = u and the two products are both 0
otherwise. Assume t(w) = h(e) = v and thus 7(u+e¢e) = 7+ me # 0. If
some linear combination Y, k;i(m; +me) € (KQ)e, then Y " | k;m; €
(KQ)e, and it follows that m; = o;e for some o; € II. But then
mie = oiee # 0, and thus h(e) = t(e) and e is a loop. This shows
that (KQ)(u+e) N (KQ)e = {0}, and it follows that ¢(e) = 0 for all
e € E. Now let 4 = Ae; be a path of length n > 2 and A a path of
length n — 1. By induction hypothesis, we may assume that p(\) =0,
and thus oA+ ) = o(p) € (KQ)(A+ p) N (K Q). As before, assume
that 7", kimi(A + p) € (KQ)p. Note that

mi(A+p) =m(A+ dep) = { T t(ﬂi).: hw)
0 otherwise.

This shows that m; A = o;u for some o; € II, which implies that A = \;e;
for some \; € II. It follows that = A\;ere; # 0, which, as before, shows
that the edge e; is a loop. Thus, (KQ)(A + p) N (KQ)p = {0}, and it
follows that ¢(u) =0 for all p € II.

To prove (a), we need one more step. Assume e is a loop and
t(e) = v = h(v). Then 1 € K]le], the subalgebra of K@ generated
by e over K, is just a polynomial ring. Let k;, ¢ = 1,2,3,... be
distinct elements in the infinite field K such that k4 = 0. Let
gn = (k1 +e)(ka +¢e)---(k, + €) € K[e]. By induction over n, we
will prove that Ni<;<n(k; + €)KQ = g,KQ. If n = 1, there is nothing
to show. Note that Ni<ij<pni1(ki + €)KQ = g KQ N (knt1 + €)KQ.
Clearly, g, and k41 + e are relatively prime in Kle|, and by the
Euclidean algorithm there are a, 8 € K|[e] such that 1 = g,a+(k;+e)0.
Let y € Ni<i<nt+1(ki + €)KQ. Then there are a,b € KQ such that
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Yy = gna = (kny1 + €)b. It follows that y = gpay + (k; + €)By =
gna(kni1+e)a+ (kni1+€)Bgnb = gni1(aa+Pb) € gp1 KQ. Tt is now
easy to see that N;en(k; +e)KQ = {0}. Assume that w is an element
in that intersection. Let m be the maximal number of occurrences
of the edge e in a representation of the element w. Now w € ¢, K@
for n > m in which e™ occurs. (Note that if m is some path then
gnm =0 & er =0 efmr = 0 for all j.) Now if p € I/(ZQ such that
(1) = 0, then p(e) = p(ki +€) € Nien(ki + e)KQ = {0}. Thus
©(e) = 0 for all loops e as well, and the rest follows as in the proof of
(b).

To show (c), let J =) . (KQ)e. If 7 € I1 is a path such that some
edge e € E shows up twice, then this path contains a closed path, but
Q is assumed to be acyclic. Thus every edge shows up at most once in
every path. This shows that |F| is an upper bound for the length of all
paths in @, and therefore .J is nilpotent and (KQ)/J = @,cv Kv is a
ring direct product of copies of the field K. This shows that KQ is a
reduced algebra and Zassenhaus by (b). O

Let A be the quiver with a single vertex v and a single loop e; then
KA is isomorphic to the polynomial ring K[z] over K in the single
indeterminate x. We have already shown in [5] that K[z] is Zassenhaus
if the field K is infinite. On the other hand, if K is the finite field with
q elements, then ¢ : K[z] — K[z] with o(f) = f9 for all f € K[z]
is a ring endomorphism of K|z|, usually referred to as a Frobenius

—

homomorphism. Clearly, ¢ € K[z]| but is not a multiplication by some
element in K[z]. Therefore, K[z] need not be Zassenhaus algebra, if
the field K is finite.

While all finite dimensional path algebras over (acyclic) quivers are
reduced Zassenhaus algebras, it is easy to see that there are many
reduced algebras that are not Zassenhaus algebras: Let K be an infinite
field. Take two copies of a local K-algebra S # K, and consider the
ring direct product R = S x S. Then R is reduced, not local and
not a Zassenhaus algebra by Theorem 4. On the other hand, R is a
Zassenhaus algebra. We would like to pose the following

Conjecture 1. Let R be a reduced, finite dimensional K-algebra
over the infinite field K. Then R is a Zassenhaus algebra.
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4. Checkered matrix algebras. First we recall the case of a
semisimple algebra. This case was covered in [6]. We include it here
for the sake of completeness. Let R be a finite dimensional, semisimple
K-algebra. It is well known that R = ©F  e;R; is a ring direct sum
of simple algebras R; and the e; are central, orthogonal idempotents.
Moreover, there are division algebras D; over K and n; > 1 such
that R; 2 Mat,, xn, (D;). Note that for any left ideal I of R we have
I = @k (INR;). This shows that R = @leﬁ\i is a ring direct sum
and R = R if and only if R; = R; for all 1 < i < k. By [6], R; is a
Zassenhaus algebra if n; > 1. If n; = 1, then R; = D; is a Zassenhaus
algebra if and only if D; = K. On the other hand, D; is a Zassenhaus
algebra by [5]. This proves:

Theorem 6. Same notations as above. Then

(1) R is a Zassenhaus algebra.

(2) R is a Zassenhaus algebra if and only if D; = K whenever n; = 1.
(3) If K is algebraically closed, then R is always a Zassenhaus algebra.

Other easy cases are primary algebras. Recall that a finite dimen-
sional K-algebra R is called primary if R/J(R) is a simple algebra. By
a well-known result, cf. [9, page 98], there exists a local algebra B and
n > 1 such that R = Mat,,«,(B). Note that R is local if and only if
n = 1. By [5, 6], we have:

Theorem 7. Let R be a finite dimensional, primary, not local K-

algebra. Then R is a Zassenhaus algebra.

Let K be a field and A a left (or right) Artinian K-algebra. Then
there exists a reduced algebra B, the basic algebra of A, and a

sequence € = (e1,€2,...,e.) of primitive, orthogonal idempotents
of B such that 1 = 22:1 e;. Moreover, there exists a sequence
w = (n1,n2,...,n,) of positive integers such that A is isomorphic

to a ring of 7 x r block matrices M= (B, €) where the (4, j)-block is
Maty,, xn, (€; Be;), i.e.,

M (B,®)
Maty, xny (e1Be1)  Maty, xn,(e1Bes) -+ Maty, xn, (€1 Be;)

Maty, xn, (e2Be1) Maty, xn,(e2Bea) -+- Maty,xn, (e2Be;)

Maty,, xn, (erBe1) Maty, xn,(e-Bea) -+- Maty,, xn, (e-Be;)
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This algebra is called a checkered matrix algebra, cf. [9, page 98].
Note that the algebras mentioned in Theorems 6 and 7 are special
cases of checkered matrix algebras. By [3], the following holds:

Theorem 8 [3]. Let K be a field and A a left (or right) Artinian K-
algebra. Then there exists a reduced, left (or right) Artinian algebra
B and €, T as above such that A is isomorphic to M- (B,€).
Moreover, B, € and W are uniquely determined by A.

Note that B is local if and only if r = 1. If r = 1 = nq, then A~ B
is local. If r = 1 < ny, then A is primary, not local, cf. [9, page 98].
Moreover, e; Be; is a local algebra for all 1 <i <r.

Our goal is to prove

Theorem 9. With the notations from above, M+ (B,€) is a
Zassenhaus algebra if r > 2 and n; > 2 for all1 <i<r.

First we need:

Lemma 2. Let T,S be rings, 1 € S, such that T is also a right
S-module. Let M = Mat,sm(T), m > 2, and R = Mat,m(S). Let
B € Homgz(R, M) be such that B(x) € Mz for all x € R. Then there
exists some B € M such that 3(x) = Bz for all x € R.

Proof. First, note that M is a right R-module. Let £(**) be the
matrix in R which has 1 in the (%, k)-position and Os everywhere else.
For t € T, we use the same notation for the matrix te(*) € M that
has ¢ in the (4, k)-position and zeros elsewhere. There exist elements
(") € T such that, for s € S, we have B(e(*)) = Y ¢*Dg(ah)
and B(se@)) = 3~ Egis)se(o‘j). Moreover, there exists some matrix
A = (a'¥)),; € M such that B(() + se(i)) = AC) (e(ik) 4 5¢(id)) =

@ “((xsi)s(ak) + 2 a,(;)SE(aj) =>. Egz.l)s(o‘k) + >, Egis)ss("‘j). Now
assume that 1 < j # k < m. We compare coefficients and get:
a&‘? = deil) and asi)s = ngis). We infer ég‘;l)s = ngis) for all s € T
and k # j. This shows that there exists a matrix B = ({y;) € M
such that B(se(*)) = Bse(¥) for all 1 < i,j < m, and the conclusion
follows. O
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Now we are ready to prove Theorem 9:

Proof. Let M = M+ (B, ?), and assume that » > 2 and n; > 2 for
all 1 <4 < r. Moreover, let M;; = Mat,,, xn, (e;Be;) for 1 <i,j <.

Assume ¢ € Endz(M) such that ¢(X) C X for all X <, M. Since

M = @® M;e%), ¢ is represented by a matrix [p;j.s] Where
1<i,j<n

©ijap @ Mag — M;j. Let mao € Mao. Note that Mmgae@® =
@leMmm,ms(m) <y M for all 1 < a < 7. This shows that pgjia =0
whenever j # a. Also ¢raia(MiaMaa) C MraMmaq for all ik, a.
Especially ¢ia,aq @ Moo — Mo such that ;4 aa(z) € Mz for all
z € M,,. Lemma 2 shows that there is some t;, € M;, such that
Via,aa () = tiaz for all © € Ma,.

Now define left ideals J, 55 = M(e(®®) + 5e(@A)) for all s € M4
and 1 < a # B < r. Note that J, g = Eszle(E(m) + ss(iﬁ)),
and we get (@) 4 5e(@8)) = 37 #,,e0) + 3T 0ip 4p(sel@P) =
2;1 mm(s(io‘) + ss(iﬁ)). We infer that t;, = z;, and @ig,ag(se(o‘ﬁ)) =
tinse(®) . which shows that ©ig,aB = tia € Mo is independent of 5.
Now ¢(1) = (30—, gl*2)) = D0 P(E%) = 32020 Piajaa(e™®) =
Yoa tine®@ = 0 implies that t;, = 0 for all 1 < i, < r, which
implies that ¢ = 0, and we have that M is a Zassenhaus algebra. i

5. Leavitt path algebras. We want to consider the case of Leavitt
path algebras. We adopt the notations commonly used in this topic as
in [1]. A directed graph I' = (V, E,r, s) where V is the set of vertices
and E is the set of edges of I'. Moreover,7: E — V and s: E — V are
functions such that the edge (or arrow) e goes from s(e), the source (or
tail) of e to r(e), the range (or head) of e. We will always assume that
the set s~!(v) is finite, i.e., I is row finite. A sequence y = ejez--- e,
of edges is a path, if s(e;+1) = r(e;) forall 1 <i < n—1. (We follow
the tradition in this area that paths run from the left to the right.)
Let K be a field. We define the Leavitt path algebra L (I') to be
the K-algebra generated by the elements of the set V U E U E* where
E* = {e* : e € E}, s(e*) = r(e) and r(e*) = s(e). The elements of
FE are called real edges, and the elements of E* are called ghost edges.
We list the familiar relations for the generators of Lk (T'):

(0) For all w,v € V we have uv = d,,u, i.e., the vertices are
orthogonal idempotents.
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1) s(e)e=e=er(e) foralle € E.
2) r(e)e* =e* =e*s(e) for alle € E.
3)e*f =0 r(e) foralle, fekE.
)Ifv eV and s 1(v) # &, then v = Decs—1(n) €™

Recall that e € E is a loop if s(e) = r(e). By [2, Corollary 3.7] the
algebra Lk (T') is finite dimensional if and only if T' is a direct product
of full matrix rings over K if and only if I is finite and acyclic. Thus all
finite dimensional Leavitt path algebras are Zassenhaus algebras. Our
goal is to investigate the infinite dimensional case.

(
(
(
(4

By [1, 1.5. Lemma] the K-vector space Lk (T') is spanned by the

vertices of I' and paths of the form m = e;, ---€; €} ---€j_ such that
0,7 > 0,0+ 7 > 0 and the €e’s are real edges of I.
We define A(e;, -~ e; €} ---€j ) =0 —T.

Since a Leavitt path algebra has an involution induced by *, we

may pick sides at our convenience, and we define I;(? ) = {¢ €
Endg(Lg(T)) : ¢(X) C X for all right ideals X of Lk (T')}. We find
that right ideals are a little more intuitive in this setting.

Observe that for any edge e we have e*e* = e*r(e*)s(e*)e* = e*0e* =
0 if e is not a loop.

Note that Lg(T) is a Z-graded algebra, cf., [1, 1.7. Lemma]: Define

= > {kei, ---ei €5 -rej 1 o+T > 0,6, € Eye, € E*,k €

K o—7 =mn}. Then Lg(I') = @ L,, where Ly = KV + Ay and
nez

L, = A, for n #0.

Claim 2. Let e be an edge (real or ghost) that is not a loop and
u=r(e) a vertex. Then (u+ e)Lg(T)NeLk(T) = {0}.

Proof. Let © € Lg(T") be such that (u + e)z € eLg(T") and thus
uz = ey for some y € Lk (T'). Then 0 = e*uzx = e*ey = u - y because
u # r(e*) = s(e). Now 0 =e(u-y) = (ew)y = ey, and it follows that
uz = 0, and thus 0 = e(uz) = ex. This shows that (u + e)z = 0, and
the claim follows for real edges e.

We will show that the same proof works for ghost edges as well, which
is not surprising, since * induces an involution.
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Let x € Lg(T) be such that (u + e*)z € e*Lg(T") and r(e*) =
s(e) = u. Then uz = e*y for some y € Lg(T') and e*e* = 0. Thus,
e*x = e*ur = e*e*y = 0. This implies uz € e*Lg(T"), and thus
uxr = e*t for some t € Lg(I'). This implies uz = u - uzx = ue*t =0
since s(e*) = r(e) # s(e) = u. This shows (u+e*)z = 0, and the claim
follows. O

Claim 3. Let e € E be an edge (real or ghost) such that e is a
loop, i.e., s(e) = v = r(v) for some vertex v. Let Kle| denote the
K -subalgebra generated by v and e. Then Kle] is isomorphic to the
polynomial ring K|x] over K with indeterminate x.

Proof. There exists the natural K-algebra epimorphism v : K[z] —
K|e] with (1) = v and (x) = e. Then (1) € Ly and 0 # v(z*) € Ly,
for all k£ > 0. If follows from the Z-grading of L (T') that ~ is injective
as well. o

Claim 4. Let ky, ko, ... be distinct elements of K and e € E a loop
with s(e) = v =r(e). Then

() (kv + ) Li (T) = (H(kw + e)> Lk(D).

i=1 i=1

Proof. By induction on n. If n = 1, there is nothing to show. Note
that Kle] is commutative. Let » > 1, and assume that the claim
holds for n — 1. Let m = H?;ll(kiv + e). By Claim 3, KJe| is a
polynomial ring and 7 and k,v + e are relatively prime in K|[e]. Thus
we have o, 3 € Kle] such that ma + (k,v + €)8 = v, and note that
7(knv +€) L (T) C N~y (kv + e)Lg(T') = nLg (L) N (kpv + €) Lk (T).
Let w € N (kv + )Lk (T'). Then there exist ¢,d € Lg(T') with
w = m¢ = (k,v + e)d. This implies mad + (k,v + €)Bd = vd =
rad+ B(k,v+e)d = mrad+ fw and thus vd = rad+ fw = Tad+ frc =
mad+mfec = w(ad+ Bc). We infer that w = (k,v+e)d = (kpv+e)vd =
(knv + e)m(ad + Be) € m(kyv + e)Lg (7). o

We now can prove the crucial

Claim 5. (a) Let kq,ka,... be distinct non-zero elements of K and
e € E areal loop with s(e) = v =r(e). Then N2, (kijv+e)Lk(T) = {0}.
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(b) Let e* € E* be a ghost loop. Let h,, € K[e] be polynomials in the
polynomial ring Kle] such that the polynomials f, = eh, + v, n € N
are pairwise relatively prime. Then N2, (h, + e*) Lk (T') = {0}.

Proof. (a) We will utilize the Z-grading of Lk (") mentioned above.
Assume 0 # w € N2, (k;v + )Lk (T). There is some m > 0 such
that w € @] _, Li. Since w is a linear combination of paths p with
A(p) = 0 — 7 we may also assume that 7 < m for all the paths used
in the representation of w. Choose a natural number n > 2m. Then

0+#wen,(kv+e)Lg(T) and

n n

ﬂ(k,v + C)LK(F) = (H(klv + 6)>LK(F)

i=1 i=1

by Claim 4. Let g, = [[;_,(k;v + €) and note that g, = aov + aje +
c- 4 ap_1e" ' + e for some a; € K and ag # 0. Now let p =

e, * €, €} -+ €;_ be apath such that s(p) = v and (agv +are+---+
an—1€""' +e")p € & _  Li. This means that —m < n+ A(p) <m
and A(p) < m—n < m—2m = —m follows. On the other hand,

agvp = agp € La(,) and A(p) < —m. We infer that

n

w¢ Ny (kv+e)Lg((T) = <H(k,v + e))LK(F)

i=1

and the claim follows in the case that the loop e is a real edge.

Now we consider the case where e* is a loop which is a ghost edge
with s(e*) = r(e) = v = s(e) = r(e*). Here the approach in (a)
does not work anymore, since (k;v + e*)Lg(T) D (kv + e*)fLg(T) =
(kif + e f)Lk(T) = (kif)Lg(T) = fLk(T) for any edge f # e but
with s(f) = v. This shows that the intersection we looked at above is
not {0} at all, but rather large.

We now prove (b), maintaining the notations from above.

Note that N2, (h;+e*) L (T') = N2, (e*eh;+e* )L (T') = N2, e*(eh;
+ v)Lg(T) = N2 e* fiLk (). An argument similar to the one used
in the proof of Theorem 4 (a), as well as just above, shows that
N2, fiLk (') = {0}. Moreover, for g, = fifa- - fn it follows that
N fiLlk(T) = goLx(T) and if y € Lg(T) such that e*g,y =
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0, then g,y = 0 and it easily follows that N2, (h; + €*)Lg(T) =
NZye filk () = e* (N2, filk () = e’ {0} ={0}.  ©

We are now ready for the pivotal

—

Claim 6. Assume that the field K is infinite. Let ¢ € L (T'), v a
vertex such that ¢(v) =0 and m a path with r(m) =v. Then ¢(r) = 0.

Proof. Let m = epe,_1 - - - eae; where the e; are edges or ghost edges.
We induct over n. Let n =1 and thus 7 = e; = e some real edge. If e
is not a loop, then ¢(e) = ¢Y(v+e) € (v+e)Lg(I')NeLk(T) = {0} by
Claim 2. Fix S, an infinite set of non-zero elements of K.

Assume that e is a real loop and r(e) = v = s(e). Then (kv +e) =
¥(e) € Nges(kv + e)Lg(T) = {0} by Claim 5. This settles the
case n = 1. By the induction hypothesis, we may assume that for
' = eyj_1ep—2---e2e; we have Y(n’) = 0, where ¢ is some natural
number such that 2 < ¢ < n. For easier notations, set e = ey.
Firstly, assume that e is not a loop. Then ¥ (7' + en’) = ¢¥(er’) €
(7" + en")Lg(T) Nen'Lg(T) = (v + e)(7'Lg(T")) Ne(r'Lg(T)) C
(v+e)Lg(T) NeLk (') = {0} by Claim 2. Thus ¥ (er) = 0 as well.
On the other hand, if e is a real loop, then ¢ (kn’ + en’) = ¥(en’) €
mkes(kﬂ"—{—(iﬂ'/)LK(F) = ﬂkes(kv—i—e)w'LK(F) - ﬂkes(kv+€)LK(F) =
{0} by Claim 5 (a). This shows that i(er’) = 0 and eventually
P(m) =0.

Now assume that e; = e* is a ghost edge. We use the notations
in Claim 5 (b). Note that we know already that t(h,) = 0 since
hn, € Kle] and e is a real loop. This implies that ¢(e*) = ¢(h, +¢e*) €
N2, (h; +e*)Lg(T') = {0} by Claim 5 (b). Thus 9 (e*) = 0 and we can
induct just as in the case of a real loop to obtain that ¥ (m) = 0. O

Remark 1. Let R be a subalgebra of the algebra of all linear
transformations of some K-vector space V. Let F be the family of
all finite subsets of V. For any F € F, define Op = {p € R: ¢(z) =0
for all x € F}. We write the composition of the maps in Endg (V)
such that the sets O are all right ideals of R. The set {OF : F € F}
is a basis of the so-called finite topology on R, which turns R into
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a Hausdorff topological ring. The completion R of R is again a
ring of linear transformations of V. Now let A be a K-algebra and
R = A = {p € Endg(A) : p(X) C X for all right ideals X of A}

equipped with the finite topology. Let ¢ € R= A\, be the completion
of A. Let X be a right ideal of A and z € X. Then there exists some
¢ € A such that ¥(x) = ¢(x) € X. This shows ¢ € A and we have
that A is closed in the finite topology. We define -A = {a:aec A}
where -a : A — A is the map defined by -a(z) = za for all z € X. Note
that -A C A.

o —

The ring Lk (T') equipped with the finite topology becomes a topo-

logical ring. We define Oy = {p € I;(\F) :p(v) =0 for all v € H}
for any finite set H of vertices of I'. If ¢ € O, then Claim 6 implies
that p(z) = 0 for any « € Lk (') whose paths end in a vertex v € H.
This shows that {Opy : H a finite set of vertices } is a basis of the

o —

finite topology of Lk (T'). For any finite set H of vertices of T we define

—

the “local unit” vy = ) 5 v. Let ¢ € Lg(T'). Then ¢(vy) = vuty
for some ty € Lk (T'). Moreover, for v € H, we have 9(v) = vs, for
some s, € Lg(T'). This shows that vty = vs, for all v € H. Define

L —

g =% —tg € Lg(T) and it follows that ¢ € Og. This shows that

Lk (T) is dense in L/K(\l" ). Moreover, % is the limit of the Cauchy se-
quence {tg}g. Note that idp, vy = lim{vg }xz. We have proved most
of the following

Theorem 10. Let K be an infinite field and T' = (V, E) a row finite,

o —

oriented graph. Then Li(T'), with the finite topology, is a complete
topological ring such that {Og : H a finite subset of V} is a basis
of that topology and -Lk (T') is a dense subring of I;(?), which is a
Zassenhaus algebra. Moreover, if T' is finite, then L/K(\F) = Lg(T).

Proof. Now we insist on our convention that maps are written on
—_—

the right. It is easy to see that Lx(T') is a Zassenhaus algebra. Let
r € Lg(T') and H be the finite set of vertices in which all the paths

o —

(monomials) representing r end. Then we have that (-r)Lg(T) =
(-r)(Lg(T) + On) = (-r)Lg(T) by Claim 6, and -r is contained in
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o —
o —

(1)Lx(T). Let n € Lx(T). Then n((+)Ex(D) = n((r)Lx(T)) C
(T‘)L/[-(E‘) = (r)Lk(T'), and it follows that n(-Lx(I")) C -Lk(T') and
moreover 1 [, (r)€ 1:((\F ) and is continuous in the finite topology
because the Op are right ideals of Ij((\F) By the density of -Lk(T)

— — —

in Lg(T') we get that n € Lg(T'). We have that every ¢ € Lg(T) is
determined by its action on V', the set of vertices of I'. Moreover, for
any a € Li(T'), the map -a has the property that (v)(-a) = va = 0 for
all but finitely many v € V. ]

Remark 2. It is not hard to see that Lg(I') = @,evvLlg(T)

as right Lg(T)-module and Lg(T') = [[,cy vLi(T) is the unre-
stricted Cartesian product of the K-vectorspaces vLk(I'). We write
(vay)vev = D ey 2 vay for any a, € Lg(I'). Let x € Lg(I'). Then
T(Vay)vev = T Y, cy Vay = Y,y TVay € TLE(T) is a finite sum since
the paths used in the presentation of z € Lk (T') end only in a finite

set of vertices. Moreover, for }° i vay, ) oy pby € Lk (I') we have
(Xvev vau) X ey Bap) = X ,cy V(2 ey aopby). The latter sum is

—

finite. This sheds some light on the structure of Lg(T"). Note that

—

Y owev U E L/K(\F) is the identity of L (T').
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